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ON LONG-TERM BEHAVIOR OF CABLES IN
CABLE-STAYED BRIDGES

By Yoshiji NIWA*  Hiroshi NAKAI**, Eiichi WATANABE*** and Tkuo YAMADA****

The Locked Coil Rope cables of cable-stayed bridges have reportedly undergone
significant relaxation and the deflections of the girders have also increased noticeably year
after year from a number of field measurements. In this paper, an attempt is made to
account for such behavior analytically assuming that the cables follow the linear
visco-elasticity law ; whereas the girders and towers remain linearly elastic. Described
herein are the determination of the visco-elastic constants, and numerical analyses
performed on totally fifteen cable-stayed bridges by finite element method and the
numerical Laplace inverse transformation ; The results were compared with the measured
data on two bridges.

1. INTRODUCTION

In recent years cable-stayed bridges seem to have been preferably constructed throughout the world. A
cable-stayed bridge consists of three major elements : that is, girders, towers and cables. It is
advantageous because of i) economical design through the pretensioning of cables, ii) easier erection
using cables and iii) relatively simple and elegant alignment,

However, the Locked Coil Rope (hereafter referred to as LCR) cables have been reported to have
undergone significant creep or relaxation. For this reason, DIN 1073 of West Germany requires that the
creep strain from (0. 010 % to 0. 015 % must be taken into account in the design unless appropriate creep
tests are conducted”. In Onomichi Bridge? (hereafter referred to as O Bridge) it was reported from a
series of field measurements that creep strain of (. 018 % have occured. On the other hand, in Kawasaki
Bridge” ¥ (hereafter referred to as KS Bridge), the maximum relaxation of the cables has been reported
to have amounted to 11.8 % at 3.5 years after construction,

According to the study by Nakai et al.®, the total creep elongation is the sum of the elongation of each
component wire and the structural elongation caused by the relative movements between the interface of the
wires ; furthermore, they demonstrated that the creep elongation of the spiral ropes is several times larger
than that of the wires themseves.

An attempt is made in this study to evaluate the creep and relaxation of cable-stayed bridges assuming
that the cables follow the linear visco-elastic law based on the field measurements on the existing bridges
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conducted by two different organizations,
2. CABLE-STAYED BRIDGES IN JAPAN

(1) Cables®?

The types of cables can be classified into : LCR and Parallel Wire Strand (hereafter referred to as
PWS). In case of the former in particular, a special attention is called for the creep phenomenon. Several
characteristics of cables are investigated on 14 typical cable-stayed bridges in Japan and are listed in
Table 1, together with KS Bridge, that is subjected to rather extensive study. Among those 15 bridges,
PWS are used in 9 bridges and LCR in other 6 bridges. In Japan, L.CR was used earlier, then PWS has
become more popular. Recently, however, LLCR tends to be in use again because of easiness to use and of
the resistance against the corrosion, The maximum cable forces resulting from the combination of the live
loads amount approximately to 10 % to 40 % of the breaking strength, and the prestress forces 1 % to 10
%.

(2) Relative Stiffness Ratio of Cables

The design of cable-stayed bridges may be significantly controlled by the stiffness of cables. For simple
representation of the load distribution to the main girder, tower and cables, the following ratio will be
defined as the relative stiffness ratio of the cables :

E2 A}—Ci sin®6;
b TP OTPRP PPN (1)

=T R/ L7
where [; : length of each cable,

A, - area of each cable,

Table1 Cable Dimensions of Cable-stayed Bridges in Japan,

No DInitial | Type of ! No. of Ropes Area Breaking | Maximum | Prestress | Tmex | Tp b4
H ! (Name) Cable Cable Ac Strength | Force Force cbA | obA | (x10Y
' | Arrange | Planes (em?) ob(t/en®) | Tmax (t) | Tp (t) Eq (1)
LY | HARP 1 [ PWS217X19 809. 6 16.0 4. 408 201 0.340 10,016 117 44
H (1 PHS169X19 630.5 16. 0 3203 148 0.318 10015
; PHS217X13 553 9 16.0 3347 212 0.378 | 0024
: . : PHS217X13 553 9 16.0 3052 222 0.344 | 0.025
POsSH IR b1 [ PHSIBOXT 3819 16.5 901 0.143 885
: P2y 3819 16.5 801 0.127
: PHS127X6 784 0.124
! ! | 636 0. 101
K | FAN b1 | pEsarIxe 108. 4 157 539 40 0.323 10024 | 7.92
CHuliie ! PHS184X2 723 157 366 79 0.323 | 0069
. i Cable PHS114X2 | 3 15.7 227 33 0.323 | 0.048
R FANG) | 2 PHS2I7X2 E 85.2 5.2 430 130 0.331 (0106 ; 025
FAN. [ PRSISANIG | 4837 15.7 2. 548 556 10,335 10073 | 521
: 2y PHS127X12 269.2 157 1167 549 ; 0.248 {0117
o RADIAL | 2 | LCR-D7OX4 138.8 1.8 330 7 10.202 50004 1613
| 2y LCR-D86X4 1224 2.1 327 69 0.221 10, 047
: LCR-D56X4 89.6 11.8 218 57 0.206 |0 054
i i LCR-D54X4 832 12.0 222 24 0.222 {0024
{7 | SG | HARP . PHS169X19 630.5 16. 5 3137 453 0.302 10.044 | 108
| HENG:D I PES169X13 4314 16.5 1. 967 8 0.276 | 0.008
| : i | PHS169X7 3R19 16.5 1.736 362 0.276 0. 057
! ! | | +PHS127X6
8 D | FAN i 2 . | PHS127X12 299.2 16.0 919 0.192 115
| i io(2) PHSI27X9 224. 4 16. 0 622 0.173
H | PRS127X12 2992 16.0 1. 044 0.218
: ! PRS127X9 224 4 16.0 513 0. 143
3 5 A HARP 1 | PESI27XY 281.8 160 1. 350 100 0299 10022 | 184
(2} +PRSYING 281.8 16.0 962 500 0.213 10111
10 I FAN(2) 2 | PWS127X4 99.7 16.0 174 93 0111 |0.059 |7 05
11 E RADIAL 2 | LCR-F100¢ 70.4 12.0 268 0.317 2.08
{6} LCR-E92 ¢ 584 1.8 224 0. 324
LCR-E80 ¢ 4.8 i) 170 0.320
LCR-D70 ¢ 34.7 1.7 119 0. 283
12 G FAN 2 | LCR-E80¢X4 179.2 1390 992 204 0.426 | 0086 |4 80
(3) LCR-D70 ¢ X4 138.8 130 589 0. 326
LCR-D6O X4 102.0 130 440 0.322
13 M FAN(2) 2 | LCR-D584XIZ| 280.8 5.0 1. 685 200 0.400 | 0.048 | 032
14 S1 HARP 2 |LCR-HI0O¢XK4| 290.4 181 600 300 0.128 10,064 1112
(2) LCR-E90 X4 228 8 13 4 270 175 0.088 | 0.057
15 KS |Fa¥ 2 | LCR-D50¢ 8.2 114 33 26 0.158 |0 127 |0.17
1CR-D70 ¢ 338 2.0 84 35 0.233 | 0.086
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8, . slope of each cable,
E. . Young’s modulus of cables,
E; : Young's modulus of main girder,
I; - moment of inertia of main girder,
Lz : total length of bridge.
The relationship between the total span length and the relative stiffness ratio with respect to the bridges
considered in the proposed study is shown in Fig.1.

3. FIELD MEASUREMENTS

(1) Scope

For the present, available field data are extremely limited on the long-term behavior of the cable-stayed
bridges. Namely, only two sets of data are available for use. Those are on i ) O Bridge and ii) KS
Bridge. They consist of the time-dependent changes of the vertical deflections of the main girders and the
cable tensions, :

(2) KS Bridge®?

KS Bridge shown in Fig, 2 is a cable-stayed bridge of multi-cable type, over the Ohkawa River in Osaka
for pedestrians and bicycles and was completed in 1978. It has two continuous spans of 87.5 m+40. 65 m,
and has 20 LCR cables. Table 2 shows the dimensions of the cables. For detailed descriptions on the
actual erection of cables, the readers are recommended to see reference 3).

The cable forces were measured two times so far, namely, on completion and three years and a half after
that by the free vibration method using accelerometers and spectrum analyzer by Osaka Municipal Office
and Kurimoto Steelwork?. Some of the authors were fortunate enough to participate the last measurement
through the courtesy of Osaka Municipal Office.

The camber has been measured three times : on completion, one year and a half afterward, and three
years and a half afterwards, respectively.

(3) O Bridge?

O bridge has three continuous spans and the center span is 215 m. The cable alignment is of radial type

and § cables are connected at each stream side of the

v j [ ST T main girder. Each cable consists of 4 LCRs, The field
Ll o tex measurements were performed § times on the vertical
B rus ] deflections of the main girder. They were found to be
_ significantly large even at the first field measurement
o© B and were finally decided to be retightened after 8 years
from the completion. For detailed descriptions on the
b : fabrication and erection of cables, the readers are
1 recommended to see references 8) and 9),

N4 The bridge dimensions and the results at the
s1 completion, 4 and 8 years after the completion are
shown respectively in Fig.3. After § years from the
completion, the deflection at the center span amounted
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Fig.3 Measured Deflection of O Bridge. Fig.4- Three-Element Model.

to 158 mm below the original configuration.

4. METHOD OF ANALYSIS

(1) Linear Visco-Elastic Model of Cables

The linear visco-elastic model is adopted for convenience to the cables, From the fact that the maximum
cable stresses do not amount to more than 30 % of the breaking stresses of the cables, it may be quite
reasonable to assume that the creep may remain in the stage of the initial creep. '

The linear visco-elasticity is defined by Boltzmann in 1-dimensional problem as follows!-10 :

a(t):[: G(twt)-a—eav(:—)dt

ev=[" si1—12 e

T

Thus, the relationship between the stress and strain, that is, the constitutive equation can be expressed
in terms of the convolution, Consequently, the governing equations derived from this can be shown to take
the form of Volterra’s linear integral equation of the first kind. Furthermore, Volterra’s principle states
that any problem of the theory of hereditary elasticity can be solved in exactly the same way as the
corresponding problem in the normal theory of elasticity except that in the final result the elastic constants
must be replaced by elastic operators. As a matter of fact, using Laplace transform, and letting f(s)
designate the Laplace transform of a function f(), then it is quite easy to show that Eq. (2) can be
transformed into

GUS)EIE(S) BUS v rervvrseremmemem s st (3)
where E(s)=sG(s)
in which G(s) and E(s) is referred to as the relaxation function and the Young’s modulus in the Laplace
image space g, respectively.

The three-element model adopted in this study, slightly different from what is called “standard solid
model” by Sonoda et al. ', is shown in Fig.4. @

1t consists of elastic springs E, and E,, and a dash-pot with the viscosity constant 7. The stress-strain
relationship is given by :

6+/\02E(é+ﬂe) ..................................................................................................... (4)
where

E:E1
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/\:(E1+E2)/77 ......................................................................................................... (5)
u=E,/n
and the dot implies the differentiation with respect to the time . Eq. (4) can be transformed into the
following, upon Laplace transform assuming that ¢(+0Q)=Ee(+0) :

Fls)=EST L5 (s)

s+A
= F(S)B(8) = S GUST@(S) «++vvvrvreesermsmemmemae ettt et (6)
where
E(s)=E ii//{ ......................................................................................................... (7)
G(s)=E S*(S:‘_'f‘/\) ....................................................................................................... (8)
In case strain e(%) is known, then, from Eq. (6) it yields :
-(;(s)zE(@-(S)._(,\_#).f_(%) ....................................................................................... (9)

In the case of the relaxation problem, that is, when e(1)=-e(0)=e(t=0), e(t)=0, (£<0), it is easy to
show that
oft) 1

o :m(p—-}—exp(——/\t))...... ...................................................... (10)
where

OTE g/ v (11)

On the contrary, solving Eq. (6) for the strain, it can be seen that

()= (= b BUSLY e

als)= g (1 O0—rr ) (12)

In the case of the creep problem, thatis when ¢(1)=g{0)=0,(2=0), o(1)=0, (<o), itis also easy to show
that

Eéo—)=%((l+,o)—exp(—ut)) ........................................................................................ (13)

In actual cable-stayed bridges, cables are neither in the state of creep in a narrow sense of increasing
strain on a constant stress, nor in the state of relaxation again in a narrow sense of decreasing stress on a
constant strain, but it is reasonable to consider that both phenomena occur simultaneously.

The coefficient of the model may be determined from the creep test of ropes themselves. However, other
factors such as the slip out of sockets or the deformation of bolts, and the settlement of the supports may
affect the time-dependent behavior of cable-stayed bridges. Thus, it is difficult to determine the
coefficients of the cable model solely from the creep tests of the component wires,

In the proposed study, thereby, the coefficients will be determined on the basis of the data obtaind from
the field measurments on the cable and the cambers of the main girders. The data of cable tension
measurements through the vibration tests can be considered to be relatively reliable. The elogations of
cables, nevertheless, can not be calculated correctly merely from the camber mesurements because towers
deform simultaneously. In view of the fact that no data is available with respect to the tower, an attempt is
made to determine the constants of the cable making the best use of the existing data.

When the actual phenomenon can be regarded as a relaxation problem, Eq. (10) can be solved as

follows :
__1 T8 ) e e
A= tmﬁum%g—p) (14)
If the stresses ¢(%,), o(t,) are given at two different time stations ¢,, f, and if A remains constant, then,
1 a(t,) 1 ) o(l;) o
.i:ln <(l+'o)To p>_t_2]n ((1.{_’0)70 ,0) ...................................................... (15)
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Thus, A can be determined by letting p satisfy Eq. (15) and upon its substitution to Eq. (14).
On the other hand, when the actual phenomenon can be regarded as a creep problem Eq. (13) can be

solved as
= w%ln <(1+p)_p%§l> .......................................................................................... 16)

If the strains of the cable e(},), e(,) are given at two different time stations %, %, and if g remains
constant, then,

%‘;lﬂ((1+p)*p e(ei‘)):_tlzln((l+p)_pe_(eif]2_)> .................................................................. (17)

Therefore, x4 can be determined by letting p satisfy Eq. (17) and upon its substitution to Eq. (16).
Unfortunately, since the sufficient relaxation data are not accumulated in view of the fact that the cable
tensions have been measured only once after the completion of the bridge, the determination of the cable
constants merely from the vibration tests will be found impossible. Thus, an attempt is made to determine
the constants from the camber measurements assuming that the problem is the creep problem using only the
data of cables that did not undergo significant change of the cable force, and the results were compared
with the results from the tension measurements,

5. FORMULATION FOR NUMERICAL CALCULATION

(1) Scope

The long-term behavior of the cable-stayed bridges can be analyzed by finite element method. From the
Volterra’s principle, the stiffness matrix of linear visco-elastic cables can be superimposed to that of the
linear elastic girders and towers in the Laplace image space s to form the global equilibrium equation of
cable-stayed bridge. After solving this eqation the final solutions will be obtained in the real time domain
through the numerical Laplace inverse transformation,

(2) Formulation by Finite Element Method

Since the girders and towers are linearly elastic, the stiffness matrix K,; for a beam element is
expressed as follows :

KijlemiEmandV ................................................................................................. (18)
where B,,; or B,;, En, and V designate the strain matrix, the elastic modulus matrix, and volume of the

element, respectively.

As cables are assumed to be linearly visco-elastic, the stiffness matrix is given by :

Eij(s)zﬁBméfmn(s)andV ......................................................................................... (19)

where E n.(s) designates the elastic modulus in the Laplace image space and is represented from Eq. (8 )
as follows :

T SV Tla)m FS b e
Ends)=E(s)=E o (20)

Combining these stiffness matrices in the Laplace image space, s, the equilibrium equation of the total

bridge is given by
[7{—11(3) Ezl(s)} Fl(s)
—EZI(S) Ezz(s) 1_52(8)

where K;;, W, and P, refers to the stiffness matrix, the nodal displacement, and the nodal forces,

_17)1(8)

Wl 8)

respectively, Moreover, subscript 1, and 2 refers to the main girder and tower, respectively. In the
proposed study, the forces consist of the dead load and the prestress force induced to the cables. The
following equations hold for the complete system ;
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(KIS ()P (S -+ vvreeemmmee ettt e 22y
Similaly, for the system under erection :
(K7 (ST (SN P7(S)f+vvveeemvereeemimee et (23)

The total displacements and stresses can be obtained as the sum of each system by the principle of
superposition. Consequently, the displacements of girders and towers are obtained in the image space :

fw(sh=fw (sh+{w (sh

=(K(8)) P (S (K7(S) T [P7(8)) -+ vvvvreeeemmmee et (24)

(3) Numerical Laplace Inverse Transformation

The obtained solutions, nevertheless, constitute sets of numerical data in the image space s, and not in
the real time domain . It becomes necessary to apply the Laplace inverse transformation to the solutions
so that they correspond to the real time §®~19, :

For successful execution of the numerical Laplace inverse transform, several considerations will be
necessary. Regarding the choice of the interval to be subjected to the inverse transform, Izumi has
proposed the following method® : First, examine the variation of the Young’s modulus in the image space
s, and plot the value of E(s). Secondly, find the interval in which this value changes and use this interval
for the inverse transformation for —f(s)_ Finally, apply appropriate regression formula based on the least
square procedure in the prescribed interval so that the solution satisfy the limit theorems.

At first, the nondimensionization will be performed on time. The Laplace transformation is defined as

follows,

@(s)=[” EXP(— SEVU(B)AE +++vveeereerermememm e et (25)
Let us non-dimensionalize the expression in terms of a parameter, T :

ey TRy P P (26)
Substitution of Eq. (26) into Eq. (25) yields

ET‘Q:‘[N exp(—s b)ul T?)df ................................................................................... 27)

The above equation shows that the Laplace transform of (T ) on t becomes 75(s)/ T and that the Lapalace
inverse transformation of 7(s)/ T on s becomes (T ). The parameter T is selected to be n/E, which is
usually referred to as the delay time.

In the proposed study the solution of creep and relaxation is approximated as the sum of exponential
functions,

w(Tt)= i:; Qs @XP( = By E) +vevrereeesmmmmee e et e et e e (28)

where b,=Tb, b,=0
Then the square error f can be formulated as :
1 &S a wls)ye
f_Z (§ §j+5i T >

where f refers to the number of the terminal points in the Laplace space, s. The values of g, and b, must

Jj=1

be so determined as to satisfy the limit theorems and minimize function f. Now, letting N=2, ¢, can be
determined as :
Q1= Wy (g™ W= W ** 5 * #7777 s e s e st e et e et et ettt ettt sttt (30)

Furthermore, from the condition that —a%—z()
2

oo G Ws)) 1 _
Z<T§f 5+0, T >(§,~+752)2

The value of b, which satisfies the above transcedental equation can be found through the Regula Falsi

J=1
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Method,
6. NUMERICAL ILLUSTRATIONSY

(1) KS Bridge

The relative stiffness ratio is (). 17X1(", which is much less than those for the other cable-stayed
bridges.

Fig. 5 shows KS Bridge model and its model dimensions, respectively. KS Bridge was constructed in the
following process, and the prestress was introduced by means of the jack-up and -down of the main girder
Thus, the analysis was made in conformity with the actual construction process :

1) Pre-dead Load : A temporary support is set up at point K,, the bridge girder is assumed to be
three-span continuous,

2) Jack Up : The girder is jacked up by 700 mm at point A, ; by 100 mm at point K, ; while the tower is
set back by 100 mm at its top. The cables having the prescribed lengths are fastened to the main girder
without initial stresses.

3) Remove Temporary Support . Temporary support at point K, is removed.

4) Jack Down : The girder is jacked down by 700 mm at point A,. Then, prestress forces are
introduced into cables.

5) Post-Dead Load : The post-dead load is applied to the completed bridge.

The pre-dead load of steel girders is 1. 682 t/m. The weights of cables vary from (. 344 t to 1. 044 t, and
the post-dead load is calculated to be (. 447 t/m. Furthermore, Young's modulus of girders and towers is
E=2.1X10kg/cm?, and that of cables is E.=1.6X10°kg/cm? respectively.

The coefficients, E,, E,, and 7 of three-element model for cables are determined based on the measured
data in the following manner : Firstly, a spring constant E, is assumed to be the Young's modulus of
cables, E.. The vertical deflection of main girders was measured at 1.5 year and 3.5 years after the
completion of the bridge. Then, the elongation and strain increments of cables are calculated from the
measured data neglecting the set-back of towers, Visco-elastic constants are determined by Eq. (16) from
the measured strains of cables obtained at different time stations with an appropriate modification made
taking into account the settlement of the supports ;| p=5.0, #=0.39; E,=8. 0X10° kg/cm? and 7=20. 5X
10° year kg/cm?,

Fig. 6 shows the relaxation of Cable 1 and Cable 10 ; whereas, Fig.7 shows the creep deflection of the
girder, Plotted also herein are the measured data. However, much discussions will be necessary with
respect to whether the prediction of the future response is correct or not and how well it is considered to be
fitted with measured data.

(2) O Bridge

The relative stiffness ratio is 16. 13X 10, which is comparatively larger than the other bridges. The

r I
| O CABLE 1 |
i QCABLE 10!

CABLE 10

{J cable No. _10.0

RELAXATION (%)

il
X @@ @
e;ﬂ_’ i 17130 NI ~15.0
¥

2 3 & 5 6 7 & % 10 11213 KI5 I8 Ajﬂ 19200 21123 2526 ©
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Fig.5 KS Bridge Model‘ Fig.6 Relaxation of Cables1 ¢ 10.
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masurement of the deflection had been performed every one or two years after the completion.

Upon substitution of the cable strains at two different time stations of 4 years and 8 years after the
completion into Eq. (17), the coefficients are determined as : p=2.0, w=0.109, E.;=E.=1.6X10°
kg/em?, E,=3.2X10° kg/cm? and 7=29.5X1(° year kg/cm?. :

Fig. 8. shows the predicted change of the deflection at @ and (9 plotted against the measured data taking
into account only the dead load. The change of the deflection after 4 years and § years are illustrated in
Fig.9, respectively. Again, discussions may be made whether the prediction is good or not. However,
from the availabl set of data, this may be as much as what can be predicted. Besides, it can be seen that the

simple application of the principle of least squares without regard to the structural model may result in the
better fit to the measured value.

7. EFFECTS OF PRESTRESS AND STIFFNESS RATIO

(1) Effect of Prestress

Sometimes prestress is introduced to cables, either by using shim plates, by jack-up and-down of the
main girder or the saddle of cable anchors, although the magnitude of prestress itself is not so large as seen
from Table 1. This is mainly to improve the bending moment distribution of the main girder. To find the
effect of this prestress, a comparative analysis was performed on KS Bridge in both cases of with and
without the prestress.

The relaxation of Cable 10 is shown in Fig, 10. The relaxation in case of prestress is 7. 8 9 after 10

years, compared with 5.5 9% in case of non-prestress. Shown also in Fig. 11. is the increment of deflection
at Point K 2.

(2) Effect of Relative Stiffness Ratio

Using the spring constant ratio . g=F,/E,=2. 0 which is found to be fitted for O Bridge, the effect of
the relative stiffness ratio is investigated.

Fig. 12 shows the relation between the relative stiffness ratio and the ultimate relaxation of cables
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Fig. 12 Relationship between Relative Stiffness Ratio and Fig.13 Relationship between Relative Stiffness ratio and
Relaxation, Ratio of Creep Strain to Initial Strain.

considering only dead load. It may be obviously seen that the greater the relative stiffness ratio is, the less
the relaxation of cables, The broken curve in this figure is a hyperbola obtained through the regression
formula on the least square scheme.

Fig. 13 shows the relation of the relative stiffness ratio and the ratio of the ultimate creep strain to the
initial strain, It may be observed that the greater the relative stiffness ratio is, the greater the ratio of
creep strain becomes. Although Figs. 12 and 13 are obtained from very crude assumption of p=2. (), they
may be used to know approxionately how much creep and relaxation can be expected once the stiffness ratio

is given.
8. CONCLUDING REMARKS

The conclusion obtained from the proposed study can be summarized as follows :

(1) If changes of cables or cambers are measured at two independent time stations besides on the
completion, the coefficients of the cable model may be reasonably determined within the framework of the
linear visco-elasticity.

(2) Itisconsidered that creep and relaxation of cables tend to increase under influence of prestress.
Thus, excessive prestress in comparison with other loads may not be beneficial.
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(3) The greater the relative stiffness ratio becomes, the more the creep controls ; on the contrary,
however, the smaller the ratio becomes, the more the relaxation controls,

(4) At present, the available basic data on the time-dependent behavior of cable-stayed briges is
extremely limited. Thus, further accumulation of the basic data is highly recommended,
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