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AN AXISYMMETRIC JOINT ELEMENT UNDER NON-AXISYMMETRIC
LOADINGS IN SEMI-ANALYTICAL FINITE ELEMENT METHOD

By Tameo KOBORI* and Yasuo CHIKATA**

A new axisymmetric joint element model for semi-analytical finite element analysis of
axisymmetric bodies subjected to non-axisymmetric loading is proposed. The new joint
element model for axisymmetric interface has three degrees of freedom : normal,
tangential and circumferential directions, and describes debonding (normal direction), and
slip (tangential and circumferential direction) on the interface. The new joint element
model was incorporated into a finite element program and test-case analyses were
performed. The results indicate that the new joint element model is useful in the
semi-analytical finite element analysis for deeper understanding of stress distributions on
the axisymmetric interface,

1. INTRODUCTION

For the finite element analysis of the ground-footing system or cracked rock mass in which
discontinuities are embedded in continuous system, a kind of interface element model which is called %joint
element’ is often used. A simple and useful joint element model was formulated by Goodman et al.V for
plane problem. The joint element describes the physical behavior of the system such as debonding and slip
along the discontinuity.

In the finite element analysis of the ground-footing system or ground-pile system, the system is often
modelled as axisymmetric bodies in cylindrical coordinate system, and hence, a new joint element model for
axisymmetric interface is needed for modelling the discontinuities. Some joint elements for axisymmetric
interface were formulated by Ghaboussi et al?,, Heuze et al¥., and Sasaki et al”,, but these are adoptable
only for axisymmetric problems. In the finite element analysis of the ground-footing system etc. | whichis
modelled in cylindrical coordinate system, semi-analytical finite element procedure is usually adopted in
the case that the system is subjected to non-axisymmetric loading, but a joint element for the case has not
yet been formulated.

In this paper, a new axisymmetric joint element is proposed. The new joint element is conveniently used
in the semi-analytical finite element analysis of axisymmetric bodies subjected to non-axisymmetric
loading.
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2. SEMI-ANALYTICAL FORMULATION®

The axisymmetric body is idealized as an assemblage of i%\{
2 ;
\r

quadrilateral rings connected at their nodal circles. The dis-

placements of nodes are represented in cylindrical coordinates

by three components in radial (r), vertical (z), and circum- C\
-8

ferential (¢) directions (see Fig.1). These displacement com-

ponents are expressed by polynomials in the meridional plane,

,z), as well as by a Fourier series in the circumferential
(T 2) y Fig.1 Axisymmetric solid and related

direction, §. Using the finite element formulation, it is coordinate system.

assumed that the shape functions defining the variations of dis-
placement, g, can be written for the case that the non-axisymmetric load is symmetric about a plane
containing the axis of revolution (§=0 plane), in a form of the superposition of M harmonics :

u=N(r,z)<uo+§l Cmum) ....................................................................................... (1)

where,

u=|u v w}": displacements in 7, z and § direction

N . shape functions matrix

Crn=4diag(Cn Cn Sn Cu Cn Sn Cn Cn Su Cn Cn Sn) : for 4 nodes element

The vectors wu,, u, stand for the sets of appropriate nodal ‘values coefficients of the Fourier
representations,

Similarly, the loading terms have the form

» f:f°+;z‘:', Gl » v s et e e e e e (2)
where,
F={f; fo fdl

With restriction to small strain and small displacements the strain in eylindrical coordinates is given by

{5}:{57' €z €0 Vrz Yro 7z6}T

T
=Bu=[B°, Bl,"', BM]{HO, Upyoe, uM[T .......................................................................... (3)
For the j-th node, the strain matrix BT is determined as follows :
oN;/or 0 0
0 N,/ oz 0
"=diag(Cn Cn Cn Cn Sn Sn): 8]1\\;2//22' BN?/BT ml\g/’r ..................... (4)
—mN;/r 0 ON;/or—N,/ T
0 —mN:/ 7T oN;/ oz

The finite element formulation can now follow the standard pattern®. The stiffness matrix will now be
written listing the contributions of each harmonic separately. A typical submatrix of an element stiffness
matrix K is written as

Ki7=| (B)"DB}d(Vol)

vol

=[2”£(B£)TDB§"rdrdzd6 (l,m=0,1,~"M) ...................................................... (5)

where D=D(r, z) only.
And because of the orthogonality of trigonometric function, the followings are derived :

46s



An Axisymmetric Joint Element Under Non-Axisymmetric Loadings in Semi-Analytical Finite Element Method 59

ano Y G = R U S (6)
Thus a decoupled form is obtained as

K° .- 0 ves 0 U, fo
g - K" -« 9 T T R (7)

6 - 0 - K"dluy fu
in which M-+1 separate problems are solved for g, unknowns, ]
The formulation described above can be easily extended to the cases that the load is anti-symmetric or
combination of axisymmetric and anti-symmetric about §=( plane.

3. FORMULATION OF NEW AXISYMMETRIC JOINT ELEMENT

The joint element formulated by Goodman et al.? for plane problem is advanced to the one for
semi-analytical analysis of three dimensional problem in cylindrical coordinate system.

The new joint element has a meridional plane which consists of pairs of nodal lines 1-4 and 2-3. In the
initial state, the pairs of nodal lines 1-4 and 2-3 have same coordinates. Notations for the new joint
element are shown in Fig, 2.

The behavior of the axisymmetric interface which is modelled by the joint element, is described by the
relationship of relative displacements between two circular plates 1-2 and 3-4 in Fig, 2. The components of
the behavior are debonding (normal (7) direction to the interface plane), and slip (tangential (¢) or
circumferential () direction),

The relative displacements between a pair of circular plates 1-2

and 3-4 are written as follows : \
d={de dy A" =N*u*=(—NI —NoI NoI NiIJu* - (8) | FARCES
in which, ‘ 4}\/ ‘r—
w=lu¥ of wheuf of Wi ' \% X
: displacements of nodal lines in & 7 and 4 direction J— id LA
N=(01—2¢/L)/2, N;=({1+2£/L)/2 : shape functions W\/
I : 3X3 unit matrix
L : joint length in (7, 2z) plane (see Fig.2) \ h F
The stress-displacement relationship is written as | 8
P—_—kN*u*“""". ....................................................... (9)
in which Fig.2 Notations for joint element.

P=|P; P, Pg" . stresses in a joint element and,

ke 0 0
D I I 7 S T (10)
0 0 ke

. element stiffness per unit length
According to the semi-analytical formulation, relative displacement vector d is rewritten as follows :

where,
u¥ is the coefficients vector of nodal displacements in the Fourier series form,
Then the element stiffness matrix for m-th harmonic becomes

27 [L)2 :
— I N 7 Sy =2 < J
K= [ [ (NCaYkNCardsds (12)
Evaluating K, at the element centroid, Eq. (13) is obtained.
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k k —k —k
7L | k k —k —k
4 |-k -k kK
-k —k k k
where, T=(r;+ 7+ 13+ 7)/4.
For (-th harmonic, the constant 77 L/4 is replaced by 277 L/4, and in this case (m=0), eliminating

Kn

the columns and rows about #-axis component, K, is identical to the element stiffness matrix for the
axisymmetric joint element formulated by Heuze et al.?. For the case m=1, K, is independent of the
harmonic order m,

As seen in the formulation described above, the joint element has the three components of behavior for m
=] (see Fig.3),

If the global coordinate system does not coincide with the local system, K, should be rotated in a
following transformation.

KS=TTKnT, K& inglobal CoOrdinates ----- -+ ssstrurresesrimiiiiniiiiiiiii i (14)
t 0 0 O .
cosa sine 0
0 t 0 0 .
T= ,t=| —sine cosa 0
0 0 ¢t O
0 0 1
0 0 0 ¢

The rotation angle o is defined in Fig. 2.

The constitutive relation between the stresses in the joint element is assumed as illustrated in Fig. 4.
This is an extension of the constitutive relation proposed by Toki et al.”. Fig.4(a) illustrates the
constitutive relation between the stress and displacement in the normal (7) direction to the joint plane,
Fig. 4(b) shows the constitutive relations between the stresses in tangential (¢) and circumferential (6)
direction. The specification whether debonding or slip has occurred or not, is made based on the stresses
at the element centroid. Stresses at the element centroid in the local system are given as follows (see Eq.

(9)):
e kd—u¥—uf+uf+ud)
o :0'5 kﬂ(—— v?‘-—- v?—{- v?;—}— vf) .......................................................................... (15)
7o kol — w¥— wi -+ wi+ wf)

When ¢>0 (tension), it means debonding has occurred, and then stresses are released in a joint
element. When ¢<( (compression) and | z.| > | z,|, it means slip has occurred along ¢ direction, and then
| ze| must be reduced to |z,|. 7, is the yield tangential shear stress. For ¢ direction, the same
specification for ¢ direction is made, and then, 7, stands for the yield circumferential shear stress,
The yield shear stress z, is assumed to follow Mohr-Coulomb yield criteria, i.e. :

y=C—otang (¢=0)

7y=0 (6>0)

Where C denotes cohesion, and ¢ denote§ friction angle respectively.

-

tension

A= &«
ke kn kg

{a) Normal direction (b) Tangential and circumferential
Fig.3 Schematic of modes of deformation at interface direction
(m=1). Fig.4 Load deflection curve.
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If M+1 (from (-th to M-th harmonics) Fourier coefficients have been used in the expansion of the
applied load, the following procedure is adopted®®9_

(1) Solve M+1 separate sets of equation to obtain the nodal displacement corresponding to each
harmonic,

(2) The stresses at the centroid of the joint element and at each Gauss point for other element are
calculated from the nodal displacement corresponding to each harmonics,

(3) The stresses for each harmonics are combined to get the total stresses on any meridional plane,
and added to the values of previous iteration stage.

(4) Check whether debonding or slip has occurred or not for each joint element. If debonding or slip
has occurred, the stress is reduced on a interface. At the same time, the internal nodal force is calculated

by Eq. (2).
(5) Check the convergence on some meridional plane, The convergence criterion is as follows
T/® R (17)

This convergence criterion indicates that convergence occurs if the norm of the residual forces at r—th
iteration stage (¥') becomes less than ¢ times of the norm of the total applied forces (¥,).

In the procedure described above, the joint stiffness is not reduced after debonding or slip has occurred,
because the semi-analytical technique requires the constant properties in the circumferential direction. So
the stress transfer method?” is adopted with initial stiffness.

4. EXAMPLES

The connection between pile-head and footing subjected to horizontal load at pile end, shown in Fig. 5, is
chosen to show a practical application of the new joint element. The pile-head has both horizontal and
vertical interfaces with the footing. Let debonding

or slip occur only on the vertical interface. The ; 7
finite element mesh is shown in Fig, 6. The applied [ footing
lateral load is transformed into shear force and 1200

/

I joint element 4

moment as shown in Fig. 6.

Mechanical properties of pile, footing and joint
element are listed in Table 1.
As shown in Table 1, analyses were performed

for 3 cases. Case-1 and case-3 are the extreme Flel

: . horizontal load B
cases. In case-1, only debonding occurs on the e C ET;‘{>®
interface (so, slip does not occur) as the result of 00 @
calculation, and in case-3, the interface is fric- Fig 5 Connection between pile- transformed horizontal load
head and footing. Fig.6 Finite element mesh.
Table1 Mechanical properties. & 9
case-1 case-2 case-3 not deboond slip
Young's | 2.0x10% | 2.0x10* | 2.0x10¢| v fjhg d
modulus E | (MPa) (MPa) (MPa) ebon
Pile, 6= | 6=0 b=z | 6=0 6=r | =0
Footing| Poisson 0.17 0.17 0.17 l : I H I ]
ratio v : : ! ] 5 ! i }
ke 1.0x10% | 1.0x10% | 1.0x10* ] I } i
(Pa/m) | (WPa/m) | (MPa/m) . o
kn 2.0x10* | 2.0x10* | 2.0x10* 1 ; : 1 i .
MPa/m)|  (MPa/m)| (MPa/m) ! L P 1 H
Joint ke 1.0x10* | 1.0x10* | 1.0x10%
MPa/m)|  (MPa/m)| (MPa/m) inner surfoce outor surfoce
of plie of plie
o 2.0 (MPa){0.5 (MPa)|0.0 (MPa) (a) caset (b) ease-2 (¢) case3
e o °
¢ S0 %0 0 Fig.7 Debonding or slip region.
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Fig.8 Profiles of vertical stress on
cross section a-a (case-1).
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Fig.11 Profiles of vertical stress on

cross section a-a (case-2).
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Fig.14 Profiles of vertical stress on

cross section a-a (case-3) .
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Fig.9 Profiles of horizontal stress on

cross section b-b (case-1).
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Fig.12 Profiles of horizontal stress

on cross section b-b (case-2).

g=m g=0

Fig.15 Profiles of horizontal stress

on cross section b-b (case-3).
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Fig.10 Profiles of shear stress on

cross section b-b (case-1).
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Fig.13 Profiles of shear stress on

cross section b-b (case-2),

joint
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=00
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Fig. 16 Profiles of shear stress on

cross section b-b (case-3),

tionless. The characteristics of the joint elements in these cases are specified by cohesion C and internal

friction angle .

The adopted tolerance value of ¢ is 0.03 (3%),

for convergence check.

The judgement wherther debonding or slip has occurred or not, is made in five planes ;| §=0, »/4, =/2,

3x/4 and 7, respectively.

The calculated results are shown in Figs. 7-16.
Figs.7(a)-(c) show the region (=joint element) at which debonding or slip has occurred
corresponding to the cases 1-3, respectively.

In Fig. 8, Fig. 11 and Fig. 14, profiles of ¢, distribution on a cross section a-a are shown, corresponding
to case-1, case-2 and case-3, respectively. And in Fig.9, Fig. 12 and Fig. 15, profiles of ¢, distribution
on a cross section b-b are shown, corresponding to case-1, case-2 and case-3, respectively. Similary in

Fig. 10, Fig. 13 and Fig. 16, profiles of 7, distribution on a cross section b-b are shown, corresponding to
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‘case-1, case-2 and case-3, respectively (cross sections a-a and b-b are shown in Fig.5). And in
Figs. 8-16, the calculated results are compared with the results for the case that the pile and footing are
modelled as a continuum without joints, ;

Comparing the results in cases with the joint and without the joint, in Figs.8, 11 and 14, the
distributions of ¢, are discontinuous on the side face of pile, because debonding has occurred on the
external side of pile (§=r plane) as well as on the internal side of pile (§=0( plane). The effect of the
friction in the interface is seen in comparison between Fig, 8 and Fig. 14 (on the external side of pile in g=
0 plane and on the internal side of pile in #= 5 plane).

The effect of friction in the interface on the stress propagation is seen clearly in Fig.9, Fig.12 and
Fig.15 (#=0plane). And also, ¢, distribution shows leverage support.

Figs. 10, 13 and 16 also show the effect of the friction in the interface crearly. In Figs, 10 and 13, 7, is
propagated on §=( plane. On the contrary, in Fig, 16 on §=0 plane, r,, is not propagated because the
interface is frictionless,

Fig. 17 shows the convergence path for the 2 cases : C=2. 0, =30

(case-1), and C=0.0, ¢=0 (case-3). The norm of residual sum ratio lé:/;)

(value of the left parenthesis of Eq. (17)) decreases rapidly to about
20 %, but thereafter the ratio of (decrease)/(iteration) becomes 80
smaller. The convergence has achieved more rapidly for the case that slip ‘g
does not occur on the interface (case-1) compared with the case that the £ ol
joint is frictionless (case-3). E
For the case that the stiffness of pile is rather larger than that of ? %0 C=20, ¢=30°
footing (Young's modulus : pile=2. 0X1(°, footing=2.0X10*MPa, %, . % ~C=00, $=0°
=2.0X10°, ke=ko=1.0X10° MPa/m, other conditions are same as case 2 sl } Y
3), the result is almost same as the result of case-3. . X
The appropriate number of adopted Fourier harmonics M(0-th to AN K;'Z:
M-~th) is variable according to the applied load. For the example showed %6 10 20 0

number of iteration
above, M =4 is sufficient because the result of the case with }f =4 almost

coincides with the result of the case with M =8§.

It is one of the important problems to find the appropriate value of the joint stiffness. In the example
showed above (case-3), set the joint stiffness higher value k,=2. 0X10°, ke=ko=1.0X10°, then the
number of iterations for convergence has increased, and the final results of stresses have also increased.
In order to check whether the value of the joint stiffness is appropriate or not, further investigations are
needed but are not made here. Toki et al.” set the value of the joint element stiffness equal to the value of
the solid element stiffness next to the joint, but in the case that the stress transfer method is adopted, it
seems rather larger value for get convergence in small iteration number,

5. CONCLUSIONS

Fig.17 Prosesses of convergence,

The joint element for plane problem which was formulated by Goodman et al. , has been extended to the
model for axisymmetric interface,

This new joint element model is applicable in the semi-analytical finite element analysis of axxsymmetrlc
bodies with discontinuities subjected to non-axisymmetric loading.

The new joint model was incorporated into a finite element program® - and test-case analyses were
performed. The results indicate that the use of the new joint element model lead to a better understanding
of stress distribution on the axisymmetric interface.
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