Structural Eng. /Earthquake Eng. Vol.3. No.1, 1s-10s. April 1986
Japan Seciety of Civil Engineers (Proc. of JSCE No. 368, I -5)

A NUMERICAL ANALYSIS OF FINITE DISPLACEMENT PROBLEMS
OF ELASTIC SHELIL STRUCTURES

By Takamasa SAKURAI¥, Kazuo CHU** and Fumio NISHINO***.

A formulation of geometrical nonlinear problems of shells with particular emphasis on
the treatment of finite rotations is presented. The finite rotations are deleted in the
formulation by removing them and hence only infinitesimally small rotations appear in the
formulation. The deformed shell surface is given with the help of interpolation functions by
the position vectors and by normal and tangential vectors of the surface at the nodes. A few
numerical examples on shallow spherical shells are presented to compare the numerical
results with the experimental results,

1. INTRODUCTION

Structural analyses are mostly carried out by discretizing the governing equation and solving the
resulting algebraic equations. In finite displacement structural analyses, a standard procedure is to
formulate the governing equation by using the so-called Lagrangian approach, i. e., the deformed shape is
described by a coordinate system defined at the initial undeformed state. The approach may be divided into
two, The first is to employ the same coordinates throughout analyses, whereas the second approach
employs transformed coordinates of the original coordinates to avoid appearance of finite displacements
and rotations in the governing equations by removing rigid body movement. Both of them, however, are the
same in the sense that the coordinates are defined at the initial state, Following Goto etal.?, the former is
called as the direct Lagrangian approach and the latter as the Lagrangian approach with removal of rigid
body motion. The governing equations may also be classified into two: the total Lagrangian formulation and
the incremental or up-dated Lagrangian formulation,

In finite displacement analyses of space structures, it is inevitable to treat finite rotations and
displacements. Both of them have to be evaluated to the same accuracy for the analyses to be accurate and
reliable. Finite rotations are not vectors and naturally do not follow operational rules of vectors. This
causes additional difficulty unlike finite displacements which are vectors?, Special attention has to be paid
to treat finite rotations in the finite displacement analyses of three dimensional structures including shells.

The total Lagrangian approach does not involve any accumulated errors when numerical solutions
satisfying the governing equations are obtained. It seems, however, that no reports based on the total
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14 T. Sakural, K, CHU and F, NisHINO

Lagrangian approach of the finite displacement analyses;of shells have yet been presented on the problems
where finite rotations are treated rigorously.

The Lagrangian approach with removal of rigid body motion can eliminate higher order terms in the
strain-displacement relation provided strain remains infihitesimally, small, The procedure is proved to give
rigorous solution ,of finite displacement problems in the case of planeiframes’. The approach has been
incorporated with the incremental formulation and been used to obtain numerical solutions on plate and
shell problems®.

The total Lagrangian formulation is superior to the incremental formulation for two reasons. Firstly,
solutions can be obtained directly without any accumulation of error regardless of loading increments and,
secondly, it can treat the geometrical boundary conditions of finite magnitudes without any complexity.
The latter could be more important,

This paper persents an additional contribution to the finite displacement analyses of shells. The total
Lagrangian method is employed in the formulation of governing equations, in which the finite rotations are
not employed as the basic unknowns; instead the small difference between principal vectors of the surfaces
at nodes and the points close to the nodes are used as basic unknowns to treat the finite rotations
rigorously. Numerical solutions are obtained by solving discretized algebraic governing equations obtained
by the finite element technique utilizing the successive approximation equivalent to the Newton-Raphson
iteration?. Shell surfaces are approximated by a combination of small triangular plate elements,
Equilibrium paths are traced solving the governing equations,

2. STRAIN-POSITION RELATIONS OF THIN PLATES

Define Cartesian coordinates fixed in space with base
vectors <_f, I, I,>>. Its origin is denoted by O, as shown
in Fig. 1. Two arbitrary points on the middle plane of a

Before deformation After deformation

plate element at the initial stress free undeformed state
are denoted by O and P and the same points in the
deformed equilibrium state by O and P. The position
vectors of () and P with the origin at 0, are denoted by
X°and X*. The position vector of P with origin at O are
denoted by x*” and that of P with the origin at 0 by %*.
The vectors X?, X° and £” are related as

S Doy ap Fig.1 Coordinate System of a Representative Shell
X Pm= X 4 P cvvrrrenrneaaac (1) Element E.

For a plate element at the initial state, orthogonal

right handed unit vectors <[iy i, [ are selected in such a way that i, is the normal vector to the
middle surface, Similar orthogonal unit vectors <{i, i, i, > are defined in the same way at the deformed
state on the tangential plane at the middle surface of an arbitrary selected point O inside the element.
Define scalar components of the vector x” decomposed by i,, by x4 as

=22 ioa (azl’z) ................................................................................................. (2)
The components of the position vectors at the deformed state are defined by decomposing by i, as
X°=X%i,, XO= XUy, TPRDdy coeeeeeermrrerr s (3. a~c)

The vectors i, are expressed by the vector J; as
Gymm Ly d[L e eeeee e (4)

where [,,=direction cosines between the vectors i;, and the vector I, respectively. The Roman and Greek
subscripts such as i, j and a, 8 take (1,2,3) and (1, 2), respectively, unless otherwise stated in the rest
of this paper. Summation convention is used for repeated subscripts in Eqs. (2)~ (4 ) and is used also in
the rest of the paper,

Designating the base vector at P on the middle surface of a plate element at the deformed state by
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az(0), where (0) indicates the value at the middle surface, i.e. at x;=(, and noting the definition of
base vectors and the fact that X° is independent of independent valiable x?, Eq. (1) and Eq. (3-¢) yields

a3(0)=/§',‘&=ﬁfai,- .................................... SRR PP PP PP P PP PRSP (5-a)
where (), a=( )/9x%5. The unit normal at P is given by its definition as
a‘g’(O)=[a{’(0)Xaz ]/Ia (O Xaz( )] .................................................................... eveereiees ( 5.b) )

where (X)=cross product of vectors. Substituting Eq. (5-a) into Eq. (5-b) and neglecting the 2nd and
higher order terms of (£/—x?), which corresponds to the derivatives of j-th component of a displacement
vector, result in

QO0) f3— Lyl -eeerrrereeame e ettt e [T (6)
Designating the normal distance including the sense from the middle surface at P by x; and the position
vector of this point at x, with the origin at O, by fZ", it is expressed as

R°= X"+ alE(() v e e e e (7)
Using Egs. (5-a) and (7), the base vector g%(x,) at point x; on the normal from P is given as

aﬁ(x3)=RfZ,=a§,(0)+ xsaga(o) .................................... T T e T ERRPPRPPPPPPPPR (8 )
Designating Green’s strain tensor on the surface at point x; by e,5, it is defined as

€as ==L Qo a{X3)— Ban /2 v et e e e (9-a)
where §,,=Kronecker’s delta and a%4(x;) is a metric tensor at x, as defined by

06 (I3) = @E(3)* @B(I05) o+ e rrmrmrmmtee e e et e e e (9-b)

where ( - ) means scalar product. Neglecting small quantities of higher orders in view of the hypothesis of
Kirchhoff and Love and the assumption of no change of thickness, the strain tensor is given from Egs,
(6), (8) and (9-a) as

Cals T Nas T dadgg t e e e e e (10-a)
Noting the assumption of small strain i, e, the absolute magnitude of strain is much smaller than unity, and
using the relation of Eq. (9-a), 7,5 and x,5 of Eq. (10-a) are expressed as

Uaszf(i‘g_xg),/s‘f'(if?g"x‘g),a‘*‘j?iai'is+(f‘;—x§),a(ﬁ“x§)ﬁ}/2 .................................... (10.b}
Kaaz*-i'ia;s‘*‘if?gy-ﬁ@,as .......................................................................................... (lO'C)

The remaining tensor components &, 45, and &, are all identically equal to zero due to Kirchhoff and
Love hypothesis and the assumption of no thickness change,

With the assumption of small strain, the angles between the base vectors at any points on the middle
surface of shells are no longer right angles because of shear strain, however, the change of angles is of
small quantity with respect to unity. Axial strains are also of small quantities by the same assumption,
Because of these facts, it is possible to select orthogonal unit vectors iola=1,2) to satisfy

B (0] e e e (ll'a)
in the tangential plane at the point O as shown in Fig. 1. Since the normal vector at this point, q%(0), is a
unit vector, the unit vector i, orthogonal to i, coincides with q%(0) as ;

iszag(o) ............................................................................................................... (11 .b)
This orthogonal set of unit vectors, <(j, i, i,>>, as defined in Eq. (11) are called in this paper as
principal vectors of an element. The values of components of the position vector of P with respect of
0, x5, do not change when the plane moves with rigid body motion to a new plane on which §, is defined. In
view of this fact, the Taylor expansion of g2(0) as expressed in Eq. (5) at the point O up to the second
order term can be expressed as

Ao0) fg Blam BT, w+rerrreerree e et e e et et e (12-a)
Similarly, the normal base vector at the point P a$l0), is expressed, in view of Eq. (6) as
Q) §3— Ry p By v+ ovvereeeremrmeers e et eet e et ettt (12-b)

Eq. (12) shows that, under the assumption of small strain, x5 can be made as small as necessary by
selecting the small element and hence the base vectors g?(Q) at an arbitrary point inside the small element
can be expressed as
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GP(0)= £ b Quy{E)iy ++errereeseesememoms e (13)

where Q,,(¢)=small quantity of the order of strain. Similar to the selection of i, at 0, select orthogonal
unit vectors i5 and iZ in the tangential plane at the point P as close to the base vectors a%(0) and @£(0) at the
same point. These vectors are called as the principal vectors at the point P. Because of the selection of i,
and §? inside a small element, the angle between the coresponding vectors i; and i? is small quantity and
hence this angle can be treated as a vector. This rotation vector at P between i? and i, are defined as 6”
which can be decomposed by i, as

pr - éf fy e (14)
where #?=rotation vector of i, to coincide with §f.

Since the principal vectors of an element is selected to satisfy Eq. (11), the square of the term
(&2 — %), as present in Eq. (10-b), is of the order of the square of strains and hence can be neglected as a
small quantity with respect to the first order term. In numerical analyses, use of either the exact
expression or only linear terms in Egs. (10-b, ¢) results in exact solutions, when iteration converges’ ¥, It
is reported, however, in analyses of plane frames that the maximum convergence is expected when only the
third term of Eq. (10-b) is retained rather than retaining all second order terms”. In order to detect
critical points on the equilibrium paths, representative second order nonlinear terms have to be retained in
Eq. (10). Because of these reasons, only the third term of Eq. (10-b) is retained among the second order
terms in the analyses of this paper. This treatment coincides with von Karman's nonlinear finite
displacement plate theory. The strain-displacement relations to be employed in the following analyses are
summarized as

Tas = Ten - TMay Kap =Kl +eeeere e (15-a, b)
where
775,,3=[(§3$-x2)ﬂ+(:J?:§—-x§),a]/2, ﬂaﬂ‘"xsaxaﬂ/z xfm:‘”-fg.aﬁ ................................. (15.c~e)

3. STIFFNESS EQUATION AND BOUNDARY CONDITIONS

Consider a nodal point N of the element E as shown in Fig. 1. The position vector of this point with the
origin at O is designated by £". Similar to the definition of rotation vector #° defined in relation to Eq
(14), the small rotation vector of the point N in relation to the orthogonal unit vector i, defined at 0is
denoted by . These two vectors are decomposed by the orthogonal unit vectors defined at () as

iz :xilx, gN_giiVli ........................................................................................... (16 a'b)
All components of " and &% in one element E are designated by &5 Inview of Eq. (16), it is expressed for
3 nodes triangular plate element as

< 5N>£ (L N=1,2, 3) .................................................................................... (17)

where superscript T=transpose of a matrix.

Consider as external forces, only the forces act at nodes. The forces acting at a node N are divided into
the force vector designated by N” and the moment vector designated by M". Decomposing them by i, leads

NV NNli, M= MN“ ......................................................................................... (18 a, b)
Similar to Eq. (17), all components of NY and MY in one element are designated by Fp then
Fom<CINY MUST (4, Nm21,2,3) rereeeeesseremmmsmrns ittt (19)

Utilizing the standard finite element discretization procedure with algebraic interpolation functions as
stated later leads to the stiffness equation for the element in terms of components of the principal vectors
of the element §, defined at 0 as

Fo=Kpb:+ Clp oeeree et e (20)
where K e =K L+ Ii' n alement stiffness matrix ; and é‘E= term appearing dur to the use of position vectors
35 as a basic unknown at nodes rather than displacement vectors?. It is noted that all components in Fand
&; are vector quantities. As obvious from the description, the position of O and its principal directions
have to be fixed to evaluate the terms of Eq. (20).
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A Numerical Analysis of Finite Displacement Problems of Elastic Shell Structures 17

The transformation matrix 7T from the global coordinate defined at O, to the orthogonal unit base
vectors at () of the element E is defined as

{ll}zTE{IL} ...................... (21)
By utilizing this transformation matrix the stiffness equation, Eg. (20), can be transformed to the
stiffness equation with the components in global base vectors as

ﬁE“:i(Eéz'*' éx .......................................... P TR (22)
where isz TIF ., 5}5: TI6s, éE: i‘;éz, f(Ez O (T TP (23-a~d)
N
. T 0 T: 0
T.= T , TV= [ } .................................................................. (24. a, b)
" 0 T:
0 T:

Since the nodal point N at the deformed equilibrium state is unknown, an arbitrary point near the
guessed position of N is selected as the N-th node and is named as N as shown in Fig. 1. This point N is
treated as the common node of all elements meeting at the same point. The principal base vectors
T WIS and <§Y ¥ > are defined at N and N in the same way as i? as defined at P. Expressing the
unknown but possibly small position vector from N to N by A%" and unknown small rotation vector
necessary to match EQ" to ;ﬂ" by Aé”, they are given by

ATV BT ABY= GV @7 e (25-a,b)

where xV=nposition vector from O to N and §"=small rotation vectors defined at [V in the same way as for
6°at P. Decomposing the above vectors by global base vectors J; and utilizing these components, define

A =<AZY AGYST §e=<TY OV (i, N=1,2,3) c+-rveremmerrmmmmriieaesaisaice (26), (27)
in the same way as for §; of Eq. (17). Substituting Eq. (26) into Eq. (20) leads to

Famm K pAG s gy -e+eervvrreeseronmeeemmsee ettt e e (28)

where I:*Eoz T PP (29)

Utilizing the equilibrium condition and continuity conditions at each node such as

FP=31F8 AGY=AFY (N=1,2 OF 3) rrerreerrmrmomsromisisisiii i (30-a, b)

where F'¥ is the external force vector at node N, and A&" is the difference of position and rotation vector
between point N and TV‘, the total stiffness equation of shells is obtained in the following standard form

13'=IZ'A6.‘+I'~"O ............................ L L TP TRRERAES (31)

When the solution A& becomes equal to zero, N coincides with N. To obtain the solution A§=0 in Eq.
(31), an iterative process is necessary. The unknowns in Eq. (31) are §; as included in F,and A5. To
solve Eq. (31) for A&, the components of §; have to be assumed for each node of each element, i.e., the
positions and the principal directions of both O and N for each element.

When A&=0 is obtained, the position of the node N of the element E is given by

D T I i (32)
Similarly the principal directions of the same node are given, in view of Eq. (21) and the components of
rotation vector of Eq. (27), as

{;ﬂ= i'”ﬁ'zv} ............................................................................................................... (33)
WREEE JTVmm iy T M-+ v eeese e ettt (34)
and TV is the transformation matrix from (T i, to (To) ' i¥ at N as given

1 67 —67
TV=| gy 1 G| e (35)
g - 1

If angles of the principal directions of the node of the element E are necessary, they can be computed from
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18 T. Sakural, K, CHuU and F, NisniNO

the components of the transformation matrix T which are the direction cosines between the global base
vectors and the principal vectors at the node N of the element.

Initial values play an important role in iteration, When a solution is known at one equilibrium point, the
solution at the point or appropriately extrapolated values would be used as the initial values for the next
solution. The selection of origin O in an element is arbitrary. It can be selected somewhere in the middle of
the three nodes. As the initial values of the position of () and its principal directions and as these up-dated-
values for the succesive iteration, values close to the averages of the position and the directions of the
three nodes may be selected .

The kinematic boundary conditions for the total stiffness equation expressed by Eq. (31) is specified by
the given quantities of the components of the force vector F. The corresponding geometric boundary
condition is given by specifying ( values for the correspondign components of the vector A§. Thus the
boundary conditions are expressed as

AZY=0 or N'=NY¥ and A8Y=0 or MY=MY i (362, b)
where A% and A8" are the components of A§ at N and N ¥and MY are the components of F' corresponding
to A%, and A8, decomposed by the global base vectors. The superscript g shows given quantity.

4. NUMERICAL EXAMPLES

Numerical analyses of shells are performed by idealizing the shells by a combination of triangular flat
plate elements. These idealized shells are discretized by the finite element technique® and the resulting
nonlinear algebraic equations as expressed by Eq. (31) are solved by the method of successive
approximation equivalent to the Newton-Raphson iteration?.

For the derivation of elastic stiffness matrix K L for a triangular element, the linear interpolation
function with two degrees of freedom for a node is used for membrane and the third order polynomial with
three degrees of freedom for a node and with three sub-elements is used for bending. With these
interpolation functions, displacements between the elements are compatible. While for the derivation of
geometric stiffness K7 for bending, non displacement compatible third order polynomial interpolation
function without any sub-element is used for the simplicity of derivation. Because of these degrees of
freedom, the stiffness matrix K = KL+ K™ has five degrees of freedom with respect to the coordinate
defined for a flat plate element. Though there exists a report concerned on the freedom of the rigid body
rotation of the element about the normal to the middle plane of the plate element® this rotation is not
considered in the formulation of this report. By transforming five degrees of freedom at a node into a space
coordinate, stiffness equations with six degrees of freedom at a node are formulated.

In tracing an equilibrium curve in (n-1) dimensional space with n degrees of freedom of nodal positions
and rotations, and loading intensity for a fixed loading pattern, n simultaneous stiffness equations are not
sufficient. An additional condition needs to be specified, which is given by specifying loading intensity, one
of n components of position or rotation vectors, or an increment of chord length from a known point of an
equilibrium path?. In the numerical analyses of this report, one of the former two conditions is employed.
The convergence of the solution is attained when the unknown vector A8 approaches zero. Noting that the
components of vectors A%" and A@" at each node N of a shell, the following conversion criterion K has
been used

=L |az| [A6" 1Y e
K M %(kxIYN_XNi + ke {Eg[ ><5 ............ (37)

where M =total number of nodes; ) =summation on all nodes; k., k,=arbitrary convex weights on

position and rotation vectors, respeé?ively ; and e=small quantity to measure the convergence, X"— X"

and @" are the displacement vector and the rotation vector between i, and i¥, respectively.
Employing the strain tensors of Egs. (15-c~e) as have been employed in the linearized finite
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A Numerical Analysis of Finite Displacement Problems of Elastic Shell Structures 19

displacement theory under the action of in-plane initial stresses in the formulation of the stiffness equation
of Eq. (20), the stiffness matrix K. is expressed by the sum of two matrices as

K mm LA T v eeemeee et (38)
where K L and I;'ﬁ‘ are the matrices corresponding to the linear and the nonlinear terms, 5k, and x%,, and
7&s, respectively, of Eqs. (15-c~e) and are called as the elastic stiffness matrix and the geometric
stiffness matrix.

In numerical analyses, even using ,

K= KL cooeereesamiesiie e, O (39)
results in the solution of the governing nonlinear equations, when the iteration converges. In the former
case, the successive approximation becomes equivalent to the Newton-Raphson iteration?. Hence there is a
convergence area near a solution. In the latter case, successive approximation is not equivalent to the
Newton-Raphson procedure and hence there is no guarantee of convergence even the initial guess solution is
selected close to the true solution?,

Fig. 2 is the numerical results of a shell structure
consisting with two flat plates of which one end is

simply supported and the neighboring two pair edges P xidh ; & % :?g;: :j:
are free under a concentrated load at the center of the & @ 8= 15cm o=
structure as shown in the inserted figure, Numerical e
analyses are done only one quarter of the structure e Res R[E ”(rg (a8 ] v
taking advantage of symmetry of the structure and the o Ke=kL  (39)

B 2.0

loading,

00 05 10 15 Gem
Considering the fact that convergence criterion on 40

position vector includes the component of rigid body
rotation of the element; the weights of k,=1 and k,=0
are employed. As the measure of convergence, ¢ of
0.01 is used. The small inserted figure shows the 0
relationship between loading intensity P versus the

30

20

number of élerpems

L L |
8 8 32 72

; ) Fig.2 Convergence of Solutions versus Stiffness Matrix
vertical displacement § at the loading point. The major

and Number of Elements.

figure of Fig, 2 shows the approach of the loading to the

true loading intensity with the increasing number of elements for the use of both stiffness matrix of Egs.
(38) and (39) when the vertical displacements of loading poeint is specified as 0. 5cm, 1 cm, and 1.5 cm as
designated by (D, @), and (), respectively. Since the solutions with 72 elements and the stiffness matrix of
Eq. (38) can be regarded as the closest to the true solutions, other solutions are compared with these
solutions. In all cases, the increase of the number of elements reduces the errors. The difference by the
use of stiffness matrix of Egs. (38) and (39) is significant in the unstable point 3). These results agree
with the results obtained for the analysis of a beam-column?. This agreement is natural by the reasons that
both plates and beam-columns can be regarded as similar structures and that the stiffness matrix of Eq.
(38) represents more closely the structural characteristic of plates than that of Eq. (39).

As can be seen in the derivation of Eq. (38), K is the geometrix matrix for a plate after the rigid body
motion of the plate element close to the final position with reference coordinate i, Hence the stiffness
matrix K of Eq. (38) represents the tangential stiffness matrix at the position after the rigid body motion
under the existence of an internal membrane force. In the formulation of the direct Lagrangian
formulation, the tangential stiffness matrix is expressed with the sum of the stiffness matrix for the small
displacement theory, the initial displacement matrix and the initial stress matrix, while, in the Lagrangian
formulation based on the coordinate defined based on the state after rigid body motion, the displacement
matrix vanishes in the expression of the tangential stiffness matrix. The derivation of Eq. (38)
corresponds to the latter, Since Eq. (38) is derived with reference to the coordinate after the rigid body
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Fig.3 Equilibrium Paths and Buckling Load Curve. Fig.4 Spherical Shell,

motion under the existence of membrane force but no consideration is given for the presence of internal
bending moments, it is not a rigorous tangential stiffness matrix but it is an approximate expression,

Considering proportional loading for simplicity, the nodal force vector F in Eq. (31) is expressed by the
product of loading intensity f and a vector f specifying pattern as

F= fi' .................................................................................................................... (40)
The loading intensity of the critical load, A, linearly extrapolated from the displaced state under the
loading intensity f can be obtained by eigenvalue analysis of '

[IZ‘—}—()&/f)km]A&:O ................................................................................................ (41)

Fig. 3 shows the equilibrium path of the shell shown in the inserted figure. Numerical analyses are done
on a quarter part of the shell dividing this part into 18§ elements, The ordinate and abscissa are the loading
intensity and the vertical displacement at the loadil}gfpoint, respectively. Also shown in the figure are the
numerical results reported by Bergan et al”. These are the result using 50 triangular elements formulated
using modified hybrid stress method. Both analyses agree reasonably well. The difference may be
decreased by an increasing number of elements, The line with solid circles shows the critical loading
intensity obtained by using the stiffness matrix of Eq. (38). The curve shows a significant decrease of the
critical load with the progress of the displacement indicating the so-called bucking load evaluated based on
the initial shape subjects to significant error in the evaluation of the true buckling load. At the maximum
point of the loading intensity, the buckling load determined by Eq. (41) agrees with the maximum intensity
obtained by tracing the equilibrium path by solving Eq. (31) within an error of one percent. This suggests
that the error involved in the tangential matrix of Eq. (38) is very little even though the presence of
internal bending moments is disregarded in the derivation of the initial stiffness matrix.

Numerical analyses and experimental results on domed shells under the uniformly distributed load
perpendicular to the shell surface and fixed at the edges as shown in Fig, 4 are compared.

The specimens are made of aluminum alloys. The basic dimension of the specimen as well as the mesh
arrangement for the numerical analyses are also shown in Fig, 4. The test on the material of the specimens
resulted in Young’s modulus E=7.22X10° kg/cm?(70.6 GN/m?) and Poisson’s ratio=(. 33.

Fig. 5 shows numerical results for a perfect domed shell using the material properties obtained from the
tests. The ordinate and abscissa show the intensity of uniform pressure, q, divided by the classical
buckling intensity, g., obtained on the initial shape, and the vertical displacement at the crown
nondimensionalized by the thickness of the shell. In the figure, n shows the number of buckling waves on a
contour line, The loading intensities and the buckling modes at points A and B agree with the results
reported by Huang?. It is well known that the experimentally obtained ultimate carrying capacity could be
1/4 to 3/4 of the classical buckling load. Yamada et al. has also confirmed this reduction?.
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Experiments has been performed on 5 specimens as shown in Fig. 4. The shape of one of the specimen was
measured by using a 3-dimensional distance measuring instrument with an accuracy of (.01 mm to
determine the initial imperfection, The shape was mesured at 162 points on the 12 concentric circles, From
these measurements, an axially symmetric imperfect shape of the dome is approximated by taking the
average values of the points on the same contour lines. One of the results so determined is shown in Fig, 6.
The standard deviation of the measurements of a height at a centerline is around (. ] mm at the upper
portion of the dome and around (. 2 mm at the lower portion. This specimen is named as the 5-th specimen,

Fig. 7 shows the pressure versus the displacement relationship at the top of the dome obtained by the
experiment on the 5-th specimen and the numerical results on the dome with the measured geometrical
shape as well_és the numerical results for the perfect dome, The experimentally obtained maximum
pressure exceeds the prediction by numerical analysis by 15 %. This difference could be due to the
mechanical difference in the test set-up and the assumption made in the computation by taking the average
values for the imperfection, and also due to the unavoidable error in the measurements of geometrical
shape and limited number of points where measurements were made,

The experimentally obtained maximum pressures, g, at the first peak of the pressure versus
displacement relationships at the top of the dome are listed for all 5 specimens in the inserted table of Fig, 7
in nondimensionalized form by the classical buckling pressure, ¢, for the perfect dome.

The ratio between the critical pressure and the classical buckling pressure is roughly (. 8 for a perfect
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dome, whereas the average of those ratios experimentally obtained for the 5 tests is (.34. This fact
confirms together with the results of numerical analyses that the presence of initial imperfections plays an
important role in reducing the ultimate load carrying capacity from the classical buckling load.

5. SUMMARY AND CONCLUDING REMARKS

The work is summarized as follows :

(1) The displaced and deformed shape of shells is described by two orthogonal unit vectors on the
tangential plane and a unit normal vector to it, and a position vector at each node of each element, To
describe the shape with finite displacements and rotations, the above description is superior to the
description by rotational angles and displacement vectors as used in most of the reports in literature by the
reasons that the formulation is easier and rigorous and that the description of this work is irrelevant to the
initial location of the element.

(2 ) The nonlinear governing stiffness equation is formulated removing rigid body motion, i.e., by
storing the large displacements and rotations outside the stiffness equation. With this procedure, the
governing stiffness equation for the problems in which finite rotations occur is formulated without any
terms related to finite rotations.

(3) The stiffness matrix of Eq. 38 is nearly equal to the true tangential stiffness matrix with very
small error, Singular points on equilibrium paths can be easily and accurately detected by performing
eigenvalue analyses of the stiffness matrix when iteration converged.
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