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A LINEARIZED TIMOSHENKO BEAM THEORY
IN FINITE DISPLACEMENTS

By Akio HASEGAWA*, Tetsuo IWAKUMA** and Shigeru KURANISHI¥**

A linearized finite displacement theory of the Timoshenko beam is formulated as the
counterpart to so-called beam-column theory of the Bernoulli-Euler beam, The corres-
ponding stiffness equation is derived in a useful form for practical applications. Both
theory and stiffness equation result in the same buckling load as the Engesser formula
which has been considered reasonable from the theoretical point of view. ’

1. INTRODUCTION

The Timoshenko beam theory takes the effect of shear deformation into account”. This theory has been
formulated also in finite displacements? ¥ and two basic buckling formulae are obtainable depending on the
choice of constitutive equations®™®_ They are known as Engesser’s formula and the modified formula. It
has been, however, shown recently that the more fundamental approaches result in the Engesser formula
rather than the modified one-¥.

In practice, the linearized theory rather than the rigorous nonlinear theory is needed, and the
corresponding “geometrical” matrix is most useful for applications. Since the difference between two
buckling formulae stems from the different definitions of constitutive laws?, it is necessary to formulate a
linearized finite displacement theory carefully and systematically, To this end, the virtual work for the
deviated deformation from an arbitrary equilibrium state will be derived first. Then the linearized theory
as well as the stiffness equation are automatically obtained from this equation of virtual work with
reasonably assumed constitutive relations.

The main objective of this paper is to derive a linearized finite displacement theory and its stiffness
matrix of the Timoshenko beam that correspond to the “beam-column” theory of the Bernoulli-Euler beam,
and then the consistency of the present results with Engesser’s formula is demonstrated.

2. A LINEARIZED FINITE DISPLACEMENT THEORY OF THE TIMOSHENKO BEAM

In a rectangular Cartesian coordinates, the equation of virtual work for a body V with its surface S can
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be expressed in terms of the 2nd Piola-Kirchhoff stress g;;, the Green strain ¢,;, and the displacement u;

as
ﬁuijﬁezj dV—h/vvpié\uidV_j;Tib\uidS:O» ................................................................. (1)

where p, is the Cartesian component of body force vector, T, of traction vector, and repeated indices are
summed. The Green strain is defined by
= €u+ e”, e” (u”_|_ us, L)/z ei“f—(um u,w-)/Z, ......................................................... (2 )

in whxch comma followed by an index denotes partial differentiation with respect to the corresponding
coordinate. Choose an arbitrary state of equilibrium of a body as the reference state in which the body with
stresses ¢, is in equilibrium with external forces p! and T}. Let g, denote the perturbed stress field due
to the additional external forces p; and T,. If the corresponding perturbed displacement ;; due to these
forces is measured from the reference state above, then the following equations of virtual work must be

satisfied ;
0 L — 0 _ 0 S
ﬂdij 5eijdV [/p, 8uLdV ./S\TL 6"11; dS 0, h (3)
for the reference state, and
/(02j+0ij)3(eLJ+e dV fp+p Su,dV fT_|_T 3uLdS (, srrrrrere e (4)
v

in the neighboring equilibrium state on the reference configuration, Note that the term, o}, §e}}, is not
needed in (3) because the small displacement theory holds exactly by selecting momentarily an arbitrary
state of equilibrium as the reference state.

Subtracting (3) from (4 ), we obtain the equation of virtual work for a linearized finite displacement

theory as
f(ffij5€fj+U?jé\elg')dv“‘fpﬁuzdV"‘fTié\Ui ASTo(), o eremerrr e (5)
v v s

where a higher order term, ¢, §elF, has been neglected.
Consider the in-plane Timoshenko beam with its centroidal axis lying along the x-axis as shown in Fig. 1.
Within relatively small rotations, the kinematics of this beam can
be given by m
w=ulx, 2)=ulx)+z Ax), u.=0, R B
ws=wx, 2)=wlx), Ax)=—w @)+ y(x), e (6) ai_é‘l N
2

where A is the rotation of a cross-section, and y is the uniform

shear deformation of a cross-section ; a prime denotes differentia-
tion with respect to x. As is often the case with slender beams,
the order of magnitude of y(x, z) is negligibly small compared with

that of w(x, z). Therefore the non-zero components of Green’s
strain are approximately
eb,=w+zX, ef=(ow/ ox)/2=(w})/2,
ea (R Q) /2. woremreme e (7) 2 A=-we+Y
When we consider a purely compressed equilibrium of a beam Fig. 1

A Timoshenko beam element.
as the reference state, the non-zero component of ¢}, due to the

external forces P%,= P and P%,=— P at both ends is ¢%,=— P /A only, where 4 is the cross-sectional
area of the beam, Substituting (6) and (7 ) into (5), we can express the equation of virtual work as

f[Né‘u +MoxX + Vo(w + ) — Pol(w) /2 )dx— fpzb‘wdx [(Posbwi+ CrdAdy=i;=0, ==oooomeee (8)

where D2, P, and C,are the deviations of the distributed and end external forces from the reference state

and
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NE[;UIICZA, Mfﬂdxxz dA, VEj:O'zrdA. ................................................................. (9)

Equation (8) is identical with the generalized formula of the beam-column equation in Ref. 6).

If we assume that the following constitutive relations hold approximately ;

0pr=E el = E(+ 2 X), 022=2 G eLe=G(W - A), --reeereermmremmr (10)
with Young’s modulus E and the shear modulus G, then the stress resultants in (9) are related to the
displacement as :

N=EA W, M=EIX, V=GEA AN, - eerereereeenmaeemamee i 11
where ] is the moment of inertia of a cross section, and the shear coefficient K is newly introduced in such
a manner that the constant shear deformation ¥ across the section becomes equivalent to the non-uniformly
distributed shear deformation consistent with the internal work done by the shear stress in equilibrium
with the normal stress across the section?”.

With this assumption of constitutive relations (11), we obtain the governing equations for bending from
(8) as follows : the field equations are

V=P w’+q=0, M —V=0, M=EIX, V=GKAW+A), . 12)
with the boundary conditions as

w=wy, or N{V—P W)= P,

A=Ax or nx M=Cy,
where n,=—1 and n,=1,

3. BUCKLING OF A SIMPLY SUPPORTED BEAM

AL Ko7, ], woeoveeermeme e (13)

As an example, consider a simply supported beam subjected to pure compression. The equations (12)
and (13) form the eigenvalue problem as

(1—P/GKAw””+P/EI w=0, in 0<x<l[, with w=0,and w”=0,at x=0,1, -~ (14)
which leads to the minimum buckling load as
Porlt/EI=72/(14 73E / GE) 1/ E], +vveeereveeemeeenmmee s (15)

where 7 is the radius of gyration defined by r*=J/A. Equation (15) turns out to be identical with the

Engesser formula’?,
4. STIFFNESS EQUATION

In order to derive the stiffness equation, we simply follow an FEM procedure. From (8) and (11), the
equation of virtual work for bending of the Timoshenko beam can be expressed as

4
j; [EI A’é\/\’_ Pw’b\w’-f- GKA(ZU”" /\)b\(w’-f- /\)]dx—[sz(?wk-i‘ Ck&/\k]k:i,jzoy """"""""""""" (16)

where the distributed force is ignored for simplicity. The simplest but sufficient result can be obtained by
assuming the 3rd order polynomial for w and constant for y¥. Noting that the displacement vector of
stiffness equation for the Timoshenko beam should not be (w, —w,’! w, —w,l) but
(w; Ml w; A;D), we arrive at the following stiffness equation from (16) using (6):

F=Kd=FEI/(PAK —(PL/EDKX)d, -veerrereereemmeiemteii i a7
where f'=[(P,; C,/l P, C,;/0), d™=[w;, Al w; A}, and K¥ and K% are symmetric matrices
given by

12 Sym. 64,/5 Sym.
—6 4+12¢ -1/10 2/15+ A,
*: * = . eassssasnrennss
Ki=l_1, 6 12 » K —64,/5 1710 6A./5 (18)
—6 2—12¢ 6 4+12¢ —-1/10 —1/30—4, 1/10 2/15+A,
in which ¢, A A,, and A, are defined by ‘
¢=(E/GK)\r/01—(PP/ED/60), A=1+12¢, A, =1+10@, Ay=g. oroeerreemeemins (19)
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Since ¢ in (19) is a function of P, the stiffness matrix K of (17) is nonlinear with respect to P, and
therefore it is not easy to.handle this form of stiffness matrix for the eigenvalue analysis of general
strcutures. But it must be noted that the assumed trial function, the 3rd order polynomial, is not the exact
solution, and that P always appears in the form of (P]*/EI). Since we are going to use this stiffness
equation for rather small finite elements, we can expand this stiffness matrix into the Taylor series with
respect to (P[l*/EI) and omit its higher order terms to find the approximated stiffness equation as

f :[KL+KNL]d ZEI/( ZSA)[Kf—(Plz/EI)KﬁL/A]d. ........................................................ (20)
where A and K} and K73, are defined in (18) and (19), but in their definitions, ¢, A, and A, must be
replaced by

¢:(E/GK)(T/Z)2, A1:1+20¢+120¢2, A2=2¢+12¢2. .............................................. (21)
Here K; is the stiffness matrix of the Timoshenko beam for small displacements? | while K, becomes the
well-known geometrical stiffness matrix® of the beam-column when shear deformation is neglected ; i. e.

$=0.
5. EIGENVALUE ANALYSIS OF AN APPROXIMATED STIFFNESS EQUATION

Critical axial loads can be obtained as eigenvalues from the condition of det |K,+ Ky |=0 of the
approximated stiffness equation (20). Numerical computations are carried out for a purely compressed
cantilever beam to compare with the existing formulae for the buckling load with shear deformation. In
order to exaggerate the differences between the formulae, unrealistic values of the slenderness ratio [/ r
are included in computations. Table 1 gives the results for eigenvalues, (P*/EI), in (K,+ Ky,) as well as
those from the existing formulae in case of E/GK=3.(. Explicit expressions of these formulae are
enumerated in Appendix I . Incidentally the Euler buckling load of the cantilever beam is 7*/4=2. 4674.
In the numerical computations, at most 128 finite elements are used to obtain five-significant-figures
accuracy (see Appendix [I). As has been expected, Table1 indicates good agreement between the
present results and those from Engesser’s formula,

Table1 Comparison of buckling loads of a cantilever.

Slenderness ratio 10° 10° 20. 10. 5. 10/3
A :present results 2.4674 | 2.4674 2.4226 | 2.2973 1.9037 | 1.4809
B : Engesser’s formula 2.4674 | 2.4674 | 2.4226 | 2.2973 | 1.9037 | 1.4809
C : modified formula 2.4674 2.467 4 2.4234 | 2.3076 1.9914 | 1.6933
D : Ziegler’'s formula 2.4674 2.467 4 2.4375 | 2.3540 | 2,0916 | 1.8097
E . B : +shortening 2.4674 | 2.4674 2.4369 | 2.3447 1.9863 | 1.5090
F . C : +shortening 2.4674 | 2.4674 | 2.4377 | 2.3564 | 2.1109 | 1.8508
G : 2nd approximation 2.4674 2.467 4 2.4369 | 2.3449 1.9973 | 1.5567
6. SUMMARY

A linearized finite displacement theory of the Timoshenko beam is obtained in the forms both of
differential equation (12) with the boundary conditions (13), and of stiffness equation (20), in which the
explicit expressions of stiffness matrices are given in (18) with (21). Although the stiffness equation is
the approximated one, the eigenvalue analysis of its stiffness matrices yields the same buckling load as that
from the theory of the Engesser formula,
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APPENDIX [ —BUCKLING FORMULAE

We here simply list the explicit expressions of the existing formulae, For simplicity, three symbols are
introduced as

a=E/GK, '\,8=7‘/l, Em P IP/EI, corererennnesteennien ettt (I-l)
where £ is the inverse of the slenderness ratio and called thickness parameter. Formulae below apply for a
cantilever,

(1) Engesser's formula (B:and E :in Table1) :

(/2]

5=m' ................................................................................................. (1-2)
If the shortening prior to buckling is taken into account, then a possible formula for the critical load is
expressed by the equation”

e S B e _
(/2) Tt a) (1I-3)
(2) Modified formula (C:and F :in Table1) :
53_—__““”1“’"“(”'8)2*1 T O USSR OP PSPPI (1-4)

2a83°
Similarly to (I-3), (I-4) can be modified to obtain a formula with the effect of shortening as
1—v1—(1—alzB)’
§= _ 2 ,
21—a)f
that is, equation (2.67) in Ref.1). ‘
The difference between Engesser’s formula and the modified one stems from the different choices of

constitutive laws relating to the direction of axial force N". Note, however, that the definition of the 2nd
Piola-Kirchhoff stress automatically leads to the conclusion that the axial force is not acting normal to the
cross section but in the direction of the beam axis. Hence the shear component of this axial force is not PA
of the modified formula, but becomes — Py’ as in (13) consistent with Engesser’s formula,

(3) Improved formula by Ziegler (D :in Table1) :

Ziegler’s approach to include the effect of shortening in the Engesser formula results in the following
expression® ;

/21 + (xR /2)
EZ%%(;TES’_}%FJ—} TR E T LT T LT L PR TREETRTRTRR ( 1 -6)

(4) A “second-order approximation” (G :in Table1) :

A finite displacement theory of the Timoshenko beam can be approximated by the reasonable assumption
on the constitutive relations which include higher-order terms of the axial and shear deformation (see
Appendix in Ref. 3). This approximated governing equations lead to the following expression for the
buckling load ;

S ;
e/ 2= — (BT , (1-7)

Table 2 Convergence of buckling loads.

number of elements 8 16 32 64 128
slenderness ratio
10° 2.467 4062 2.467 4014 2.467 4011 2.467 4011 -
10° 2.467 3880 2.467 3832 2,467 3829 2.467 3828 -
20. 2.4227136 2.422 6052 2,422 5789 2.422 5724 2.422 5707
10. 2.297 8238 2.297 4654 2.297 3764 2.297 3542 2.297 3487
5. 1.904 8089 1.903 9990 1.903 7968 1.903 7463 1.903 7336
10/3 1.481 9991 1.481 1423 1.480 9282 1,480 8747 1.480 8613
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APPENDIX IT—CONVERGENCE OF COMPUTED EIGENVALUES

The smaller the slenderness ratio becomes, the more elements are needed to obtain the desired accuracy
for eigenvalues. Table 2 shows how eigenvalues are changing in the number with the increasing number of
elements when E/GK=3.0. This table indicates that eight elements may be enough for the practical

applications,
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