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GEOMETRICALLY NONLINEAR THEORY OF NATURALLY CURVED
AND TWISTED RODS WITH FINITE ROTATIONS

By Masashi IURA* and Masaharu HIRASHIMA**

The object of this paper is to develop a finite displacement theory of naturally curved and
twisted rods undergoing finite rotations. Particular attention is paid to investigate the
coupling of finite rotations in space under the Bernoulli-Euler hypothesis. A finite rotation
vector is employed to derive the displacement field available for finite rotations. A new
variable is introduced as a fourth parameter associated with rotations of cross sections,
Then the twist and curvatures after the deformation are expressed in terms of four
parameters without using small-strain assumptions. The equilibrium equations and the
associated boundary conditions, in which second order terms with respect to displacement
components are fully taken into account, are derived from the principle of virtual work.
The accuracy of the present equilibrium equations are confirmed through comparisons with
those obtained by the equilibrium method.

1. INTRODUCTION

The analysis of geometrically nonlinear behavior of thin rods, used as common structural elements, has
received considerable attention of many investigators. It is widely accepted that a finite rotation plays an
important role in the nonlinear behavior of rods. Since the finite rotations are not quantities in the vector
space, the nonlinear behavior of rods with finite rotations in space has been studied by various approaches,
In this paper, with the help of the finite rotation vector g, we develop a geometrically nonlinear theory of
naturally curved and twisted rods by taking account of the coupling of finite rotations in space,

In a small displacement theory, the displacement field of rods has been derived frequently from the
assumptions of strain field’. This approach has been also available for a finite displacement theory?~*,
However, if we utilize the above approach, we must solve the nonlinear partial differential equations for
displacement components, Since most solutions of the nonlinear differential equations can not be obtained,
some approximations are introduced at an early stage ; that is, the second and higher order terms with
respect to the axial displacement are neglected in the strain-displacement relations, Consequently, the
coupling of finite rotations in space is not taken into account accurately. The resulting governing equations
are available only for the second order theory of rods with small rotations®9,

In the case of planar nonlinear behavior of elastic rods with finite rotations, the coupling of finite
rotations does not occur since there is only one degree of freedom for rotations. Nishino, Kurakata and
Goto” have developed a geometrically nonlinear theory of planar rods under the Bernoulli-Euler
hypothesis, and pointed out that, if the energy method is used, the small strain assumptions must be
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adopted after taking variations with respect to displacement components,

In the case of nonplanar nonlinear behavior of elastic rods, in which the coupling of finite rotations
generally occur, various approaches exist for evaluating the finite rotations of rods. Maeda and Hayashi®
have used the finite rotation tensor as a measure for finite rotations, The accurate finite displacement field
has been obtained by introducing three displacement and three rotation parameters. It is well known that
four parameters are necessary and sufficient for the description of behavior of rods under the
Bernoulli-Euler hypothesis. When the number of parameters decreases from six to four, Maeda and
Hayashi have introduced the assumption of small rotations, Besseling® and Rosen and Friedmann” have
utilized the Euler angles as a measure for finite rotations. In these studies, also, the assumption of small
rotations is employed at a stage of describing the nonlinear behavior of rods in terms of four parameters.
Schroeder'®, Hirashima, Iura and Yoda™, and Kotoguchi, Kubo and Nakai' have used the finite rotation
vector . Hirashima, Iura and Yoda have derived the more accurate displacement functions among these
studies. However the inplane strains cbtained from the displacement functions of Ref. (11) do not become
zero. This is contradictory of the commonly used assumption that cross sections do not distort. Shimada®,
and Panayotounakos and Theocaris', using the equilibrium method, have derived the governing equations
of tortuous rods. In these studies, the second order terms are neglected in the constitutive equations for
twisting moment.

Kurakata® Kurakata and Nishino”, and Ai and Nishino'® have evaluated the finite rotations of
nonplanar rods by using another approaches. They have pointed out that the fourth parameter, which

.

corresponds to an angle of rotation of cross sections, can not be defined in the case of nonplanar finite

displacement theory of thin-walled members'®, and that the displacement components of beam axis are not

always necessary to be chosen as independent parameters'®. Finite rotations play an important role also in
shell structures. Simmonds and Danielson'”, Pietraszkiewicz®, and Iura and Hirashima' have developed
a geometrically nonlinear shell theory by using the finite rotation vector Q. Pietraszkiewicz and Badur®
have investigated the finite rotations in continuum mechanics with the use of the finite rotation tensor and
the finite rotation vectors, w, £ and 4.

In this paper, utilizing the finite rotation vector §, we develop a geometrically nonlinear theory of
naturally curved and twisted rods with finite rotations in space. In order to discuss the coupling of finite
rotations in detail, we postulate that the warping of rods is neglected. The fundamental hypotheses
employed here are itemized as follows :

(1) Cross sections of rods are constant along the beam axis,

(2) The beam axis before the deformation is a smooth space curve.

(3) The transveres plane is assumed to remain plane and normal to the beam axis throughout the

deformation ; that is, the Bernoulli-Euler hypothesis holds.
Throughout this paper, the summation rule is adopted and Latin indices will have the range 1, 2, 3.

2. GEOMETRY BEFORE DEFORMATION

Consider a naturally curved and twisted rod in a fixed Cartesian coordinates X™ with the base vectors
in, asshownin Fig. 1. Two convected coordinate systems are introduced to describe the motion of the rod.
One of these is the orthogonal curvilinear coordinates £™ with the base vectors e, The coordinate £'
coincides with the beam axis at the point S, while the coordinates £2 and £° are taken along principal axes of
the cross section of the rod. The other is the local Cartesian system of coordinates Z™ with the base
vectors b,. The coordinates Z™ are chosen so that the base vectors b, of Z™ coincide with the base
vectors e, of £™ at an arbitrary material point P. The orientations of the present coordinate systems
follow the right hand rule.

The position vector at the point S is given by

T BV mE Ly, et eee e (1)
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Then the tangent unit vector e, in the reference state is obtained by 1
@U g e (2)
where (), denotes differentiation with respect to £'. With the aid of
the Frenet-Serret formulae, the following system of differential

formulae holds :

€1, 0 X3 X e,
€1 |=| —xs O Xy @y | e ( 3 )
€3, X2 K 0 €3

in which g, is the initial twist, and x, and x; are the components of the ’L
initial curvature. In general, they are not constants, but functions of 0 £ ‘
133 Fig.1 Coordinate Systems.
The position vector at the point P is given by
r:x+§2ez+§:393' .................................................................................................. (4)
The base vectors g, at an arbitrary material point are obtained by differentiating the position vector r with

respect to &7,

al:,‘/E el__.}c1§3e2+kl§fze3’ Q2= @, (3™= @z« rrrerrsrr e st ettt ittt (5 a—c)
where i
\/_g_=1+7c2§3—763§2. ................................................................................................ (6)

3. FINITE ROTATION VECTORS

According to Pietraszkiewicz and Badur®® | there exist the following three finite rotation vectors used in

the existing literature :

w=wp, R=sin wp, §=2 tan—2“i¢ ......................................................................... (7. a~c)

where ¢ denotes the unit vector, the direction of which coincides with the direction of axis of the rotation,
and  the angle of rotation about its axis. Maeda and Hayashi® have used the finite rotation tensor to derive
the finite displacement field in terms of six parameters. The finite rotation vector ¢ is quite equivalent to
the finite rotation tensor. The finite rotation vector § is widely used in shell theory. On the other hand,
there exist few papers in which the finite rotation vector § is employed as a measure for finite rotations.
The advantageous usage of the finite rotation vector § has not been fully discussed. In this paper, the
effects of finite rotations on the nonlinear behavior of rods are investigated with the help of the finite
rotation vector 4.

From Eq. (7.¢) an applicable region of ¢ is defined by

@ TT, e e s e ( 8 )

Since, according to the assumption (3), the tangent unit base vectors after the deformation, e,,

3

remain orthogonal, we have the following relationships between e, and €, % .

'e'i—"—eﬁ%(lwhcos w)0><95+i(1+008 @A X (X @;), orrvrrrrrrrre (9)

By expressing the vector § into the component form with respect to the undeformed base vectors
Bzgiei’ ................................................................................................................ (10)

we can write the vectors g, in the form as
5 - _l 2\2 3\2 l 3 l 1p2
e=|1 4(1+cos w) (82 +(8°)4 ety (1+cos w)( 8 +5 00 e,
+_1. (1+COS w) <_€2+l 01@3>e ..................................................................... (11 a)
2 2 3 :
'éF% (1+cos o) (—5%% 0281>e1+[1—%(1+cos w)i(93)2+(01)2}]92
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+% (1+COS w) <51 +% 9293>eg, ........................................................................ (11 b)
6=5 (1+cos ) (6°+5 670" Jert (1+cos o) (— 8+ 66 e,
_*_[1_71{ (1+COS w) {(91)24‘(02)2}]63. .................................................................... (11 c)
In view of Egs. (7.¢) and (10), we have
o2
(01)z+(02)z+(03)z:M ................................................................................. 12)

(1+cos w’ "
According to the assumption (3 ), the displacement vector at an arbitrary material point is presented by

U=u+§2(?§r“ez)+ 53(53‘—63) ...................................................................................... (13)
where g denotes the displacement vector at the beam axis. By expressing the displacement vectors into the

component form as

U=U ;, BT U @, -rrrrerrer ettt (14. a, b)
we have the following displacement functions in terms of six parameters :
1 1 1 1 :
U'= '+ E1+cos o) (— 04+ 070 [+ E(1+C0 o) (8745 0°67), eovvrrnnnnnns (15. 2)
sz—uz—:lf E(1+cos w) [(93)2+(31)2]+% £(1-+cos w) <_g!+_§. 33(92)’ ...... e (15.b)
U3=u3+% £1+cos w) (51.{_% 5293>_.% E(14C0S W) [(B)AH(B27], worvreerermeeeernnes (15.¢)

4. GEOMETRY AFTER DEFORMATION

Since the tangent base vector to the beam axis after the deformation is given by differentiating the
deformed position vector with respect to £' the tangent unit base vector @, takes the form as
(x+u),

Elzm' ....................................................................................................... (16)
From Egq. (14.b), the vector €, can be written into the component form as

e = };0 {(1+u1l1)e1+u’heﬁ'usllea} ........................................................................... (17)
where ()|, denotes the covariant differentiation and

ul | 1:u,11"7[3u2+7£zu3, uzl 1:u,21+763u1—'}£1u3, ....................................................... (18 a, b)

W=l — '+ uwd, Ge=0+u' 1) () H(Ul]), o (18. ¢, d)
Comparison of the components of the base vector @, between Egs. (11.a) and (17) leads to

1—1 (1+cos WGP +E)=u'lh, 3(1+cos o) (645 0'6°)=0ll,

l (1+COS w) <__.02+_1_ 0153>=u3” ......................................................................... (19 a_c)

2 2 1 .
where

1 1
wWh=—rp= 1+ Uy, Wlh=—m 1], U= Ul g, ooorreereer e 20. a~c
m ( 1.) 1 ,\/E;‘ 1 1 \/Eo‘ 1 ( )

In Egs. (19) there are three expressions for three unknowns §°. However, with the help of Egs. (12) and
(18.d), it is shown that there exist only two independent expressions in Eqgs. (19). Therefore, in addition
to the displacement parameters y’, we must choose a fourth parameter among the components of the finite
rotation vector, Then we can present the remaining components of the finite rotation vector in terms of four
parameters, In a linear theory, an angle of rotation of cross sections is chosen as a fourth parameter. Ina
nonlinear theory, on the other hand, there are various definitions for the fourth parameter. In would seem
natural, in this paper, to introduce the following new variable @ as the fourth parameter associated with
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the rotation of cross sections :

fl=9 tan—%—& (_”<L9<7[)' .................................................................................... (21)

It should be stressed that the applicable range of the present rotation parameter is twice that of Refs. (6)
and (15). In the linear theory, the present fourth parameter @ coincides with an angle of rotation of cross

sections,
From Egs. (12), (19.a) and (21), it follows that
cos w__1+1 (l““COS 19)(1+u1|!1). .......................................................................... (22)
Introducing Eq. (22) into Egs. (19.b) and (19.c¢), and using Eq. (12) leads to
e of 2 sind® 3,2 3 sind N
o=l Tzl ), 0= A+l o). (23.a,b)
where
OO UTRS SN UPO RO UURRUUP O
Tt uth 24)
When Eqgs. (21), (22) and (23) are substituted into Egs. (15), the displacement functions become
Ul=u'— 4l cos 8+ %1, sin @)+ (1l Sin 8 — 1Pl COS ), ~rrreverrrrrrerrs (25. a)
Ut=ui—&| T (1—cos 9)+ AT (il F{i+cos 9)+5 vl sin o+ (21— cos 9)| |
of 1 1 e veain gL o2y o3 s ain ol
+ & = sin 9+ 2 (@I sin 9— w2l cos §— (@l sin o], (25.b)
— 1 2 2 3 __l 2 3 __l 3 2 4 __£3 l —
U=+ ¢ L sin 9+ A () sin 9—5 wllll cos 9~ (w1l sin &]] ¢ b(l cos 8)
+A[% (W) (1—cos 19)—% 22l ¢*, sin z9+%(u31h)z (1+cos L9)H. -------------------- (25.¢)

The displacement function similar to Eq. (25. a) has been obtained in the previous papers. However it
should be noted that the present displacement functions are derived without using any approximation.
While the existing results are obtained by neglecting the higher order terms in the displacement functions.
This difference may be caused by the choice of the fourth parameter, The displacement functions obtained
herein do not violate the assumption that cross sections do not distort.

In accordance with Eq. (3), we introduce the notations defined by

TS €01t B, Ao = @31t €1, HgTm gt @, cTTUTTIOTTTOTTisessiieiiiiiiiiiiiiiiiiii (26. a-c)
These notations are not exactly the twist and curvatures since the deformed line is extended. However,
under the small strain assumptions, %, denotes the twist, and %, and %; denote the components of the
curvature after the deformation. Substituting Eqgs. (11) into Eqgs. (26) leads to

',;1:-% (1+cos w)631+%(1+cos w)mg‘?l_% (1+cos w)gzgfl, ....................................... (27. a)
;2:—_% (1+cos w)0,21+% (1+cos w)@‘ﬁ?l*—% (1+cos W31, e (27.b)

%(14‘005 w)gzg,ll_% (1+COS w)elgfb ....................................... (27_ C)

When Egs. (21) to (23) are introduced into Eqé. (27), %, are expressed as
1

%F% (1+cos w8+

x6= H 4A{(u 112+l )? }}94— ALl — (@) @l ]+ mutlh + el + wllly, e (28. a)

H= —% Al sin 89—l cos &) (W'l +(1ll), sin 89— (w°l1); cos 89— m(u’ll, cos I+l sin )

+x2[1+% (cos &—1)—/1[% (W) (1+cos &)+-1— Wl sin 191% (@I y(1—cos &)H
1 . 1, . | P 3 .
+z3[xsm &+A{Z(u I sin 8—3 wllagll cos &—f( 1) sin &H, --------------------- (28.b)
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X= —% Al cos 9+ 4Pl sin @) (W' ), + ('), cos 8+ (1), sin 9+ x(wll, sin 9—°ll, cos &)
+x{~l sin 19+/\[-1~(u2111)2 sin 89— w2l cos 98— (121, sin &Hﬂ [1———1- (1—cos 8)
A 4 2 1 1 4 1 3 A
— A (W7 (1=cos 81— willl sin 9+ (w1 +cos D o (28.¢)

The above expressions are obtained without restricting the magnitude of displacements or angles of
rotation. While, in Refs. (6) and (15), the fourth and higher order terms with respect to displacement

components are neglected in calculating the twist and curvatures after the deformation,
5. INTERNAL AND EXTERNAL VIRTUAL WORKS

The Green strain tensors associated with the directions of the &¢ lines are given by

eij_—_%(ai.aj_aiaj) .................................................................................................. (29)
where

E;:(\/é;‘?3§2+?2§3)51_%1§352+215253, Wom=Cpy, Tam= @5, wrerrrerrmrrsmmnme (30. a—c)
Substituting Egs. (30) into Eq. (29) implies

eu:(eo_gzxgur53%;){\/§+%(50_52x§+§3,£;)}+% O +2 1), en= 621:_% xréd,
€13= 631:% %?‘52’ €2y ==€y3=€3,= 633:0. ................................................................. (31 a._d)
where

gozm_l’ K;k:;i_xi, p2=(§2)2+(§3)2, .............................................................. (32,a“c)

Let ¢% denote the second Piola-Kirchhoff stress tensors associated with the directions of the £° lines.

Then the internal virtual work can be put in the form as®

IVW=£(‘[”88”+2 0e.,+2 t¥8e)dV P (33)
where :
AV /g dE QEIAES, wvvreeeemmm e (34)

Since the base vectors g, are not orthogonal, the constitutive equations may become compli-
cated. Therefore, for the latter convenience, we introduce the strain tensors ¢;; and the stress tensors ¢%
associated with the coordinates Z*. The relationships between the strain tensors e,; and ¢,; are given by

2" o

oZ' oz’
where

agl B 1 agj‘_klgg 853 B %162 aéfz . 853 _1 afl . 863 _ 851 . afz .

37" Vg’ oz’ Vg’ 8Z' g’ oz' oz’ " oz’ oz’ oz ozt
..................................................................... (36. a-e)
Substituting Eqgs. (31) into (35), and using Egs. (36) leads to
en—leo— &+ 8l [ =t oh (o e+ )| ok P, cwmen=—F A,
Vg 29 2g 2vg
Z}t;k
3= ESI:W__Q_, €20 €23 €32 == €33 (), ter ettt (37. a-d)
The physical component of the stress tensors ¢ is given by?
&”Zo“@«’@w (Z, 7 DOt SUMMEd) -+ oerreereererrtiiii it (38)

where
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bi=bi by, Bij:Ei'zj, bi=e;, 31:715“ Wg +eo— EF+ Extle, 32252, 33253, -+ (39. a-f)
The relationships between the stress tensors ¢* and ¢% are expressed by
. ozZ' oz’ o
OE™ OE"
With the use of Egs. (33), (35), (38) and (40), the internal virtual work can be rewritten in the form as
Jaslws

fg—+ e &0+ E%

IVW:/;[%[&EQ‘fzb\%?‘f‘fs@k; } ]+_L(_512§3+513§2)5x?‘}dV_

When a rod is subject to the distributed force vector, p=p,e;, along the beam axis and the distributed
surface force vector, P=P,e, at the end cross sections, the external virtual work is given by

1:5‘1
EVW=];P,-6\UidV+[ [Eié\UidAE,zé R (42)
where N
dA:d§2d§3 ............................................................................................................. (43)

and €L and &hy denote the coordinates of &' at both ends of the rod.

6. SECOND ORDER THEORY OF ELASTIC RODS

In the previous sections, we derive the exact finite displacement field of naturally curved and twisted
rods, and the exact twist and curvatures after the deformation on the basis of the Bernoulli-Euler
hypothesis. The exact internal and external virtual works are presented in terms of the physical
components of stress tensors. When we derive these fundamental equations, we do not restrict the
magnitude of displacements or angles of rotation, nor utilize the small-strain assumptions, However it is
found difficult from Eq. (41) to define the appropriate stress resultants and moments, since not only
the coordinates but also the extension and the curvatures after the deformation are included in the
denominator of the underlined term in Eq. (41). As discussed in Ref. (6), it seems to be few problems
in which the third and higher order terms with respect to displacement components must be taken into
account in the governing equations. In view of these facts, we supplement the following assumptions to
develop a geometrically nonlinear theory of elastic rods :

(4) Strains are small in comparison with unity.

(5) The third and higher order terms with respect to displacement components are neglected in the
displacement functions, and the twist and curvatures after the deformation. However the rotation
parameter @ remains to be finite. In the coefficients of the stress resultants and moments in the
equilibrium equations and the associated boundary conditions, the second and higher order terms
with respect to displacement parameters are neglected.

As pointed out in Refs, (6) and (7), the assumption (4 ) is employed after taking first variations with
respect to displacement and rotation parameters so that the second order terms are fully taken into account
in the governing equations, )

According to the assumption (5), Eq. (24) yields the following approximation !

/\=1+% [(uznl)z_*_(uﬂll)q. .......................................................................................... (44)

In what follows, the notations 1ll, are still used. However it should be noted that the third and higher
order terms in /|, are meaningless. Substituting Eq. (44) into Eq. (25), and using the assumption (5)

leads to

Ul=1u'— (¥l cos 9+ 121l sin &)+ £l sin 3— 1l COS @), wrrrerrrerrmmrmrrreseenes (45. a)

U2=u2~§2[ 1—cos &+—é— @il 28N, sin 941 (w2Ih) cos &]~ 53{sin &+~é~

5 ui vt cos @
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_,;_ (uznl)z sin &}, ......................................................................................... (45' b)

Ul=vu*+ fz{sin 19——% ul vl cos &—% (21, sin &}—ES{ 1—cos &~% w2’ sin @

.{_%(u}”])i’ CcoS [9}. ......................................................................................... (45' C)

Introducing Eq. (44) into Eq. (28), and using the assumption (5) leads to
E:@,H-%{(uzlll),lu3“1—(u3“1)‘1u2”1}+k;ull11+xzu2|11+k3u3|l1, ......................................... (46. a)

%=(21l), sin 8— (L), cos 98— (1l cos 9+ 1'll, sin &)—ch{cos a% @l sin 9

~%(u2lh)z cos &}+x3[sin &-% 2wl cos &—% (1211, sin &}, --------------------------- (46.b)

x=(u’ll), cos 9+(¢lly), sin 8+ (vl sin 9—4¥ll, cos 8)+ Xz[ —sin &—-% w10, cos &

+é(u2n,)2 sin &}era[cos z9+‘§“ w2l sin &—%(uﬂx,)z cos &]_ -------------------------- (46. ¢)

The internal virtual work, according to the assumption (4), takes the form as
~11 2
vw=[ ["Tg{aeo—szmwr o+l xi“&xi*}—k«j;—(—&%% L (47)

The external virtual work is evaluated by using the displacement funcuions expressed by Egs. (45).

The equilibrium equations and the associated boundary conditions are derived from the principle of
virtual work which asserts that [VW=EVW. For the sake of convenience, the second and higher order
terms with respect to displacement components are included implicitly in the coefficients of stress
resultants and moments, These higher order terms, however, are meaningless since the assumption (5)
are introduced to obtain the governing equations,

The equilibrium equations are represented by

(N = Q' — Q') + o NU Il + Qo) — o NU?l + Qo)+ N*+ M ¥+ o ME+ s ME=0 (ou'),

........................................................................ (48. a)
(Nu2'|1+ Qz)‘l"l(](Nuslh + Q3)+ Kg(N - Qzu2“1_ Q3u3“1)+ Q;k_M:,IZJ——K]Mz'*‘ KaM*—O (5u2),
........................................................................ (48 b)
(Nu3|[1+ Q3)}1+K1(Nu2”1+ Qz)"'xz(N_ Qzuznl_ Q3u3|11)+ Q?+M2,1_}¢1M$“K2M?:O (b‘uS),
........................................................................ (48 C)
T1+;2M3_%3M2+ T*‘f‘M%:O (3&) ......................................................................... (48 d)
where stress resultants and moments are defined as
N=[31da, M= [a"eda, M= [7¢aa, M= [ (~ 3¢+ ¢ da,
Mng_\/l_; 6“,02dA’ T:M{f”Mka, Mx:Mz cos 8—M, sin &, ]‘4’y:1}42 sin 8+ M, cos &’
Qz: -My,l'_' T(uglh),l—xl(Mx“}" Tu2“1)+ 7(2(T'—quznl)_](stuS”!“’% (T1+ KzMy_’ksMI)USHh
Q3:Mx,1 -+ T(u2“1),1—' 7[1(My+ Tu3“1)—leyuzul+x3(T—Myu3”1)+% (I1+KzMy~KaMx>uz”l
...................................................................... (49_ a—])

and

N*=[Pada, Mi=[Pevada, ui==[Pevids, @t=[Pads Qt=[Pgda,
Tt~ [P.£'Vgda, T=— [ P& Vgda, T3.= [ P& Vg da, T5,=— [ P& Vg da,

Ti:=T¥ sin9+THcosd, Ti=T}cosd—T¥sing® Ti,=T¥ cosd—T%,sin 8,
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T¥,=T¥ cos 9+ T¥sing, T*=Tk+ Tk, Mi=Mfcos9—M¥sind,
M*=M*sinz9+M*COSz9 M¥=—M*+MEL, MEi=MEh+MEd,

M"‘—Mx——l TE.4%0, + TE M — Ti:dlN,, ME= M*+ Tizu’ ||1—~§ T¥ 1+ TE .
...................................................................... (50. a-t)
The boundary conditions at both end cross sections are given by
N-Qzuzl!l—quslilzﬁ*—M* OF QUI=TEY,  veeoreeesvmsmseinn s st (51. a)
Nl + Q.= Q*_{_Mi OF EFmm T2, wreremnssrnme s ettt (51’[))
NPl Q= QF =M% OF QFmT%, woveeeernrresssssssts st (51.¢)
Ta= T A M% OF (o=@, weorveeessnrssssssmsss sttt (51.d)
My+% TUM =M% OF U2l =TIy, oveeersereessneessss e s st (51.e)
Mer% TUP I BI% OF WPl =Tl eeeeesoeees e G1.

where 7/, 8, %ll; and T*ll, are prescribed values at both end cross sections and
N*=[P.da, M= [P.g'da, Mi=—[P.graa, "Q‘;szﬁsz, Gt=[P.a4, Tt.=— [ P.gda,
Tt=— [Pog'da, T= [P.g?da, Tti=—[Pigda, Th=Tt.sin 0+ T cos 9,

T%,=T% cos 9— T¥*,sin®, T=THcosd—Tksing®, Tk=T%cosd+T¥sind,
T*=T* +T%, M*=M¥cos9—M}sing, Mi=M%sin%+M¥cos?d,
ME=MEu+ M, M_zzm—%”T}xuw,+%Ttyu2nl—ﬂxu3nl,

M* :M§+%"fhu3” . _,é_ —T—Z',‘yualll +T;yuz“h ......................................................... (52. a-s)

Since the strains are assumed to be small in comparison with unity, the stress-strain relationships for
elastic rods are written as

G'=E&n, 67=2 Géy, GUBmmD (GByg wwerrrmrrmse s s s e e e e (53. a—c)
where E denotes the Young modulus, G the shear modulus, &, the physical component of strain tensors.

Introducing Egs. (37) and (53) into Egs. (49), and integrating over cross sections leads to

N= EI:F;EO szg'}‘Fak’zk’l“l Fp(%x)], MzzEI:Faio—Izsl?‘f'IssX?""%Fps(%;k)z],

2
— [ * * 1 *)\2 — * * 1 *\2
M;=E — Fyeot Laxs — Iyxy +“2‘ sz(xl ) ’ M,o"'E FpEo_szﬂs +F,03762 +§ Fap(ll) 3
M= G K (54 a—e)
where

- [ L _ [P 0’¢
Fl‘“fﬁdA Fz \/—dA F;= x/_dA Fo f A Foz—f dA

F,,3=f~’%§3—dA, F,,,)=fg—f;.g—dA, Inzf@(f)dA Izs—ffSSdA

7. DISCUSSION

In order to confirm the validity of the present equations, comparison is made between the present
equilibrium equations and another ones obtained from the equilibrium method. The assumptions (1) to
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(5) are employed and the distributed external forces are assumed to be zero for simplicity.

Let N and M denote the resultant force vector and moment vector, respectively, represented by
N=Ne +qe;1gses, M=Te 1+ M@yt M@y e (56. a, b)
where ¢, and ¢, denote the shear forces in the directions of the deformed principal axes. It should be noted
that the quantities Q, and Q, defined by Eqs. (49.1) and (49.]) are not the same as the shear forces g, and
¢s. In this paper, the shear deformation due to bending are assumed to be neglected so that the shear
forces, defined by integration of shear stresses over cross sections, become zero. As a result, in the case
of using the energy method, the shear forces do not appear explicitly in the equilibrium equations.
Therefore comparison of equilibrium equations is made in terms of the axial force N and moments T, M.,
M. The relationships between the shear forces ¢,, g, and the quantities Q,, Q: will be discussed later,

The equilibrium conditions of a deformed rod element take the form as

dN aM | _

dél‘l =(, -CZET'*"‘?IXN:O- ................................................................................. (57. a, b)
From Eq. (57.b) and the condition that the vectors g, are linearly independent, we have

T,l +%2M3_;3Mz:0, Q.= _Ms,y +70.T—7M,, (23:]‘/‘[2'1 Fas T =5 My, ovoeereee (58. a_c)

Equations (58) denote the conditions for equilibrium of moments about the triad e;. Using Eqgs. (57.a),
(58.b) and (58.¢), we obtain the following conditions for equilibrium of forces in the directions of the

triad ¢, :
N,11+762N3“763N2:0, N?1—11N3+7(3Nl:0, N,31+761N2"-762N1:0 ................................ (59 avc)
where
NIZN—(—My,l—x,Mx“i‘}tzT)uzlh—(Mx,l—k;My‘F ;csT)uzﬂl, .......................................... (60. a)
N*=Nv'll,— My, — T ), — Mz + Tu?ll)+ o T = Mot ) = s Mo tilly,  coreevvvmmmmeen (60. b)
N*= Nl + My, + T(u2h), — (M, + Tl )= Myt 4 s( T — Mgailly),  woeeeeeemeieeeeeeinns (60. ¢)
Equation (49.d), according to the assumption (5), is written as
T1+szy_ %3Mx"Mx(uz|h),1“‘My(u3”1),1 + K)(qu3I|1_Myu2”1):O. ..................................... (61)

Introducing Eq. (61) into the underlined terms in Eqs. (49.1) and (49.j), we find that the coefficients of
stress resultants and moments in the underlined terms consist of the second and higher order terms with
respect to displacement components. Therefore, according to the assumption (5), the underlined terms in
Egs. (49.1) and (49.j) can be neglected. When we compare Eqs. (48) with Egs. (58.a) and (59), and
recall that the assumption (5) holds, it is confirmed that the present equilibrium equations derived from
the energy method coincide with those derived from the equilibrium method.

The relationships between g,, ¢, and Q, Q. are obtained by

Q:=q,COS 89— s SIN &, Qs= 0, SIN @+ @3 COS G, +++evevrmmmmmmmmmrmmiiiiiiti i, (62.a, b)
The shear forces g, and ¢, are given by the conditions for equilibrium of moments. While @ and Q; are the
notations introduced in Eqs. (49) for brevity. However, the physical meaning of Q, and Q, are given from

Eqgs. (62).
8. CONCLUSIONS

We have developed a geometrically nonlinear theory of naturally curved and twisted rods by taking
account of the coupling of finite rotations in space. There have been various approaches for evaluating
finite rotations. In this paper, the finite rotation vector 4 is utilized as a measure for finite rotations and
the new variable § is introduced as the fourth parameter. It has been stressed that the choice of the fourth
parameter concerns the development of a finite displacement theory of rods. The significant advantages of
the present approach are that the exact displacement functions are obtained through pure mathematical
manipulations, and that the exact twist and curvatures after the deformation are calculated with much
less efforts,
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