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EFFECTS OF PRE-BUCKLING DEFLECTIONS ON LOCAL,
DISTORTIONAL AND LATERAL-TORSIONAL
BUCKLING OF [-BEAMS

By Seizou USUKF* and Kaoru HASEBE**

The displacement and strain distributions for a plate segment comprising open cross
section are derived considering the pre-buckling deflection of beam axis. Applying the
higher order theory obtained to T -beams bent about their major axes by equal end
moments, the effects of pre-buckling deflections on local, distortional and lateral-torsional
buckling are investigated. Solving eigen-value problems, it is clarified that the stress
corresponding to distortional buckle of an ] -beam is conservative compared with that
neglecting the pre-buckling deflections and the stress corresponding to lateral-torsional
buckle occuring at long lengths are progressive compared with the results of Timoshenko.

1. INTRODUCTION

The coupling analyses of local, distortional and lateral-torsional buckling of thin-walled beams have
been developed by finite element or finite strip metod as well as theoretical methods. It will be however
difficult to consider the effects of major axis deflections of, for instance, [ -beams subjected to bending
moments, by the above numerical methods as well as theoretrical ones.

The writers have presented a new theory? which can treat the coupling of local, distortional and
lateral-torsional buckling and can consider the effects of pre-buckling deflections. The previous paper by
the writers is unfortunately based on a second order theory and the second order terms of pre-buckling
deflections and of initial stresses acting on the cross sections of ] -beams are neglected in the incremental
variational formulation,

In this paper, general non-linear displacement and strain destributions for a plate segment comprising
open cross section are derived without neglecting higher order terms of pre-buckling deflections. Applying
the higher order theory obtained to ] -beams bent about major axes, the effects of pre-buckling deflections
on buckling stresses or moments are investigated.

2. INCREMENTAL FORM FOR EACH PLATE SEGMENT

(1) Web plate
From the assumption of no distortion of cross section before buckling and considering hl(s, z)defined by
Eq. (28) in Ref.1) equals to zero, it holds true
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77*0_77 =0, 5*0 50 50( ) ................. (1)

where £ is the value of the tangential displacement
£*" at the middle point of the web (Fig. 1); in other
words &) is the pre-buckling deflection of beam

axis, z. Then, the variation of axial displacement
after buckling, §(w!+ w,) at the nodal line, ;=1
are represented by the displacements at the middle

point of the web plate as
S+ w)=8(w,— L, €4/2)
+5( g,hlo—llh;n/z'{‘fm)”” (2)

where

[ hio hlz] _ [ h(l/2, 2), (L, Z):I

fo ful L f/2,2), fill,2)

and the function f; and A, are the second order in incremental quantities and the same as Eq. (28) in
Ref. 1).

In the right hand side of Eq. (2), for simplicity, the superscript ( )* is abrebiated. In Eq. (2), the
terms on the double under line were neglected in the previous paper.

The variation of strain, §(e2+¢,) is also obtained as

5(6%‘5‘52):6\554‘562 .................................................................................................. (4)
where
*wo+<§ +(1i/2—s)§5+n(§d"a—n*")
(ll/Z S)h;/0+n§ga+( 0+7]*’2+nla’2)/2+f;a_f;(8, Z) .................................. (5)a,b

+€°”(hm—h1(s, z))
The terms on the single under line govern the behavior of web plate in the s-z plane and do not concern with
the buckle, The terms on the double under line were neglected in the previous paper.
(2) Flange plates
For the flange plates, the conventional assumption that the flanges remain undistorted in the
post-buckling state is employed. For the pre-buckling state, the displacements in the 7 and s direc-
tions (see Fig.1) are given as
EFO(), HOmm  E0(Z) ovrrer e (6)
From continuity conditions of displacements at nodal line 1 |, 2, and ( the tangential and normal
displacements after buckling are given by displacements of point ().
The variations of strain, §(el+e,) after buckling are obtained as
5(502+52):§£é+5£g .................................................................................................. (7)
where for the lower flange, ¢ and <) are given as
wo+§ +(L/2—n)E0+(L—s)n{+nal— £ a)
(11/2+n)h +.f10 (lz )és";al_*_n(,?;’al g”al/z +[,7;2+$ ............................. (S)a,b
H(l—s)+ne?]/2+ fol/hxo
and for the upper flange
— i 86— (/2= W&+l ) (7 + LR{+naf— E¥a)
ex=(L/2—n)hi,+ nh;/z+f;o“f;2“(lz“ )T+ ’fl{(??lf'i‘“ LRY)ay— 8”a§/2# """""""""" (9)an
+[(771+ LR+ ng_H( L—s)+n }0’22]/2""50” hio— 12)
The terms on the single under—hne do not consern with buckling behaviors. The terms on the double

under-lines were neglected in the previous paper.
3. BUCKLING EQUATIONS
The differential equations governing buckling behaviors of an I-beam subjected to equal end moments can

468s



Effects of Pre-Buckling Deflections on Local, Distortional and Lateral-Torsional Buckling of [ -Beams 223

be derived by the use of an incremental variational principle. The initial normal stress, ¢ acting on the
cross section and the pre-buckling deflection £(z) of beam axis are obtained from the elementary beam
theory.

The unknown nodal parameters of the problem are a"=[¢q; @, 7/l R.] and this is the same as the
previous paper. If the ] -beam is simply supported, the solution of the fourth order differential equation
governing the parameter ¢ becomes e=u-sin nzz/L, where y is a buckling mode and L is a span length.
From the condition of non-zero values of u, the eigen-value problem is obtained as

|K+kM+k2N|:0 ................................................................................................... (10)
where K and M are the same as the previous paper (Eqs. (76) and (77) in Ref. 1)) and % is the buckling
coefficient defined by k=o.,12t./(xE t3/12). The matrix N is newly introduced and is given by

2/15+¢, —1/30, 0, —1/10

N:<2a7,82>2 2/15+8, 0, —1/10
3né SYM. 0, 0
6/5
1/35+4y/15, —1/210—y/15, 0, —2/35—y/5
e\ 12yp 1/35+4y/15, 0, =2/35=y/5 | .
+<6n> & SYM. 0, 0 (11)

18/35+127/5

where a=L/], and n is the half wave number. The parameters, 7y, £ and & are non-dimensional
parameters on the cross sectional dimesions of ] -beams and are the same as the previous paper. The
smallest eigen-value of Eq. (10) defines the critical stress, k., and the corresponding eigen-vector defines
the buckled shape.

4, RESULT AND DISCUSSION

Fig. 2 is produced by calculating buckling end moments. The buckling moments are not mimimum values,
but the values for a half wave length (n=1). The geometry of I-beam is shown in Fig, 2. At the peak points
C of the curves where the distortional buckling occurs, the critical end moment by the present theory is
conservative by 17 % than that neglecting the pre-buckling deflections. For a comparison, the
lateral-torsional buckling curves by Trahair and Woolcock?, by Nishino et al.? and by Timoshenko and
Gere? are also illustrated in Fig. 2.

Fig. 3 shows the case of cross section 2 which has doble flange width of the cross section 1. In the range
of beam length, I./h>>20, the present results are agree with those by Trahair and Nishino, The values of
critical end moments by neglecting the pre-buckling deflections are conservative by 12 % at L/h=20 in
comparison with the present results, and Trahair and Nishino. This is due to the fact that the ratio of
bending rigidity, EIL/EI, affecting extremely the critical moments has the large value of 22 % for the
cross section 2 (the cross section 1 in Fig, 2 has the value of 5.0 %).

Fig. 4 shows the critical stresses ¢.,/E for various half wave numbers. The Gothic line shows minimum
crirical stresses for given beam lengths, L/h and the dotted line shows the results neglecting the
pre-buckling deflections for n=1 (these are also agree with finite strip method).

Fig. 5 demonstrates the critical stresses o.,/E versus t,/b or EI,/EI, for the typical beam length,
L/h=15. The ratios, h/#,and ,/1, are fixed to 34. (0 and 1. 46, respectively and these values are the
same as the cross section, 1 and 2.

In the case of Trahair and Nishino, the critical stresses become infinitely large at EI./EI,=1 : in other
words the lateral-torsional buckle can not occurs, in the range EI,/FEL>1. Whereas, as can be seen, the
present theory can predict the local buckling behavior in the range EI,/EL,>1. The results by Timoshenko
and Gere shows the lateral-torsional buckle occurs, no matter how EI./EIL, become large.

469s



224 S. UsuKI and K, HASEBE

T
SECTION 2

L Pre-buckling
deflections
- neglected —a,

Second order |
theory ——apf
H

Present
theory

Merl
VEly 83

0.001 L L 1 ' TN W

5 ¢ N
S 0.5 1 2 5 10 L/h 50
b tw h s
b " T ] Fig.4 Critical stress for half wave numbers, 7 and
b
el . -
—_ + 1 minimum critical stress.
. : . .
0.2 1 2 5 10 30
Fig.2 Effects of pre-buckling deflections on buckling
moments for section 1. o1 Y ! !
\
i \ Trahair and
Timoshenko ~—= Nishino
g ' Ay
15 T T — e

Timoshenko —-—=\\,Trahair and Nishino

¥

Pre-buckling
deflections C

neglected AR
10 \

Present theory

Second order
theory 7

Merl

VEly 62

0.001

L 1 L t
0,005 0,01 0.02 0.05 0.1 0.

] - L - -
. s b 10650 o5 1755 o 0.0t
0.5 1 5 10 20 50 Loy
Fig.3 Effects of pre-buckling deflections on buckling Fig.5 FEffects of the ratio [/, on buckling stress.

moments for section 2.

5. CONCLUSIONS

A higher order theory governing the elastic local, distortional and lateral-torsional buckling of [ -beams
subjected to bending moments are presented, considering all of terms on the pre-buckling deflections. In
this paper, 1 -beams with web width-thickness ratio of 34 are examined.

The distrtional critical moment obtained by the present theory for sections with low flangé
width-thickness ratio (section 1) is 17 % lower than that by neglecting pre-buckling deflections. The
values of minimum critical moments for various beam lengths are however affected only in the range of
relatively long beams. When the ratios of flexural figidity about weak axis to that about major axis,
EIL./EI, become larger than one, the distortional and local buckle occur and the lateral-torsional buckle
can not be observed,
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