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FUNDAMENTAL SOLUTION FOR TRANSIENT INCOMPRESSIBLE
VISCOUS FLOW AND ITS APPLICATION TO THE TWO
DIMENSIONAL PROBLEM

By Makoto HASEGAWA*, Masaru ONISHI* and Masahiro SOYA*

The three dimensional and two di ional fund tal solutions for the transient

incompressible viscous flow are determined by solving the singular differential equations,
which are obtained in the induction process of the integral equation, by means of the
Fourier transform. The fundamental solutions determined in this paper have been proved
to be practical in applying to a two dimensional problem by the boundary element method.

1. INTRODUCTION

In accordance with the rapid development of scientific technology, the analysis of transient
incompressible viscous flow has become an important subject to be urgently established these days.
Various investigations"™¥ like F.D.M. or F. E. M. etc, have been made for this subject, and recently
other studies using B.E. M. 99 are also coming out, all of these assume a new aspect of the fluid
mechanics.

Navier-Stokes equation is a well known governing equation of transient viscous flow, but it’s difficult to
obtain solutions directly, even though it may satisfy the condition of incompressibility, Because the
simultaneous differential equations include four more unknowns (pressure and three components of
velocity), the general method of analysis usually depends on calculations making use of vorticity or stream
function, or penalty function etc. However, even if we make vorticity or stream function an unknown, it’s
hard to grasp the physical meaning and moreover not a few restrictions exist when the velocity on the
boundary is calculated. The use of stream function also makes the application to the three dimensional
(3-D) problem difficult. Although usage of penalty function can define physical quantities, velocity and
pressure, as unknowns, it's difficult to determine pressure. ‘

The purpose of paper is to determine velocity and pressure directly, where we derived two integral
equations based upon N-S equation and the formula once differentiated N-S equation with respect to
coordinates and further applied summation convention, both of which we regard as governing equations on
velocity and pressure.

Considering the above, to obtain the integral equation on velocity, first of all we combine weighted
residuals which are the results of multipling the N-S equation by the fundamental solution of velocity, and
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the equation of incompressibility by the fundamental solution of pressure, as a weighting function. After
partially integrating them according to Gauss’ divergence theorem, we can obtain integral equation on
velocity, This manipulation defines Singular Differential Equation (SDE) which satisfies the fundamental
solutions of velocity and pressure, Fundamental solutions are obtained by solving this formula. Here,
the 3-D and two dimensional (2-D) fundamental solutions were shown through manipulation of Fourier
transform. These fundamental solutions enabled us to confirm that transient viscous flow is theoretically
the same as transient heat transfer phenomenon” very well. On the other hand, as governing equation
satisfies Poisson’s equation, the integral equation on pressure is lead by weighted residuals obtained by
multiplying the fundamental solution of Laplace equation to governing equation on pressure as weighting
function,

An iterative calculation is required for the numerical analysis as the integral equation on velocity
includes non-linear terms. Here, we apply the boundary type method of iterative calculation in which
unknown quantities appear only on the boundary, Through this, the velocity on the boundary, and in the
domain and surface traction come out, and then we can decide the pressure accordingly, by substituting
them for the integral equation on pressure,

Attention should be paid to singular integrations in case of this analysis. As is mentioned later, we can’t
calculate the pressure on the boundary analytically. After the analysis it was clarified that the B.E. M.
(direct method) enables us to express the basic movement of the transient incompressible viscous flow.

2. INTRODUCTION OF INTEGRAL EQUATIONS

(1) Governing differential equation:
N-S equation is given as follows®

Dui aui Ujisi
9 Di :p<“é-t“+ ujut,j):pXi_p,i+ﬂuidj+T .............................................................. ( 1)

where p is density of a fluid, v, is velocity component of fluid particles, X, is body force component,  is
viscous coefficient and p is pressure, Commas represent infinitesimal operators and accompanying letters
are governed by the summation convention,

Incompressibility of a fluid satisfies eq. (2)%. Modification of eq. (1) using eq. (2) gives the
governing equation of velocity, eq(3).

e B Ea TR P (2)
ou;
p..—a—i——-—'u(ui,”-}- uj,ji)+p,i+pujut,jmpxi:0 .................................................................... (3)

The other governing equation, of the pressure, can be given as follows, by differentiating eq. (3) with

respect to direction and adopting the summation convention
Uy

W-#(ui.jii+ U+ p,iif(pu,uw)‘i——pxwzzo ............................................................. (4)
Substituting eq. (2) for eq. (4), eq. (4) shows the pressure which satisfies the Poisson’s equation?,

(2) Definition of SDE and introduction of integral equations with respect to velocity

Considering the time and 3-D space shown in Fig, 1, u¥ is to be the fundamental solution for velocity in
the direction k on point B generated by the unit force working toward direction ; on point A, and p¥ is to be
the normal component of fundamental solution for pressure working in the direction of k on point B
generated by the unit pressure working on point A, And suffix ‘s’ and ‘0’ on the domain Q and the boundary
I’ in Fig. 1 represent source points and observe points respectively, however, they are virtually Q.= Q,
and =T,

After multiplying u¥; by eq. (3) as weighting function, and equally p¥ by eq. (2 ), we can get weighted

residuals as follows by differential and/or integral calculation of Qg and %, in Fig. 1. Herein y¥ has
reciprocity according to the property of Green function which is also clarified by eq. (26) mentioned in the
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latter partm)_ I;,I,: boundaries of domain,Qrespectively
n: unit vector mormal to the boundary
i ou
0= f [Uxi {P EY; — Wit Uss)+ Dt ous U
Qs-Jis s N

domain Qe

domain Qg

"ﬂXz]‘*‘("p?)uz,z]dtsdQs ....................... (5)

Further, assuming that the fundamental solution for
velocity satisfies the incompressibility, we get

ufwxo ....................................................... ( 6 )
Then, integrating eq. (5) in the direction by means of
Gauss’ divergence theorem, and substituting eq. (2) and time tg time t(t>tg)
(6) for it, we get the following formula (in which upper Fig.1 Schematic Diagram.

and lower limits of integrations are omitted).

* -
'_ff("‘P”%%fﬁ_ﬂuti,u‘*‘pit;‘)uidtsdgs"ff;‘”&jp?'*'#(uti,j‘*'u?j,i)%nfuidtsdrs
z“‘ff U?z{“g\wp‘*'/l(uw“‘ uj,i)}njdtsdrs_i—ffpu?iujnjuidtsdrs-}'fpu?iui!gsdgs

_.ff (pU;t,jujui‘*’pU?in)dtsdQs .......................................................................... (7)

where I'; is boundary of domain Q,, n, is j directed component of unit vector on Iy, &, is Kronecker's

delta, Eq. (7) can define the following SDE which the fundamental solutions satisfy.

¥ -
—p%%—#u?s,ﬁ*‘pzi‘*'3m3(xe“’xs)3(f—ts):o ............................................................ (8)

where both §(x,—x,) and §(— t,) represent Dirac’s delta function,
Eq. (8) corresponds to the SDE of transient Stokes flow. If the fundamental solutions satisfy eq, (8 )
eq. (7) is consequently, rewritten as the integral equation for observe point B.

Cruttxo, 1)+ f [ Thudiar=[ [utTdtoar.+ [outalido.+ f [ outwnudt.drs

_ff (pu?mujuﬁpu?,-Xi)dtsdQs ................................... (9)

where TF, T, and C; represent the following equations,

Thm—tSupttuadotutdn, | )
T.=—{=6up+rlu,,+ usn,
Fi€ Qo
Cu= émero ........................................................................................................ an
0 €9,
Further, the stress working on the fluid is defined by eq. (12)9.
Gy — B iy DF gy Ayg) wweroeeeereeeme et - (12)

Therefore, eq. (10) shows contraction affécting boundaries.

(3) Integral equation on pressure

Considering domain Q, at (= t,) gives the following equation indicating weighted residuals which was
obtained by the application of the fundamental solution H* to eq. (4 ) as a weighting function. (Assuming
that the differentiation and integration is only for point B and the integral domain is Q)

ou
0 ;—f H* {p at"f — s Usi)F p,ii+p(ujui,j),i_pxi,i}dQO ......................................... (13)

Integrating eq. (13) in the direction { and j, using the Gauss’ divergence theorem, and noting velocity
and pressure on the boundary satisfy eq. (3), we have integral equation on pressure for point C as
follows.

p(x;):_f H,’fT,dro—2fuH,’f,n,u,dFo—}-fpr,u,uLon*fpH,’fu,’n,u,dl"o

25s



38 M. Hasecawa, M, OnNisHI and M, Sova

aui
pr:;‘ ( 8i8~Xi>dQ° ................................................................................ (14)
where,
H*:éi—;lzl_%' (BD) 19 - ere et (15)
w1 1 D)5 ettt e,
H or In R (2-D) (16)

3. FUNDAMENTAL SOLUTIONS

(1) Fundamental solutions for 3-D
By the Fourier transform the Dirac’s delta function can be defined to time and space as follows™,

__41_ « b —iKx KT JETAK . ciiiieeniencns
ox0(e)= 5 f i f " e omnT gKdK, an

where | represents imaginary unit, K represents vector of
parameter K, x=x,—xs and r=1—1,.

Also considering Ay and B, as constants with respect to
coordinates and time, u¥; and p¥ can be defined by the Fourier
transform as follows.

uti:(Zir)“ I: [: Ag; €K @ KT JRAK, <oeevreeaeenneee (18)
p?=(2§r)‘ [: [: By e 5 @ T QR AR, vevereeneennenees (19)

Substituting eq. (17) through (19) for eq. (6) and (8)

- respectively, we get

— (K A K Ay K Byb G gm0 -veeveeeseemes e (20)
Kot Ai=0  (KPmK oK) coveereereemm ettt 21
Then, we have Ay, and By by reducing above equations,
o (’S:KiKz‘“KiKK .
A= (oK = KK (22)
K
Be=— iKKZ ................................................................................................................ (23)

Integration with respect to K and K, after substituting eq. (22) and (23) for eq. (18) and (19), can give
u¥ and p¥. To be more specific, K, can be integrated by means of the residue theorem and/or definition of
delta function, and K can be integrated by converging origins of coordinates of K space and X space, which
rotates the projected point S of X on the unit sphere to the zenith T, and by converting integral
transforms'’, Then dK is given as below,

dK =K sinwdKdwdy K{O, Oo], a){(), ﬂ], ,7([0, 2;[] .................................................... (24)
And the fundamental solutions can be described as follows. (see Appendix1)

w1 STk (s 3TwXi\[2vr 4 4 R N,
uKi““Sﬂa/zp [(é\m RZ )u +<6\m RZ ){ Rz u R3 Erf(ZJE)}} (25)

e
Dk ixR® &(z) (26)

where,
1 LR
”*:W @ A+t e e e e (27)
x 2 vf— bl 2

Erf(x):[ e ¥ dy:T”wL oY dyz_é’iﬂErfC(x) .................................................... (28)
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RZZ.I';' B DT P R T R TR TP T (29)
v represents coefficient of kinematic viscosity (=u/p), and Erfc(x) represents error function.

(2) Fundamental solutions for 2-D

‘We can derive the 2-D fundamental solutions from the 3-D ones™ . Supposing that the unit force working
on point A has continuously moved along the axis X, from —oo to oo as shown in Fig.3, the 2-D
fundamental solutions *y¥; and *p¥ are therefore given by integrating eq. (26) and eq. (27) respectively!¥;
(see Appendix 2)

uf= | wukdx;, (k*j, i¥*])

- 3

I e

R? /vt
~ 2%k
_.}%;<3m__ I:Z )(l—e'{%}} ................... (30)
2p2‘=[ pidx; (k=)
Xk
— Sg)ererrerer e (31)
271'R2 ( ) X, X,
Incidentally, the fundamental solution of transient Oseen Fig.3 Continuously Acting Unit Force Parallel
flow is shown by intuitive investigation in ref. (14), but it can to the X, Axis.

be also induced by the same method noted in this paper. v
Assume that the velocity 4, (=7%,+1,) is the total of constant components (7,) and variable ones (4,).
Substituting it for eq. (3) and taking the same procedure as we induced eq. (8), we get

Quf

—p 3t _ﬂu:i,jj_pﬂju?i,j_*_ p?rf- b:mé\(x)b\( T)ZO ........................................................... (32)
And using the same method to reduce the 3-D fundamental solutions, we get
_ 5xiK2"' KKKi »
A oK — Kt 1K, ) (33)
— KK
BK— iKz (34)

Above results (eq. (33) and (34)) clarify, after all, that the fundamental solutions of transient Oseen
flow can be obtained by replacing x; with x,—7, 7 on that of transient Stokes flow in eq. (25) . Obtained p¥
is identical to that of transient Stokes flow despite u¥ is different each other.

Same manipulation can be used for the 2-D case,

(3) Fundamental solutions for steady state flow

As is mentioned later, we use fundamental solutions for steady state flow in numerical analysis to
compare steady state flow with transient one. According to ref. (18), they are given as follows

-1 z Xy
ut= <8m+ > ................................................................................ (35)

8ruR R?

;: (3-D)
et S O S OO R PO
Dk AnR (36)

s g L T e,

u:,-—4m(amlnR+ - ) 37

x (2-D)
D S S R PP RSP UESR
Dk 22R? (38)

4. APPLICATION TO 2-D PROBLEM

(1) Time quadrature of fundamental solutions
By minimizing the time interval (AZ) and assuming a constant velocity during this interval, the
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fundamental solutions can be integrated with respect to time. The fundamental solutions after time
quadrature can be indicated with ~ (tidal) as follows

o [, 1 (O 241 S L VAN B

uxi“‘_/t; uKidts"“zln,p{zy E{—Xo)+ R? (b\m R’ )(1 e )l (39)

. At « :_‘B:L ...........................................................................................

pr=[" tprdt=y o (40)

where,
R e

=141 1)
w g=¥

._EL(__XO)Z‘/‘ _?}«_ dy (exponential integra] function) L2 Y (42)
Xo

T% is also obtained by differentiating eq. (39) and substituting it for eq. (10).

(2) Evaluation of singularity

a) Concerning with integral equation on velocity

Cy: in eq. (11) can be evaluated by removing the limit of r(e—>0)
considering the node as a point within the domain after attaching the
infinitesimal small circle (r=¢) to the node of the boundary, shown

in Fig.4. Consequently, Cy; is obtained as the following matrix for
the 2-D. Then the integration of the 2nd term in the left latus of eq.
(9) is obtained as Cauchy’s principal value".

2w > 8, >0
2+ 0,2 8, 26,

Af sin2h—sin26, | c0s26,—cos26,
-~ 2 4r ; ar Fig.4 Definition of Angles for
Cry=| Ol KA (43) Computation of &
c0826,—cos26, P Al +Sm261—51n202 omputation of Cy,.
4 Po2x 4r

b) Concerning with integral equation on pressure

In case we're going to calculate the pressure on the boundary by eq. (14), concerned with the 2-D
problem, O(R~!) (right latus, the 1st and 4th term), and O(R™?) (right latus, the 2nd term) appear on
the boundary integual term, and O(R™?) (right latus, the5 th term), and O(R"?) (right latus, the 3rd
term), does on the domain integral term.

O(R™') on the domain integral term does not bear such a singularity as to be noted, and O(R™?) on the
domain integral term can be analytically evaluated through the same method as a) . However, O (R™%) on the
boundary integral term can’t be solved analytically as it becomes divergent integral.

Herein, we will describe the boundary integral which has the singularity of O‘( R7Y.

Generally, the principal value of the integral is defined by

p_[)*%,; dx=lim [fa*e',:cl? dx+[b£; dx} (@<O< b, €>0)-wmmeeeeeees e (44)

&0
and in case m is an odd number, ¢ cancels each other, but in case m is an even number, ¢ remains after the
integration?”, Therefore, in the latter case, the principal value of the integral needs to be evaluated using
the Hadamard's finite part of divergence integral (pf f 2.
° 1 m—1 m—1
pr —:c_’;dx:: TR e (45)
Consequently, we have to approximately calculate such a singularity, because we give a minimal value to

a remaining ¢,

The integration of the 2nd term in the right latus of eq. (14) can be made as follows. If the singularity is
to be found at point (1) shown in Fig.5, the principal value of the boundary integral can be obtained as
follows, where it should be noted that velocity component 1, is assumed to make linear changes between
point (1) and (2), that suffix figure in a parenthesis represents node number, and dI',=dR.
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__sind

T — (46)
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ot =388 4[4

Roft) 4ot e oo 2R
+oge[or [ ul(

7)Yt g o] 2R

.............................. 49)

The principal value of the integral at singular node
should be evaluated in the manner mentioned in a),
which attaches the infinitesimal small circle with

radius ¢ to the node, but remaining ¢ is given a

minimal value, Therefore, the integration of the 2 nd
term in the right latus of eq. (14) is consequently,
made approximately.

(3) Flow chart of numerical computation

B.E.M. using internal cell to discretize the
boundaries and domains can numerically obtain veloc-
ity and pressure at the time of {(={,+A1). Asis
shown in Fig.6, we adopt the boundary type
formulation, where unknowns appear only on the
boundary, and (i), (ii) and (iii) represent follow-
ing calculations respectively.

(i) Cuut+ [THutal,, [atTrdr,
(ii) f pufiud Qs f P X:dQs

i) [ outu nut dTs, [ oufus ur a0,

This way of calculation is known as simple iteration
method® which has such advantages that influence
matrices made in prior step can be left as it is unless
the boundary conditions and A% are changed.
Incidentally, the detail of the dicretization method
are omitted here'®,

(4) The result of numerical analysis

R=R, @)

€)]
Fig.5 Geometrical Mapping of a Boundary
Element for a Singular Boundary

Integral.

| Coefficient Matrix (i)
Force Vector
T

Force Vector (ii)

Force Vector (iii)

l Solution of Boundary Equationl

I

icuculacion of Velocity within Domaini

2 e Covergency =

YES
|Calculation of Pressure ‘

YES @ u ; Number of
iterations

NO

h ; Number of
END steps

Fig.6 Flow Diagram for Computation,
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Fig.7 Boundary Element Mesh and Boundary Conditions.

Fig. 7 shows the model and the boundary conditions for numerical analysis. The current given as the

boundary condition is to be fixed in terms of time. We've applied A#=0. 1 for the increment of time and

carried out our analysis to the degree of $,=0~2. Although we've fixed convergence check (standard) to

be 1072, it is observed that the convergence frequency is 2~3 times in case of Re=1, and 7~10 times in

case of Re=25. Body force was disregarded in this analysis. We’ve approximate the acceleration, the 5th

term on the right latus of eq. (14) according to the following formula,
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Fig.8 Pressure Curve along the Center Line.
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Fig.9 Velocity Vectors and Dimensionless Pressure Contours.

................................................................................................. (50)

Fig. 9 shows current and pressure distribution on each time of $,=0.1, 1, and 2. Incidentally, results
using the steady state fundamental solutions are also presented for comparison. In case of Re=25, the

domain forming vortex and the domain generating negative pressure coincide very well except for the area

near the outlet,

Fig. 8 shows pressure inclination along the model center line (I-J-K) in Fig, 7 for the both case of Re=1
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and Re=25. As the pressure on the boundary was calculated approximately, ¢=107* notedin4, ( 2 ), b),
we indicated the pressure inclination around the inlet/outlet with dashed line in Fig. 8 where it is shown
that the approximate solution on the boundary does not loose the qualitative tendency of pressure, It is well
described in Fig. 8 and Fig, 9 that both Re=1 and Re=25 between I-J have nearly the same current
distribution, and of which condition is laminar because of the pressure falling rectilinearlly”. According
to the above results, it is expected that the transient solution would coincide with the steady solution by
means of ;oo as the current distribution and the pressure distribution become close to steady with the
increase of time (2,=0~2). And this fact also indicates that sufficient results can be expected even if we
apply approximate acceleration of velocity to the transient analysis as we did in eq. (50). After comparing
flow quantity passing through its section on the inlet boundary with the one on the outlet boundary, we've
also confirmed that the continuous condition was formed with an aberration no more than 1 %.

5. CONCLUDING REMARKS

The contents of this paper are summarized as follows :

(1) Regarding transient incompressible viscous flow problem, we’ve induced the integral equation
which enabled us to calculate the velocity of fluid directly by applying the fundamental solutions of velocity
and pressure. And, in order to induce the integral equation on pressure, we made use of Laplace solution,

(2) We have investigated the concrete form of fundamental solutions for velocity and - pressure of
Stokes flow in the three dimension by solving the singular differential equation, which was obtained
through mathematical manipulation with the use of Fourier transform. We've also got the fundamental
solutions in the two dimension,

(3) Accordingto (1) and(2), we've confirmed the appropriateness (of our paper) by application of
B.E. M. (direct method), where to the two dimensional sudden expansion nodel, the velocity
or contraction on the boundary are defined as unknowns, and comparing it with the result previously
calculated by the fundamental solutions of the steady problem.

Results of the analysis on this paper showed a tendency that convergence frequency increases with the
increase of Reynolds number. However, we suppose it might become impossible, from the financial
viewpoint, to deal with problems of high Reynolds number by means such as B. E. M. using internal cell
which uses simple iteration.

According to the recent investigations®, however, it has become possible to analyze them to the degree
of high Reynolds number by means of Hybrid method only with a couple of convergences. We do expect
further investigation on this subject.

APPENDIX 12:%  (g>()

cosfcosy —sing sinfcosd]|Ksinwcosy
K=| cosfsing cos¢ sinfsing |{ Ksinwsiny
—siné 0 cosd Kcosw
b2

© VT
f e " cosbxdr=——e i@
0 2a

[m_sir;bx e‘m’dx=%—-x/; Erfc (%)

APPENDIX 22~ (>0, b>0)

= g VT 1
£ e dx—g—EEI'fC(O)

[» x;r B dx=x/7?~})- e®“Erfc(ab)
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bz —a2x? f —a7x2 IJCZ e—a2x2
I @t o T2 ) g T a9

[:We—f’%dts Erfc(N—) (r=t—1,)

/’ 1 dr= x
(x2+ b2)3/2 bz(w2+ bz)x/z

[ vt e ]
(x2+ b2)5/2 b4 (x2+ bZ)l/Z 3(x2+ bZ)B/Z
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