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STRESS ANALYSIS OF A CRACK AT AN END OF
PARTLY EMBEDDED STRIP

By Norio HASEBE* and Masahiko MIURA¥**

Stress analysis is carried out for a strip whose part is embedded and with a erack which
emanates at a stiffened end between the embedded and unembedded parts. As loading
conditions, a uniaxial tension and a bending in a plane of the strip are considered. Stress
distribution before and after the occurrence of a crack is investigated. In particular,
stress intensity factor for some crack length and Poisson’s ratio is investigated. Stress
analysis is carried out as a mixed boundary value problem in the plane elastic problem.
Complex variable method and a rational mapping function of fractional expressions are
used. A closed solution can be obtained for the rational mapping function,

1. INTRODUCTION

Many analyses have been carried out for cracks emanating from parts of stress concentration, However
most of them are for cracks which occur at parts of stress concentration of geometrical shape. In this
paper, stress analysis is carried out for a strip whose part is embedded and with a crack which emanates at
a stiffened end between the embedded and unembedded parts. This is also a model for a strip which is
stiffened on its boundary by rigid plates and with a crack at a stiffened end. If young’s modulus of welding
material is much larger than that of the strip, this model is that of a crack occuring at the weld toe. An
infinite stress occurs at such a stiffened end and a crack may occur, Therefore it seems meaningfull to
analyze stress of such a model.

One of the authors analyzed stress of an embedded strip with two cracks at both stiffened ends between
an embedded and unembedded parts?. He also analyzed a semi-infinite plate whose part on the boundary is
stiffened rigidly and which has a crack at a stiffened end of the stiffener?®. F. Delale et al. analyzed a
semi-infinite plate with a crack at an end of an elastic stiffener?,

As loading conditions, a uniaxial tension and a bending in a plane of the strip are considered. Stress
distribution before and after the occurrence of a crack is investigated. In particular stress intensity factor
for some crack length and Poisson’s ratio is investigated. Stress analysis is carried out as a mixed
boundary value problem, Complex variable method and a rational mapping function of a sum of fractional
expressions are used. A closed solution can be obtained for the rational mapping function. It is exact for a
shape represented by the rational mapping function.

* Member of JSCE, Dr. Eng., Professor, Dept. of Civil Eng., Nagoya Institute of Tech. (Gokisocho, Showaku, Nagoya 466,
Japan)
** Member of JSCE, M. Eng., Chubu Electric Power Co. (Tosincho 10-1, Higashiku, Nagoya 461, Japan)
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100 N, HASEBE and M, MIURA

2. MAPPING FUNCTION

A mapping function which maps a strip region with a crack into a unit circle is formed (see Fig. 1). This

function can be obtained by Schwarz Christoffel’s transformation, i.e.

_ {—1 . —iK +1
=K | Eriem e e K vensy o8 s
Hog { ¢(i—cos y)—icos y+1—v—2icos y({’~2¢ cos y+1) H ............................ (1)
—¢(i+cos y)+icos y+1—v2icos y(E—2¢ cos y+1)
The coefficient K is determined such that the strip
width is W, i.e. K=2 Wi cos(y/x) where the y
imaginary unit “;” is used in order that the strip is £ 0 ? B A
in the direction of the x axis. The parameter y Lh; -
relates to the crack length p and is determined by * C'
the following equation, - ’F -
2 2
"{(ST +3);18T +l ] 0<b/w=<0.5 B ¢ prane

Fig.1 Region on the z plane and a Unit Circle.
} 05<b/w<1.0

{ BT*+4)—4v/ T?+1
9T*+8
in which T=—tan(bz/W). When y=0, Eq. (1) shows the strip region without a crack.
A rational mapping function of a sum of fractional expressions is formed from Eq.1). The formula-
tion is briefly stated because it has been described in Refs.5), 6), 7). Eq. (1) is separated into
terms which have slow convergence and rapid convergence,

z/k=4 [ 1%, 2f1+zé‘+f(e‘”(—:-§)°‘5 d§+f-(—671_)?);;d§

+/{ ‘l—é’ . A ‘C . D
W+ (e e =P 148 (e 7—¢f (e7—¢
where coefficients 4, C and D are given by the following expressions,
A=t c=p=— 17"
veosy '’ (1+e*M)y/2:sin y

The following fractional expression is considered for the first term in Eq. (2).

f}zié‘:ilog(l——i@ 2(1-—1,,9,; Bj) .............................................................. (3)

The procedure to determine coefficients B; and £; is described in Refs.7), 6), 5) and the values are

% e

)M}dg ................... (2)

shown in Ref. 1. A fractlonal expression for the second term in Eq. (2) is obtained by exchanging “;

in Eq. (3) for “—¢” (see Eq.5). For the third term in Eq. (2), the following fractional expression
is considered,
dg = 9 e 0SY] IV EN0S —0.507 ;‘éf_ A e
jw(e_”_ = 2e7 1 —eg) 5= —2e {1+JZ}( ei’aj§+A’>] (4)

The procedure to determine A; and «, is also described in Refs. 7,) 6), 5) and the values are shown in

Ref.1). A fractional expression for the fourth term in Eq. (2) is obtained by exchanging “;” in Eq.
(4) for “—{". For the final integral term in Eq. (2), the following fractional expression is considered,

Integral term= }7_'3 ’%i

The procedure to determine G, and ¥, is also described in Refs. 7), 6), 5). In this paper, the number
of m =10~ 18 is adopted. From the formulation above, the following rational mapping function is
obtained for Eq. (1),
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The constant term in Eq. (5) is determined such that the x and y axes hold the position as shown in
Fig.1. Because Eq. (5) is rational, the strip length is finite and is about 9.6 times of the width. The
tip of the crack and points D and B have a round corner. However the radius of curvature of the tip is
o/ W=10"°~10""" while depending on the crack length. The radius of curvature is small. The fraction-
al expression regarding to B; and g; in Eq. (5) is the rational mapping function for the strip region
without a crack.

3. ANALYTICAL METHOD AND BOUNDARY CONDITION

A complex variable method is used for a solution of the mixed boundary value problem. The analytical
method has been described in Ref. 2). Therefore necessary equations are only stated. Analytical complex
functions are shown by ¢ (¢) and ¢ (). The part of boundary which external forces are given is shown by L
and by M the part which displacements are given. In this paper, L is the part FABCD and M is DEF in
Fig.1. Functions ¢(¢) and ¢({) are given by the following equations,

52+m Akck

¢(§)='—X(§) 2‘_"1 m+H(§) ............................................................................. (6)
x—l—l

H(§)=M 271&% f)( (g f) Qo e (7)

M(g)._ 1 f( ) g ++eeeee e e (8)

278 Jiawo—¢
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The function ¥(¢) is the Plemelj function and is given by ({ —a)"({—g)' ™ in which ¢ and g8 are coordinates
on the unit circle at joints of I and M. In this paper o and 8 show points D and F in Fig. 1 and a= eand B
—=—1. The index m in x(¢) is m=0.5—illog »)/(2 n). x is x=3—4v for the plane strain and x=
(3— v)/(1+ v) for the generalyzed plane stress and v is a Poisson’s ratio. Coefficients C, in Eq. 6 are given
by Cx=Ex/ 0 (&h) (E=1,2,-,52+m) and {}is £h=1 /¢, the reflection point of ¢, on the unit circle. Ay
and A, are determined by solving simultaneous linear equations of 2 (52+m). ¢ in Eq. (7) means ¢
on the unit circle. p,(s) and py(s)in Eq. (9) are external forces on L in the direction of the x and y
axes respectively. The integration with respect to s means that along the boundary line. u and v in
Eq. (9) are displacements in the direction of the x and y axes on M respectively. G is a shear modulus.

As loading conditions, a uniaxial tension in the direction of the strip and a bending in the plane are
considered (see Figs.4, 5).

a) Uniaxial tension

A concentrated load P acts at the tip of the strip, i.e., ¢=—i on the unit circle. The following
boundary equations are obtained from Eq. (9).

if[px(s)+ ipss)lds=0 onFA

—iP on ABCD T (11)
u+iv =0 on DEF
If Eq. (11) is substituted into Eq. (8), M(£)=(P/2 nllogl({—ae)/({+ i)] can be obtained. Further M

(¢) is substituted into Eq. (7) and an integral of the second term has to be carried out, but the integral
seems difficult. However the first derivative H’(¢) of Eq. ( 7) has been obtained as the following equation”,
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102 N, HASEBE and M, MIURA

H(O)=(P/2 ) (i+a) ™I+ ™ML —a)™ e —B) ™4 &) e, (12)

Therefore the first derivative ¢'(¢) of Eq. (6) can be obtained without an integral term,

b) Bending in the plane

A couple M =Pe acts at the tip of the strip. P is a pair of the forces with the same magnitude and the
opposite direction and ¢ is a distance between applied points of P. If coordinates on the unit circle where a
pair of the forces P acts are expressed by {=g, and {=gs,, the expression M(%) of Eq. (8) is M(¢)
=(P/2 nllogl(s,—¢)/(s,—£)]. When this expression M(Z) is substituted into Eq. (7), the integral of
the second term is also difficult. However the first derivative of H(¢) can be given by the following ex-
pression as well Eq. (12),

(g)_zm{(sr";z__(?-ﬂ) (S‘"“l;_(zl_ﬂ) J(gwa)’""‘(é’-ﬂ)"" ............................. 13)

In order to obtain the another function ¢(¢), the integral of the third term in Eq. (10) must be carried
out. However it can not be carried out because the function #(¢) is unknown, Using the theorem of an-

alytic continuation®, ¢(¢) can be obtained as follows ;

HO)=—p(1/8)— (1(2)@ L)+ (14)

4. STRESS DISTRIBUTION

A solution for the unembedded strip can be obtained if parameters ¢ and B inEq. (6) are approached to

1. Figs. 2 and 3 show examples of stress distribution with crack length b/w=0.4 for a uniaxial tension
and a bending respectively. A solution can be obtained before the occurrence of a crack of the embedded strip,

v/

Oy/ 0o L /W
0 T T e TTT ‘
=] 0.5 1.0 X/ L
(+F O, =
%/ % stress o= P/w
S] R, b/w= 0.4

9./ ) . %, 0,/ 9,
T Tl LT IT LLILLEr el VeI I T T
-1.0 -0.5 0.5 1.0
Fig.2 Example of Stress Distribution of an Fig.4 Stress Distribution before the Occurrence of a Crack under
Unembedded Strip under Tension, Tension.
Ty / O
y/v %/ 0o v
0 T I Te[ [ [TT
=) 0.5 1.0 X/
b/w=0.4

O =6M/w

Stress
01 2
]
LAYLa)
Fig.3 Example of Stress Distribution of an Fig.5 Stress Distribution before the Occurrence of a Crack under
Unembedded Strip under Bending. Bending,
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Stress Analysis of a Crack at an end of Partly Embedded Strip 103

if the term Y1B,8,/(1+8¢") in Eq. (5) o,
is used as the mapping function and ¢=1 [ S R
and §==—1 are put. Figs. 4 and 5 show I -xLo _JE:L:—L —:j%:l;"

k=1 7xy/‘70

the stress distribution for x=1 and x
m——-— K= 3 Oy =P/w

=3 before the occurrence of a crack. x

=1 corresponds to y=0.5 for the

plane strain and x=3 to y==(0 for the
Stress

plane strain and the generalyzed plane P

stress. There is the following relation 0, /%

between g, and ¢, on the boundary M, { [ L AN
ie. go/or=0B—n/0+x (Ref2). o5 [ S N
is a tangential stress and ¢, is a normal

stress with respect to a curvilinear

coordinate which is represented by the
mapping function. gy=o0; and g,= g, on Fig.6 Example of Stress Distribution under Tension
y=w/2 and y=—1w/2 in Figs.4 and (Crack Length b/w=0.4).

5. Large stress concentration occurs

at stiffened ends between the boundary Vi 0 /s

M and L. It is noted there are differ- %% @ St

ence between stress distribution for x B _*"Fj&; ﬂ%ﬁ =} 0.5 70 x/w
=1 and x=3. It is noted from Fig. 4 1%
that stresses for x=1 become o,=o0,
=().866 0, on the boundary of the
embedded part when x — —oo. On the

K= 1
- k=3 Tpo=6M/w

other hand, stresses for x=3 become Stress
small when x — —oo. When x=1, the b

Poisson’s ratio is y=0.5 and so bulk . 2 | E—

______

strain is zero., The stress condition is o
symmetric about the x axis. The width ’ %/ %
of the strip is unchanged because the

displacement on the boundary M is
zero. Therefore stresses do not de- Fig.7 Example of Stress Distribution under Bending

crease when x — —oo. In the case of a (Crack Length b/w=0.4).

bending, the influence of x on the

stress distribution is smaller than that of a uniaxial tension, Stresses for any x become small when
1 — —oo. Thisis because the stress condition is antisymmetric about the x axis and the deformation in the
direction of the width  is small. Figs. 6 and 7 show examples of stress distribution with the crack length
b/w=0.4 for a uniaxial tension and a bending respectively. It is found from Fig. 6 that compression stress
occurs on the boundary y/w=—1 and |x/w!<0.3 because the neutral axis is eccentric for the crack.
Stress distribution on the embedded part is different between x=1 and 3. Stress g, on the boundary for x
=1 approaches 1.451 g, when x — —oo. The value of stress increases about 45 % than nominal stress g,
and is larger than the value ¢,=1.121 o, before the occurrence of a crack. The resultant force on the
section of x/w=0 is the same as the external force P before and after the occurrence of a crack while their
stress distribution and their deformation near x/w=0 are different. When x=1, y=0.5 and so the bulk
strain is zero. Accordingly the situation on the embedded part is determined by the stress condition near
x/w=0 and stresses o, and g, on the boundary for x=1 do not decrease when xr — —oco_ It is found from
Fig. 7 that the influence of x on stress distribution for a bending is not so large compared with that of a
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104 N. HASEBE and M, MIURA

uniaxial tension. This is because the stress condition becomes antisymmetric with respect to x/y=—0.5
in the embedded part and the deformation in the direction of the width  is small.

5. STRESS INTENSITY FACTOR

Stress intensity factors are obtained for a uniaxial tension and a bending in the plane. Once the complex
stress function ¢({) is obtained, stress intensity factors K; and K;, for mode | and mode | respectively
are calculated from the following equation,

K~ iKu=2v7 e "¢ (£) /o (&)
where £, is a coordinate on the unit circle corresponding to the tip of the crack and § is an angle between the
x axis and the crack. In this paper {=1 and §=3 /2.

a) Uniaxial tension

The following nondimensional stress intensity factor is used,

(W —b)"*(Ki+ iKy)

(W+2b)Pvr

Stress intensity factors are calculated for the unembedded strip in order to investigate the precision of the

FI+ l‘FH:

rational mapping function. The values are shown in Table 1 and by a dash-dot line in Fig, 8. Table 1 also
shows values obtained by Benthem et al.9 and Gross et al.9 It is found that our values agree well with
their approximate values, Fig, 8 and Table 2 show values F, and F, for the embedded strip. The difference
of values Fy and F; between the embedded and unembedded strip can be found. Values F| and Fy, depend on
a value x and the dependence is larger for a short crack. The behaviour of F, and Fy of x=1 is different
from that of x%1. When b/w approaches 1.0 and x=1, values of F, and Fy, approach (. 313 and —0. 049
respectively. On the other hand, values of F; and F; for x=1 approach 0. 309 and —0. 050 respectively.
Values of F; for a short crack are larger than those of F, for the unembedded strip, but for a long crack
values of Fy are smaller than those for the unembedded strip. This seems as the following fact : stress
concentration of the stiffened end between I, and M influences more on F; of the embedded strip for a short
crack. On the other hand, for a long crack the influence of the flexibility of the unembedded strip is larger
than that of the embedded strip.

b) Bending in the plane

The following nondimensional stress intensity factor is used,

Table 1 Nondimensional Stress Intensity Factor of an
Unembedded Strip under Tension.
b/w this Benthem Gross, B. Errors Errors
paper et al. et al. 2)-(1) 3)-(1)
) (1) (2) (3) T Gt
r 1
/ Fy 0.02 0.149
/ _____ 0.03 0.176
0.2}, Frr 0.04 0.197
0.05 0.215 0.215 0.214 0.0 %  -0.47 %
/ 0.10 0.268 0.268 0.267 0.0 -0.37
. 0.20 0.313 0.314 0.314 0.32 0.32
/‘\ 0.30 0.333 0.335 0.334 0.60 0.30
| e kel 0.40 0.345 0.347 0.344 0.58 -0.29
el a2 0.50 0.353 0.354 0.354 0.28 0.28
,,--~:~::‘"~“~:\ 0.60 0.359 0.359 0.359 0.0 0.0
0= TR 0.70 0.364  0.364 0.0
' T SSmsaall 0.80 0.368  0.368 0.0
- 0.90 0.371  0.371 0.0
X . L 0.95 0.373 0.372 -0.27
0 0.2 0.4 0.6 0.8 1.0 0.96 0.373 0.373 0.0
b/w 0.97 0.374 0.373 -0.27
1.00 0.374
Fig.8 Nondimensional Stress Intensity Factor under Tension,
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Table 2 Nondimensional Stress Intensity Factor under Tension.

Fy Fo
b/w x=1.0 k=5/3 «=2.0 k=2.5 «=3.0 k=1.0 «=5/3 «=2.0 k=2.5 k=3.0
0.02 0.256 0.424 0.421 0.405 0.386 0.127 0.064 0.037 0.002 -0.026
0.03 0.260 0.418 0.416 0.404 0.389 0.107 0.061 0.039 0.011 -0.011
0.04 0.263 0.413 0.413 0.403 0.391 0.102 0.061 0.041 0.016 -0.055
0.05 0.267 0.409 0.410 0.402 0.391 0.099 0.062 0.043 0.019 -0.001
0.10 0.280 0.393 0.395 0.391 0.385 0.080 0.058 0.044 0.025 0.010
0.20 0.298 0.371 0.372 0.370 0.367 0.049 0.042 0.032 0.020 0.010
0.30 0.308 0.356 0.357 0.356 0.354 0.025 0.024 0.017 0.009 0.002
0.40 0.314 0.345 0.345 0.345 0.343 0.007 0.008 0.003 ~-0.003 -0.008
0.50 0.317 0.336 0.337 0.336 0.335 -0.007 -0.007 -0.010 -0.014 -0.018
0.60 0.318 0.329 0.330 0.329 0.328 -0.019 -0.019 -0.021 -0.024 -0.026
0.70 0.317 0.323 0.324 0.323 0.323 -0.028 -0.030 -0.031 -0.033 -0.034
0.80 0.314 0.318 0.319 0.319 0.318 -0.038 -0.039 -0.039 -0.040 -0.041
0.90 0.311 0.314 0.315 0.315 0.314 -0.046 -0.046 -0.046 -0.047 -0.047
0.95 0.310 0.313 0.313 0.313 0.313 -0.050 -0.049 -0.049 -0.049 -0.049
0.96 0.309 0.312 0.313 0.313 0.313 -0.050 -0.049 -0.049 -0.049 -0.049
0.97 0.309 0.312 0.313 0.313 0.313 -0.050 -0.049 -0.049 -0.049 -0.049

Fit+ iFu=(W—b)"(K+ iKu)/(6 M \/;)
Values F, and Fy; for the unembedded strip are shown in Table 3 and by a dash-dot line in Fig.9. In
Table 3, approximate values of Benthem et al.® and Gross et al. 9 are also shown. Our values agree well
with those of Gross et al. Fig, 9 and Table 4 show values F; and [y, for the embedded strip. When b/w
approaches to 1. 0 and x==1, values of F; and F; approach to values of (). 312 and —(. 050 respectively. On
the other hand, values of F;and Fy; for x=1 approach to (). 308 and —(). 052 respectively. The influence of
xon F; and Fy is different between x=1 and x==1, but it is not so large compared with that of a uniaxial
tension. This is because the external force is antisymmetric with respect to x/w=—0.5 and the
deformation in the direction of the width g is small compared with a uniaxial tension. When a crack length
is less than about b/w=0.1, values of F} are larger than those of the unembedded strip. However it is the
reverse when b/w is larger than about /w=0.1. This is because the unembedded strip is more flexible
than that of the embedded strip for a long crack. However for a short crack, the influence of stress

concentration at the stiffened end is larger.

Table 3 Nondimensional Stress Intensity Factor of an
Unembedded Strip under Bending.

0.4 T T T T
T T T T b/w this Benthem Gross,B.  Errors Errors
—
FI 4 K =2,3 paper et al. et al. (2)-(1) (3)-(1)
[ / 1 (M (2) (3) (1) (1)
Fa 3
Fr— 0.02 0.151
; Fog——-- 0.03 0.180
0~2‘/ 1 0.04 0.203
. 0.05 0.222 0.221 0.222 -0.45% 0.0%
/ 0.10 0.283 0.281 0.282 -0.71 -0.35
0.20 0.338 0.334 0.338 -1.18 0.0
0.30 0.361. 0.355 0.360 -1.66 -0.27
K= 0.40 0.371 0.360 0.370 -2.96 -0.27
::_\\Z X 0.50 0.374 0.370 0.374 -1.07 0.0
0 \é:}:‘is*\k\ 0.60 0.375 0.373 0.374 -0.53 -0.27
RS . 0.70 0.375 0.373 -0.35
0.80 0.374 0.374 0.0
0.90 0.374 0.374 0.0
0 0.2 0.4 0.6 0.8 1.0
0.95 0.374 0.374 0.0
b/w 0.96 0.374
Fig.9 Nondimensional Stress Intensity Factor 0.97 0.375
under Bending. 0.98 0.376
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Table 4 Nondimensional Stress Intensity Factor under Bending.

Fr Fr
b/w k=1.0 k=5/3 «=2.0 k=2.5 «=3.0 k=1.0 k=5/3 «=2.0 k=2.5 k=3.0
0.02 0.260 0.260 0.258 0.255 0.252 0.034 0.019 0.012 0.003 -0.005
0.03 0.260 0.263 0.262 0.260 0.258 0.028 0.016 0.01 0.004 -0.002
0.04 0.262 0.267 0.266 0.265 0.263 0.024 0.014 0.010 0.004 -0.001
0.05 0.263 0.271 0.270 0.269 0.268 0.021 0.012 0.008 0.003 -0.002
0.10 0.270 0.284 0.284 0.284 0.283 0.006 0.002 -0.001 -0.004 -0.008
0.20 0.281 0.300 0.301 0.301 0.300 -0.017 -0.016 -0.018 -0.020 -0.022
0.30 0.289 0.307 0.308 0.309 0.308 -0.034 -0.029 -0.030 -0.032 -0.034
0.40 0.295 0.311 0.312 0.312 0.312 -0.044 -0.039 -0.039 -0.041 -0.042
0.50 0.299 0.312 0.313 0.313 0.313 -0.049 -0.045 -0.045 -0.046 -0.047
0.60 0.303 0.312 0.312 0.313 0.312 -0.051 -0.048 -0.049 -0.049 -0.050
0.70 0.305 0.311 0.312 0.312 0.312 -0.052 -0.050 -0.051 -0.051 -0.052
0.80 0.306 0.311 0.311 0.311 0.311 -0.052 -0.051 -0.051 -0.052 -0.052
0.90 0.307 0.311 0.311 0.311 0.311 -0.053 -0.052 -0.052 -0.052 -0.052
0.95 0.308 0.31] 0.311 0.311 0.311 -0.053 -0.052 -0.051 -0.051 -0.052
0.96 0.308 0.31 0.311 0.312 0.311 -0.053 -0.051 -0.051 -0.051 -0.051
0.97 0.308 0.311 0.312 0.312 0.312 ~0.052 -0.050 -0.050 -0.050 -0.050
CONCLUSION

A rational mapping function of fractional expressions is represented by Eq. (5) for a finite and a

simple connected region. The general solution of a mixed boundary value problem is given by Egs. (6)

and (10). Stress intensity factors for the unembedded strip agree well with those of Benthem et al.

and Gross et al. The influence of x is larger for a short crack than for a long crack. It is larger for a

uniaxial tension than for a bending in the plane. Stress distribution and stress intensity factor for x=1

are different from those of x=1. Stress distribution of the embedded part is different before and after

the occurrence of a crack, When x=1, stress in the embedded part after the occurrence of a crack is

larger than that before the occurrence of a crack and larger than the nominal stress g, The influence

of stress concentration on stress intensity factor is larger for a short crack. For a long crack the

influence of flexibitity of strip is larger.
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