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A NEW FORMULATION OF FINITE DISPLACEMENT
THEORY OF CURVED AND TWISTED RODS

By Yoshiaki GOTO*, Sei MATSUURA**,
Akio HASEGAWA*** and Fumio NISHINO****

The governing equations for the finite displacement beam theory are often formulated
through the principle of virtual work by introducing the pertinent kinematic field with
displacement components defined in terms of the coordinates fixed in space. However, this
formulation can hardly be applied for the theory of space beam without any restrictions on
the magnitude of displacements, since the kinematic field becomes highly nonlinear largely
due to the finite rotations in space.

This paper presents a new formulation which considerably simplifies the derivations
through the principle of virtual work. By the formulation, the governing equations can be
easily obtained even for the exact theory under beam assumptions.

1. INTRODUCTION

The governing equations for the finite displacement beam theory are often formulated through the
principle of virtual work by introducing the pertinent kinematic field based on the beam assumptions’~®.
This is mainly because the equilibrium equations as well as the mechanical boundary conditions consistent
with the compatibility equations can be easily derived by the purely mathematical manipulations without any
complicated considerations on the deformed geometry, However, the customary Lagrangian formulations
through the principle of virtual work become much more complicated when applied for the space beams with
finite rotations. Therefore, most of the formulations’ 2?49 are approximated by introducing restri-
ctions on the magnitude of displacements in addition to the conditions of small strains®,

In the customary Lagrangian formulations through the principle of virtual work, the kinematic field
under the beam assumptions is expressed by the independent displacement components on the member axis,
that is to say, three translational components in the directions of the coordinates fixed in space and one
rotational component around the member axis”-?-9~®  With these components, the accurate kinematic field
for space beams becomes highly nonlinear and complicated?~9, compared with the beams restricted to
two-dimension? . Hence, the virtual kinematic field obtained as the result of variation becomes much more
complicated and the partial integration® for the derivation of the governing equations can hardly be
executed in the equation of virtual work. Consequently, some approximations have to be introduced even
when the accurate displacement field is obtained?-®. For these reasons, most of the customary theories are
of the second or the third order approximation with restrictions on the magnitude of displacements.
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This paper presents a new Lagrangian formulation of the exact finite displacement theory of initially
curved and twisted rods under beam assumptions, In the formulation, new deformation components
corresponding to curvature, torsional rate and extensional rate on the member axis are introduced as
independent unknowns instead of the customarily used displacefnent components. These deformation
components except extensional rate are firstly introduced by Love” for the formulation of inextensional
straight rods, though Love’s formulation is not based on the principle of virtual work. In addition to the
deformation components, new components of virtual displacements are also introduced. They are the
components of small translational and rotational displacements with separation of rigid body rotations,
which are physically interpreted as the small incremental displacements from the deformed state. By usng
the new components of deformation and virtual displacement, the kinematic field as well as the virtual
kinematic field become much simpler and the exact governing equations can be obtained through the principle of
virtual work even for the finite displacement theory with finite strains,

The beam assumptions introduced here are those commonly used for the beams with solid cross section,
that is, the assumptions of no change of cross sectional shapes and the Bernoulli-Euler hypothesis where
the transverse plane is assumed to remain plane and normal to the beam axis throughout the deformation® .
It should be noted that the Bernoulli-Euler hypothesis ignores the warping due to torsion.

2. COORDINATES AND INITIAL GEOMETRY

Consider a curved and twisted space member as shown in Fig, 1. Orthogonal curvilinear coordinate
system (x, y, z) is introduced at the initial configuration of the member with the coordinate z along the
member axis.

The initial configuration of the member is expressed by the components (%zy 1y, ) defined as

Gxo Gxo 0 T — Xy
_(% Guo |=[D]{ Gwol, [DI=| =7 0 Jp [ ceoreeeoreermoe o (1.a,b)
Gz Gz ty —xx 0

where (g, gw, gz) are the base vectors at the origin of the coordinates (g, y) defined in terms of the
coordinate system (x, y, z). Physically, (x;, x,) and 7 correspond to the components of curvature in the
directions of the axes (x, y) and the torsional rate, respectively, of the z axis at the origin of the
coordinates (x, ). It is noted henceforth that the z axis at the origin of the coordinates (x, y) is
specifically referred as a member axis.

The base vectors (g, gy, g.) at an arbitrary point of the coordinate system (g, Y, z) can be expressed
by (gz0, Gvo, gz0) and (xy, x,, 7) defined on the member axis. The position vector R of an arbitrary point
(x, y, z) is written as

R=R<,+xym+ygyo ................................................................................................... (2)
where R, is the position vector of the member axis. With the help of egs. (1 ) and (2), the base vectors at

an arbitrary point are obtained as follows
Initial

9= Gxos Gy= Gyo, X
9:= " Ytxt TG+ (1 =10+ 12Y) g0 (3. a~¢)
For later convenience, the absolute value of g, is defined A
1lx0
as

[g:] zﬂfg—zx/(l*xyx*}* ae Y2 (P y?) e (4)
3. DEFORMED GEOMETRY

Deformed
State

Consider a space member deformed under external

iyo! Vizo

forces as shown in Fig.1. The Lagrangian approach is |
employed here to analyze the deformed state, where the  Fig.1 Geometry of the Initial and the Deformed Rod.
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coordinates (x, y, z) representing the initial position of the member are adopted as parameters which
specify the material point throughout the deformation, In order to express the geometry of the deformed
member, the deformation components of the member axis are introduced instead of the customary
displacement components. The deformation components are represented by four unknowns of z,, %, % and

/G, defined as

ixo Exo 0 ‘2’ ‘_723;

d o

dz ly [D} lyo N gzo__‘/go lzo, [D} 0 Hp | oermrrerererreeeni (5 a~c)
;zo lzo iy X

where (iyo, iy0, i2) are the unit vectors obtained by normalizing the deformed base vectors ( Fz0, Guvo, G20)
on the member axis which are orthogonal due to the beam assumptions cited before. Physically, (%./4/3,,
%,/ 80), £/4/8, and /g, —1 correspond to the components of curvature in the directions of the deformed
x and y axes, the torsional rate and the extensional rate, respectively, of the deformed member axis.

The deformed base vectors (§,, §,, §.) at an arbitrary point can be expressed by (§z0, Gvo, §20) and
(%2, %4, T, 4/G0) defined on the member axis. The deformed position vector R of an arbitrary point (x, v,
z) is written from the beam assumptions as

R Ro+xlxo+ ylyo .................................................................................................... (6 )
where R, is the deformed position vector of the member axis. With the help of egs. (5) and (6 ), the
deformed base vectors at an arbitrary point are given by

Go=1lr0y Gv={0s ﬁzz—yfl:xﬁ‘x?l:yo‘f‘(x/—é;“xiy"'yfcx)Ezo ...................................... (7.a~c)
4. STRAIN FIELD

Fromeqgs. (3) and (7 ), the non-zero covariant components of Green strain tensor are expressed by the -
deformation components as
=020~ 9:02/2=(3:—1)/2+ y (/o Zz— )= W/ G0 Ry— 1)
+a® (5= x3)/2+ y* (B2 132)/2— 20y (RaRy— rare) H (2P + Y NT = 77)/ 2000 (8.a~c¢)
Ca= €rz=(0:02— 9:92)/2=— Y (£—1)/2, en=ey=(0:0,—9:9.)/2=2(?—1)/2

5. EQUILIBRIUM EQUATIONS AND MECHANICAL BOUNDARY CONDITIONS

Consider a member 1, 2 subject to distributed line force p and line moment m on the member axis as well
as the distributed surface forces ¢2(¢=1, 2) on the end cross sections. These forces and moment are
defined in terms of the initial configuration of the member, Equilibrium equations and the associated
mechanical boundary conditions are derived through the principle of virtual work due to the small virtual
incremental displacement §d from the deformed state of equilibrium.

The external force and moment vectors (p, m, ¢%) and the virtual displacement vector §d are expressed
by the components in the directions of the vectors (Zo, lyo, i zo) as

—pxlxo+pylyo+pz120y m= mylxo+ myly0+ ’mzlzo, o= Uszlxo+ Usylyo+ Uszlzo """""" (9.a~c)

od = 3ulxo+5vlyo+371ﬂzo ........................................................................................... (10)
In the same manner, the components of the virtual translational and rotational displacement vectors (6d,,
&z) on the member axis are given by

&do 6\u01x0.§_ 5Uolyo+ é\wolzo, Sa= &lexo"' é\ayly0+ 5¢1zlzo .......................................... (11' a, b)
where the components of virtual rotation are small enough to be treated as vector quantities,

Making use of the contravariant component of 2 nd Piola-Kirchhoff stress tensor and the covariant
component of Green strain tensor defined in terms of the coordinates (x, y, z) in addition to the
components of external forces and virtual displacements defined in egs. (9) ~ (11), the equation of virtual
work for the member is given by”
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F23 22
f l (6728€ 1+ 20758 0+ 2070 ) Vg dAdz— fl (D2Obot DyDo+ D006
F4Y F4
2
¥ a0t Ty Oby+ M a0d.) dz+ [ e f (0%.00+ 020D + 0%,00) dAL=

where / dA indicates the integration over the cross sectional area, 2, and z, are the z coordinates of the
end sections 1 and 2, and 7, has the values of —1 and 1, respectively, at z, and z,.

From the beam assumptions, virtual strains and virtual displacements can be expressed by the four
components of the virtual displacements on the member axis, that is, the three translational components
(8o, ODo, 870,) and the one rotational component §4.. Hence, the virtual strains (§e,,, 0e.., fe,,) and
the virtual displacements (8%, 89, &) in eq. (12) are expressed by the independent virtual displacements
(0fho, Do, O, 0d2).

The variation of eq. (8) yields the virtual strains as

8€.=(/To + Yix—XRy) (04 §o + Ydia— xdiy)+(x*+ y*) 267,

0= —1Ydt/2, Se=x0%/2
The virtual deformation components in eq. (13) are further to be expressed by the independent virtual
displacements. As shown in Appendix A, the virtual deformation components are given by!

O™ 065 — T 08y + Ry0hzy Ohy=08y+T00s— Xx0Gz (14. a~d)
82= 08+ p0Gy— 2y08z, 04/ 0= 0Wo— 2yOlo+ 2x0Ds ’
where

06,=— (805 + 00— 2x0%0)/ m’ 86, =(81s— Tﬁ@o+iu5@o)/m ............................... (15. a, b)

in which ()’ denotes the differentiation with respect to z and this notation is used henceforth.
The virtual displacement field for (84, &9, 6t@) is obtained as follows by first taking variation of
eq. (6) and substituting eqs. (10), (11, a) and (A-1) in Appendix A into the resulting equation.
511:5&0_@/5&2, 3@:3@0_{_‘%-3&2, 3i‘0:a\1"00+ yb‘&x‘—xﬁ&y ......................................... (16. a~c)
where 4, and 64, are given by eq. (15).
Substituting egs. (13) (16) into eq. (12) of virtual work and integrating by part lead to
(Mo~ M 2+ M ie— 1)/ To — nF Y 0k H(MyF M+ MRyt 1) /G0 — nF § 000
(N = 1F 9) 0o+ (M y— 1M $) 6+ (— M o= n2M$) 8y +(M o~ nME) 0615
- f UM~ Myt + Moo ) [ Gol — (Mo Mot Moiy i) 8/G0 e an
+ N g+ Dl Otk + Myt Mo+ Moty ) /y/Gol +(Mi— My +MaRa—1hy) /Y5
— N et po] 00N+ (M Mt +Maiyt+ 1) 2:/3/00
— (Mo My#+ M oie— 1) 2y/v/Go + D 000+ (Mo M yiy— Maiiat 12) 062 dz=0
where the following notations are used for simplicity.
N=N /3o +M,z—Myiy, Mz=Mzy/Fo+Meyito— Maziy
M =My /o + Mysio—Myziy, M.=To+K?

Fi=[o%da, Fi=[o%dA, Fi=[o%.da
) 4 ) 4 AA ...... e (19. aNf)
Wis=[ 0% ydA, Mi=— [ o%zdd, M= [(oha—o%y)dA
Stress tensor resultants used in eq. (18) are defined by
N=[oVg da, M= [ o=2vg dA, M= [ o=/ da
Mxr:fUzzxZ\/g dA, Mé/y:fﬂ'zzyz\/g dA, Mxy:Myxzfo—zzxyW/E dA e (20 a~h)
A A A

=£(azyx~o”y)x/§ dA, K=£azz(x2+ y)v/g dA

It should be noted that N, (—M,, M,) and M, of eq. (18) are the physical components of stress
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A New Formulation of Finite Displacement Theory of Curved and Twisted Rods 123

resultants, corresponding respectively to the axial force toward the deformed member axis, the
components of bending mement around the deformed y and x axes and the torsional moment around the
deformed z axis. For the help of physical interpretation, the stress resultants of eq. (18) are directly
derived by the integration of stressiover the cross sectional area in Appendix B. The mechanical quantities
of eq. (19) with superscript ¢ denote the stress resultants acting on the ends of the member.
Equilibrium equations and the associated mechanical boundary conditions are obtained form the
necessary and sufficient conditions for eq. (17) to hold for any arbitrary virtual displacements. The terms
in the bracket under the integral sign yield the equilibrium equations
(M= Myt + Maie— 1)/ ol — (Mt Mot + M Ryt z) /4/Go + N iyt po=0
{(M + Mo+ M ity + 1)/ 8o +(My— Myr—i-szx 1) £/y/G0— N2zt Dy=0
N’ +(M VMot + M gt M) Ra/y/ G0 — (Mo My + M oiin—y) 2o/v/To + D=0

....... 921. a~d

Mo—M yiy— Mziz+1h.=0 ( )
and the integrated terms give the associated mechanical boundary conditions

nzFx‘(Mx M;f+szx my /x/—o’ nsz (M +Mzr+szy+mx Wg (22 a~1)

nF =N, nMi=M,, nMi=—M. n.M=M.
As clear from the components of the virtual displacements defined in eq. (11), the equilibrium equations
-and the mechanical boundary conditions are expressed in components in the directions of the vectors (210,
iy, i), which are physically interpreted as the expression with separation of rigid body rotations®. The
geometrical boundary conditions corresponding to eq. (22) are given by the components the same as those
of the small virtual displacements (8%, 0D, 0w, 045, 0&, 04, . However, these components are
dependent on the deformed configuration of the member and can hardly be used except approximately in
incremental procedures. Then, for the exact analysis, the boundary conditions have to be tramsformed into
those expressed by the customary physical components in the directions of the coordinates fixed in space.

These transformations are shown later in section 8.

6. STRESS RESULTANT-DEFORMATION RELATIONS

Consider a beam made of linear elastic materials. The stress resultant-deformation relations differ?
according to whether the linear elastic relations between stress and strain are defined with respect to
tensor quantities or physical quantities?. Hence, here examined are the two constitutive equations derived
from the two definitions stated above.

In order to define the linear elastic relations, the local rectangular Cartesian coordinate system (T, 7,
Z)V99 is introduced at the initial configuration of the member with the coordinates (%, 7) coincident with
the coordinates (x, y) and the Z axis directed toward the tangent of the z axis,

First, the constitutive equations are derived for the case where the linear elastic relations are defined
between 2 nd Piola-Kirchhoff stress tensor and Green strain tensor. In the rectangular Cartesian
coordinate system (%, 7, Z), the linear relations for rods are defined by

022=Ee22, 025=2Ge;~;¢, Eﬁwzaezg .................................................................... (23.a~c)
where E and (G are elastic constants. In order to derive the relations between the stress resultants of Eq.
(18) and the deformation components, the linear elastic relations of eq. (23) have further to be tansformed
into those for the tensors in the coordinates (x, y, z). According to the rule of tensor transformation,
the stress and the strain tensors in the coordinates (x, y, z) are related to those in the coordinates (7,
7, Z) as follows,

= zz/pz’ o= aﬁ/,o—}- O'EZZ/T/ﬂz, oY= az'f’/p—azz.rz'/,oz ........................ [ (24. a~c)
en=(e—2e,xT+2eyr)/0?, ezx=ex/p, @™ @y P errrrrrr e 25. a~c)
where
,0=1—7ty.1‘+7£xy ........................................................................................................ (26)

With the help of egs. (24) and (25), eq. (23) yields
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07=F (e—2e,01+2ey1)/0', 07=2Gex/0"+E (e:—2ex1+2e0yr) yr/o' (27. a~c)

0%=2Ge./0*—E (e.—2ext+2e0yt) X/ 0" '

The relations between the stress resultants and the deformation components are obtained by
substituting eq. (27) into eq. (18), helped by eqs. (8) and (20). These relations are a little simplified if
the coordinates are selected such that

fo/,o“@dA=£y/p‘x/§dA:foy/p‘s/§dA=0 ....................................................... (28)

Next, it is examined how the constitutive equations differ when the linear elastic relations are defined
between the physical components of stress and strain. These relations in the local orthogonal Cartesian
coordinate system (X, 7, Z) are defined by

0= Ees, Tar™ Geap, Tag= Gy -rerrerrrrrrrrerresrsesss s (29. a~c)
where the physical components of stress (oz, 7zz, 7z3) and those of strain (es, sz, es5) are related to the
tensor components of stress and strain in the local orthogonal Cartesian coordinate system, respectively,

as
gx= GEEI§E| = g2 /2625+1 R sz:aff’ o= 02?7 ...................................................... (30 a~c)
ex= 0zl —1=4/2e2+1 1, sin ezx=0:0:/(|9z| |9:1)=2e22/4/2e+1, | (31. a~0)
sin ezp=93:05/(1 92| | 951)=2ez3/y/2€22+1 '

in which (§z, @5 §» are the deformed base vectors of the coordinates (X, 7, Z). The linear elastic
relations defined by eq. (29) are transformed into those expressed by the tensor components in the
coordinates (x, y. z) so as to be compared with eq. (27). Substituting eqgs. (30) and (31) into eq. (29)
with the help of eqs. (24) and (25), eq. (29) yields

0%=E (/32 —1)//Gzp"), 0==Gsin"" 2e.//zp}/0+Eyr /7z—1)//7z0°)

=G Sinﬂ{zezy/(x/ﬁ‘z_p)}/p—Exr (x/@;*])/(@pﬂ teeeenes (32 a"“C)
where
x/g_fzz|Qz~|=x/pz+2622—4xrezy+4yrezx/p"""""""'“'""“'r ........................................ (33)

Eq. (32) becomes highly nonlinear, if expanded into power series with respect to strain tensor.
Therefore, it is clear that the stress resultant-deformation relations derived from eq. (32) are much more
complicated than those from eq. (27). However, in the specific case when the torsional rate is zero at both
of the initial and the deformed states?, the constitutive equations derived from eq. (32) are considerably
simplified as

N=EA{/Fo—1), Mo=—Elx(Ry—1), My=EI@yy, (Rg— ) oo (34. a~c)
where

A:ll/pdA’ ixx:-[xz/pdA, iyy:lyz/pdA ................................................... (35a~c)
with the coordinates (x, y) defined such that

lx/pdA:/[;y/pdA:fAvxy/pdA:O ........................................................................ (36)

7. DISPLACEMENT-DEFORMATION RELATIONS

The deformation components of (%, %y, %, 4/J.) have to be related to displacement components in order
to analyze the geometry of the deformed member,

The translational displacements on the member axis are expressed by the components (u,, v,, w,) in the
directions of the vectors (g, gw, ). With regard to rotational displacements, the customary
expression by the rotational angles considerably complicates the formulation?~®, since the angles of finite
rotation can not be treated as a vector quantity, Furthermore, the rotational angles are often transformed
into direction cosines in the formulation. For these reasons, rotational displacements are expressed here
by the direction cosines between the orthogonal unit vectors (izo, fyo, i «) and the base vectors (g, Gw, .

370s



A New Formulation of Finite Displacement Theory of Curved and Twisted Rods 125

g.) before deformation, which are defined by

~

Exo [ lazy  lgws 2
2“ =[lz]{ guo , [Lod=| By Doy log |ooeeeemmremmmme (37.a,b)
i 90 by by b

"Differentiating eq. (37.a) with respect to z and helped by egs. (1), (5) and (37.a), the direction
cosine-deformation relations are given by
A [las)/ dz=[D1[ as]—LIau] [D] -+++vcervereeememmmeeeie sttt et (38)
Next derived are the translational displacement-deformation relations. The deformed position vector B,
on the member axis is expressed by the components of translational displacements (u, v, w,) as

~

Ry=Ry+ UG+ Voot W ggs e+ tremsermmerserm s et e e (39)
Differentiating eq. (39) with respect to z and helped by eq. (1), the deformed base vector §,, on the
member axis is obtained by

ako/azz gzoz(u:)_ 0+ Kg’LUo) gxo"f'(v:)_*_ TUy— K Wo) yy0+(1 + Wo— Uory+ Uo”x) Gzomrroomrrrree (40)
Substituting eqs. (5.b) and (37) into eq. (40), the derivatives of the translational displacement
components are expressed by the deformation components and the direction cosines as

uf):\/—gj Iaxt TV 2y W, 032/5; lay— TU Xz Wo, w;=\/§'_o e 1 KyUo— K Vo770 (41.a~c)
8. EXPRESSIONS OF GOVERNING EQUATIONS

As stated in Section 5, it is difficult to use the geometrical boundary conditions corresponding to the
mechanical ones of eq. (22). Hence, the mechanical boundary conditions is transformed into those
corresponding to the geometrical ones expressed by the physical components in the directions of the
coordinates fixed in space. In addition to the boundary conditions, the equilibrium equations of eq. (21)
are expressed here by the customary components in the direction of the coordinates (x, y, z) fixed in
space in order to compare the present theory with the customary ones.

For the derivation of the governing equations in the customary expression, the components of virtual
displacements, forces and moments in the directions of the base vectors (g, g, §z) are defined as

0d o= 0UoGxot OVoGyo+ OWG 20, 00 = 00xGrot OyGyot 022020

p=pxgxo+p£7yo+pz£zo, M=MrGrot MuGuoF MaGa  cooreeremresesre (42. a~f)

Fe=F gzt Fogut Fige, My=Migeot+Migun+Mige
in which F; and M are the force and the moment vectors of stress resultants due to surface force ¢2 acting
on the end cross sections of the member, while 9d,, da, p and m are already defined in Section 5, With the
help of eq. (37), the components of eq. (42) are related to those in the directions of (izo, iy, fz) @S

Otlo OUo 0l Oy o Dx

8o =[lab] [ s day Z[lab] Oay s Dy =[lab] Dy,

I Swo 04, Oay D- D=

X R o . L eeeeeeeeeeeeesicesiiiiee s (43 a~f)
Mz me| |FS Fg| (Ms M3

My )=[lap]{ My, ﬁ'i =[lz0] .}—:'-f, y MZ =[ 3] Mi

e me| |Fg Fel i M

In the first place, the force-equilibrium equations of egs. (21.a~c) are transformed into those ‘
expressed by the customary components. For simplicity, eqs. (21.a~c) are expressed here by

f'x+@x:0’ f'y.{.z‘)yzo’ f‘z+f)z:0 ...................................................................... (44,a~c)

Substituting eq. (43. a) into the terms of eq. (17) in the bracket under the integral sign, the components
of the force-equilibrium equations in the directions of (g4, ., @) are obtained as follows from the
conditions for eq. (17) to hold for any arbitrary virtual displacements (Su, &v,, Owy).

37s



126 Y. GoTo, S, MATSUURA, A, HASEGAWA and F, NISHINO

jx Dx
[laod™{ Fy b Dy om0 v (45)
Fol (D=

With regard to the moment equilibrium equation, the three components in the directions of (; 0 fyo, i )
are necessary in order to carry out the transformation similar to the force equilibrium equations. In eq.
(17), howrver, only one component of eq. (21. d) in the direction of i =0 18 found in the term of the work due
to the virtual rotation 84, Hence, It is necessary to derive the equation of virtual work in the different
form which includes the three components, that is to say, the three terms of the work due to the virtual
rotations (§a,, 0a, 0a,) . Helped by eqs. (14) and (16), eq. (12) is transformed into the above mentioned
form through the first integration by part which have to be executed in the course of the derivation of eq.
(17). Substituting egs. (43. b, d) into the transformed equation of virtual work and supposing Su,, Say,
and fa, arbitrary, the components of the moment equilibrium equations in the directions of the vectors
(gx0, Gw, =) are obtained as

Myt M7 +M iy M
[lan)™ = (M= My 24 M i) ] My == 0o (46)
Mi—Myiy—Mars | (M2
Though eq. (46) is composed of three components, only one of them is independent. It is common that the
third component of eq. (52) corresponding to the moment-equilibirum equation around the vector g, is
adopted as an independent equation. However, this component fails to be independent under the specific
large rotations which make the direction cosine [z, zero. In such a case, an independent equation have
to be selected from the remaining components of eq. (46).

The mechanical boundary conditions of eq. (22) are similarly transformed into the components in the
directions of the vectors (gxo, guw, g). Substituting egs. (43. a, b) into the integrated terms of eq. (17)
and considering Su,, 0v,, Sw, Ocr, Oay and o, arbitrary, the mechanical boundary conditions in the
directions fixed in space are obtained as '

Fe (M= M2+ M e (liamat lymy+ lam 2/ v/ 3o

Ne I';fj :[lab]T {M;+fo+Mziy"(l£xmx+l.lfymy+ lizmz)f/\/—.@: .................................... (47)
Fg N
ME M,

Mol MY Lap)T{ = Mg Jroeeeresmessee st (48)
M: M.

The associated geometrical boundary conditions corresponding to eqs. (47) and (48) are given by the
displacement components the same as those of (du,, 0v,, 0wy, OJoy Oay, Oaz).

Egs. (45) ~ (48) show that the exact governing equations in components in the directions fixed in space
are easily derived from eqs. (21) and (22) as a result of orthogonal transformation,

However, even the rotational components (fa,, o, Ja,) given as geometrical boundary conditions
cannot be easily expressed by physical quantities in case of finite rotation, unless more than two com-
ponents are fully restrained”. Therefore, it is necessary further to trarisform the mechanical boundary
conditions into those corresponding to the geometrical boundary conditions expressed by the physical
rotational quantities,

In section 7, direction cosines are introduced as physical quantities to ekpress the finite rotations.
and hence, it is convenient that the geometrical boundary conditions are given with respect to the direc-
tion cosines instead of the rotational angles. In such a case, the mechanical boundary conditions of
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eqs. (22.d~f) or eq. (48) have to be transformed into those corresponding to the direction cosines. By
the variation of eq. (37) helped by eq. (A-1) in Appendix A, the virtual increments of the rotational
angles (84, 0a, 0@, are related to those of direction cosines [§l;,] as
0 dé, —Oay

—8a, 0 T PR I L PP PP (49)

fay, —0dr 0
Though the matrix [§1;,] includes nine components, independent components are reduced to three from eq,
(49) and are related to (04, 64, 0a, symbolically as

6&@/ :[f (l&b)} O liy e (50)
5&2 Olan

where (8h;, 8la, 6lsn) are the three independent compenents of [§1;,] and [ f (15,)] is the matrix function of

~» derived easily from eq. (49). Substituting eq. (50) into the integrated terms of eq. (17) and considering
0L, &ln, and §la, arbitrary, the mechanical boundary conditions corresponding to the geometrical
boundary conditions expressed by independent components of direction cosines (k;, Iz, la.) are obtained
in the manner similar to the derivations of eq. (48).

Comparing egs. (21) and (22) with egs. (45) ~ (47) and the mechanical boundary conditions derived
from eq. (50), the former governing equations are easier to be interpreted physically. Nevertheless, the
geometrical boundary conditions associated with eq. (21) and (22) cannot be exactly expressed by physical
quantities, Therefore, the equilibrium equations of (21) have to be used with the mechanical boundary
conditions of eq. (47) and those derived from eq. (50).

9. CONCLUDING REMARKS

A new Lagrangian formulation through the principle of virtual work is presented for the finite
displacement theory of curved and twisted rods with solid cross section. In this formulation, the
deformation components as well as the virtual displacement components with separation of rigid body
rotations are introduced instead of the customary displacement components defined in terms of the
coordinates fixed in space. With these new components, the derivations of the governing equations are
considerably simplified and the exact governing equations can be easily obtained for the theory of finite
displacements with finite strains.

Appendix A Derivations of Egs, (14.a~d) and (15.4a,b)

In the first place, egs. (14.d) and (15. a, b) are derived. The vectors (i.z0+ Oizo, zy0+ Sl vo, i oot 820
after small virtual displacements are resolved in the directions of the vectors (i, Tvo, 1§ zo) by using the
virtual rotational angles of 84, da, and da. and ignoring nonlinear terms with respect to these rota-
tional angles as

LxoF Blzo| [ Exot 08 2iy— 88yizn
FroF Bhyo 1| Byt BBl go— BB gy |+ werereermreessesssmsm it et (A-1)
2zo+b\gzo i:zo‘i‘ﬁa'ygxo_b\&xfyo
The third component of eq. (A-1) yields
&Yylxo 8azly0_mm ................................................................................................ (A-2)
Eq. (A-2) indicates that the expressions of 84, and §4, with the independent virtual displacements can be
obtained by comparison of the coefficients between both sides of eq. (A-2), if 81 is resolved into the
directions of (fxo, ;yo)
The variation of eq. (5.b) leads to
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522026‘@@/@:—5,@0/2%'{20 ............................. S s (A-3)
8. in eq. (A-3) is resolved in the directions of (iyy, iy, i) aS ~

00 0=+ 7y0T00— £0Da) Lzo+(8D4+ 7 8Thbo— ROb0) Tyo - (O Ap0Do— RyOMha) Lo+ ++e-eereerer (A-4)
by substituting eq. (5.a) into §§,, defined by

80.0=20 (aieo)/az, 51%025@02350‘4“ é\bozyo'i‘ 3@0220 .................................................... (A-5.a,b)
89, in eq. (A-3) is further expressed by the independent virtual displacements as

590:2& (5&}3+213@0—2y3ﬁo) ................................................................................ (A*6)
by substituting eq. (A-4) into the right side of the equation

go+6\g0=|@w+§gm[2 .............................................................................................. (A-7)

and taking the linear terms of virual displacements.

Comparison of the coefficients of the vectors (;xo ;'yo) between the right and the left side of eq. (A-2)
with the help of eqs. (A-3), (A-4) and (A-6) leads to eqs. (15.a, b), while eq. (14. d) is derived through
the substitution of eq. (A-6) into the relation

4 Ba = 000/ 24/ o -+, (A-8)

Next derived are eqs. (14.a~c). Differentiation of eq. (A-1) helped by eq. (5.a) leads to
Blma| [ —208,—Ryddy  Odtizddy  — 08yt Rsdds ||ino

% Do |=| — 084+ 208y — 208, — 208y O8utRYOB, || fye b ererereeererrrieirieenns (A-9)
6\220 L day+tay, — 84y + 108y  — Ay0Gy— Ry0dy fzo

In a similar way, variation of eq. (5.a) helped by eq. (A-1) leads to
Sim| [F 0 08 —0RY [0 & —RI[ 0 86 —08,7][ino
L sial=l| =62 0 bk |+ =2 0 & ||—0as 0 o4x ||{inl (A-10)

Sin) L 0%y —0Rx O Xy —He O day —0ar 0

>

. )
Comparison of the components of matrices between eqs. (A-9) and (A-10) gives egs. (14.a~c).

Apendix B Derivations of Egs. (18.a~d) by the Integration of Stress

The internal force dF acting on the small cross sectional area d4 (=dxdy) is expressed by stress

tensor in the form"

sz(o'zrﬁ'x‘*‘ Rl Gzzgz)\/g A e e e e ( B_l)
With the help of eq. (7), dF is resolved in the directions of the vectors (iye, iy, I.) as

AF =(0"— 0%y $) Vg dA i+ 0+ 0Zxt)VG dA ip+ 0% (To —Liy+ Yiz) VG dA iz (B-2)
Expression of eq. (B-2) with the physical components of stress (o,, 7., 7., defined in the (x, y, z)

coordinates is given by

AF =(te— 02y 2 /VT) dA i+ (tat 0:08/V/T) dA fat 02 (/To — TR+ YZ)/WD dA Legeeoo0 (B-3)
taking into account the relation between the physical and the tensor components of strees® such as
=0 T NG, 0F= 1l G, V= Taya[G rerererreee (B-4. a~c)

where
VT =181 =480 — Tyt Yia) (0 y?) 28 eeeemeeeese (B-5)

The physical meaning of eq. (B-2) is easily understood from eq. (B-3) considering that (—y#/v/7,
X2/VG, (W Go— Xyt Yis)/v/T) are the direction cosines of i, referred to the vectors (izo, iy0, is0).
With torsional deformation, it should be noted that i, is not orthogonal to the transverse plane except on

the member axis,

Integration of eq. (B-2) over the cross sectional area gives the sectional force F

F= f (0% — 0%y #) /T dA fnot f (674 0%2) VG dA i+ ﬁ 0% (/T — Ty + Yi) VG dA i
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From eq. (B-6), it is clear that the coefficient of i 2, which is the axial force N toward the deformed
member axis, coincides with the right side of eq. (18.a).

The sectional moment M is given by

M=£r><dF, P Rhgo b Ylyn <+ eeer e (B-7.a,b)
Substituting eq. (B-2) into eq. (B-7), eq. (B-7)yields '
M:£022( Go— XHy+ yix) y@ dAl:xo—j:O'zz(x/—g—;_xiy'{" yix) xx/E dAgyo

+{~/A‘(azyx._azry)‘/§ dA+£azz(x2+y2) g dA} Bagreereneemene s (B-8)

The coefficients of the vectors (izo, iy, iz) in eq. (B-8), which are the components of the sectional
moments (M, —Msx, M), exactly coincide with the right sides of egs. (18.b~d).
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