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INTERACTION CURVE OF THIN-WALLED BOX STUB-COLUMN
SUBJECTED TO COMPRESSION AND BENDING FOR
APPLYING TO OVERALL BUCKLING ANALYSIS OF COLUMNS

By Hiroshi NAKAI*, Toshiyuki KITADA** and Toshihiro MIKI***

A theoretical study on the ultimate strength of thin-walled box stub-columns subjected to
compression and bending is performed by using a finite element method (. E.M.) on the
basis of the elasto-plastic large deflection theory in order to develop an interaction curve at
the ultimate state, A modified column method to calculate the ultimate strength of
thin-walled box columns considering the local bucking of Plate elements is proposed by
using the interaction curve of stub-column. Through numerous calculations by the modified
column method, an approximate formula for predicting the ultimate strength of thin-walled
box columns is given in this paper,

1. INTRODUCTION

The steel structural design codes in Japan (JSHB)V, U.K.? West Germany? and U. S, A 9 permit the
use of slender plates as the elements of thin-walled box member subjected to compression and bending.

A sophisticated analysis considering the interactions between local buckling of the plate elements and
overall buckling of the member is necessary to calculate the true ultimate strength of thin-walled box
members, Therefore, various approximate approaches for predicting the ultimate strength have been
proposed hitherto. For example, there are a few methods developed by Little, Usami-Fukumoto and so on.

Little®® calculated the relationships between bending moment, }M, and corresponding curvature, ¢, for
the short segments of colums with a square cross-section subjected to specified compressive forcess by
using the mean compressive stress-strain curves from the elasto-plastic and large deflection analyses for
the isolated compression plates, instead of the stress-strain curves for the material of segments. Then, he
applied these M-¢ curves to the ultimate strength analyéis of columns, This method, however,
underestimates the rigidity of plate elements under the inclined inplane stress distribution.

Usami-Fukumoto? have proposed a design formula for the ultimate strength of thin-walled box columns
on the basis of not only the experimental studies, but also the analytical ones by considering the local
buckling derived from the concept of effective width.

There is not still any powerful method which considers the interactive behaviors of neighboring plate
elements of a short segment of box member subjected to compression and bending.
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66 H. Nakai, T, Kitapa and T, MIkI

In this study, accordingly, an interaction curve is derived by the F, E. M. parametric studies for
calculating the ultimate strength of box stub-columns subjected to compression and bending. A modified
column method to estimate the ultimate strength of box columns with slender plate elements is also
proposed by applying this interaction curve. Moreover, a practical and approximate formula for evaluating
the ultimate strength of columns is given through numerous calculations by the modified column method.

2. F.E.M. ANALYSIS OF THIN-WALLED BOX STUB-COLUMN

(1) Analytical Model

Let us deal with a thin-walled box stub-columns having doubly symmetrical cross-section subjected to
compressive force and bending moment with respect to the centroidal axis-Y as shown in Fig, 1. A part of
the column meshed in Fig, 1 is only taken as an analytical model due to the symmetry of cross-section,
where the dimension, g, is the half wave length of initial and subsequent deflection of plate elements which
makes the ultimate strength most conservative. According to Ref.9), it can be taken as (). 6 times the
longer of width B or D.

(2) Initial Imperfection and Residual Stress

The shape of initial imperfection modes in flange and web plates are also indicated in Fig.1. The
maximum initial imperfections, w, and v,, are respectively taken as B/150 and D /150 of which values
correspond to the fabrication tolerance in JSHB,

A residual stress distribution, shown in Fig. 2, is adopted in the analysis. The compressive residual
stress, oy, is taken as (.3 times the yield stress, ¢, owing to Ref 13).

(3) Boundary Condition

The boundary conditions on loaded edges are shown in Fig.3(a).

In order to obtain the relationships between compressive force, P, bending moment, M, compressive
displacement, U,, and rotational angle, §,, with respect to a point R in the cross-section (D, 3, ©), and

@ of the F.E. M. model in Fig.1, the end of cross-

Flange plate
‘% section is assumed to keep a plane after loading through

Initial deflection

wave Wo(X,2) inserting an imaginary rigid plate as shown in Fig. 3 (b) .

The boundary conditions at the point R can, thereby,

Web -
plate be categorized as follows;
N Uniaxial compression .
" J\ Initial deflection 6,=0, =0, Pr=P e ( 1 )a~c
VolX,Y . . . . .
= vave Vo(X,¥) Combined actions of compression and bending :
@ s Analytical
model Mr:O, P'—_Pr, e=M/P ................ (2)a~C
B/2 s.s:simply supported . .
Pure bending :
\Y (X,Y)=-vo-sinﬁ~sing‘£ , \Jo(X,Z)=*wo‘sinE-sinﬂé
o a B a D e=0, Pr:(), My=M -oveeeeeeinns ( 3 )a—~c

Fig.1 Analytical moedl for F.E. M. where P and M : applied compression force and bend-

) Upper flange
0/385B 0.115B Web plate plate
20\ /00

Flange | L‘U oy + — Mp(or) Bf)(uy)
f .
plate i -0.30y & ii:]d.)__
| 0
tf_‘_ /Web plate = R ® 0[—&0
. . N
L tw O Z
R it fglug)
5 = frlup)
OI_.Y = £,(uy) @G
7! Imaginary a/2 Lower
[ I == rigid plate flange
tf 5/2 s (s.s: simply supported) plate
@ (a) Boundary conditions (b) Loading method of compressive
~0.30y Oy on loaded edges force Py and moment My
Fig.2 Residual stress distribution, Fig.3 Boundary conditions and loading method.
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ing moment, e : distance between point R and centroid of cross-section (See Fig.3(b)).

(4) Non-Dimensional Plate Slenderness

The plate slendernesses, R, R, and R, are used as parameters to represent the sensitivity of
stub-columns to buckling, which can be defined by the following equations;

Flange plate : R, 121 'U‘)

., _ D J120—4) [ow
Web plate Rw__t—w. RS fy .......................................................... (4)aee

Stub-columns : R,,=3+ l—z;i_l-:;"z‘_zz . \/_%__YF
rwlt '

where B, D . widths of flange and web plate, ¢, %, : thicknesses of flange and web plate, gy, gyy - yield
stresses, yu . Poisson’s ratio (=(0.3), E : Young's modulus (=2.06X10° MPa), & : buckling coefficient
of isolated plate (=4.0), and o% is the mean yield stress, which can be defined by;

GE (A Gyt At G A+ (5)

where A, : cross-sectional area of flange plate (=B-t,), A, .cross-sectional area of web plate
(=D- 1), A:half of cross-sectional area of stub-columns (=A4,+A,).

A parameter k,, is the buckling coefficient of stub-column, which can be given by the following

equations”
e+ 1/ af + (/0 (D/B)(awt1/aw) B __(1+(D/BP- (Lt
kfw_‘ 1+(D/B) (tw/tf) 3 af—a/B, aw'—a/D’ a"“B [1+(B/D)‘(tw/tf)3]
....................................................................... (6)a-d

3. PARAMETRIC STUDY ON ULTIMATE STRENGTH OF STUB-COLUMN

The stub-columns, shown in Table1 (Cases1 and 2), were analyzed by altering the ratio of
cross-sectional forces, £, i.e

ﬂz(M/Mp)/(P/Py) .................................................................................................... (7)
where M, and My are the fully-plastic moment and squash force, respectively, which can be given by the
following equations;

M,=As 07 D+D* Ly 00 /2

Py=2-0%-A

The values of g are taken as 0, 0.385, 0.822, 1. 642 and oo for Case 1, and 0, 0.426, 0.852, 1.703 and
oo for Case 2.

(1) Collapse Behavior

a) Bending moment M- rotational angle §, curve

Fig.4 shows the relationships between bending moment, M, and rotational angle, 4, which are
non-dimensionalized by M, and (2 a/D) - (c%/E), respectively. The initial yield moment, M,, of flange
plates by the elastic beam theory is given as follows;

My/Mp-—l/{l/ﬂ-i'Mp/ UY )} ...................................................................................... (9)

The corresponding locations of M,/M, are indicated by the symbol, (O, on the M-8, curves in this
figure, where W is the section modulus of stub-columns.

urves that the ultimate
Table1 Dimensions and plate slendernesses of analytical It can be seen from these curves t

models. bending moments and the corresponding rotational
tems | B | tf | D | tw | g . R angle become small in accordance with the decrease of
Cas (mm) | (mm) | (mm) | (mm) w .
_ >
TS0 T T Tz Tose T osai [ 0755 B. The stub-columns in the range where 820. 82.2 for
2 | as0| 12 | 360 | 12 | 0.821 | 0.616 | 0.733 Case] and 8=>1.703 for Case?2 have the ultimate
Notes: Oy= 314 MPa , a= 288 mm bending moments greater than the initial yield moments
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1.0 ~ B= oo by 2~12 9, while the stub-columns where
My/Mp=0.842 £=<0. 385 for Case 1 and 0. 852 for Case 2
E 0.8 - - o: ifii?iﬂmiﬁfﬁﬁéil reach to the ultimzj\te .state prior to t.he initial
= My Hp=0. 555 i 6~ (/Mp) / (P Py) yield state. This indicates that the influence
g 0.6 1 v/ B 1062 of local buckling upon the ultimate strength
Sﬂ . _ — 6=0.522 G@»Te}; _;7%3? of stub—colur.nns becomes significant in
ke y/Mp=0.417 P I accordance with the decrease of g.
g o I iMﬂfhgé:; (:l;l_;) 2 (glﬂe) b ) Behavior of flange plate
’ i Case 1 (Rg=0.616 Fig.5 shows the relationships between
oV L T fud82) ) non-dimensionalized compressive force,
0 0-3 1o e 2,;0 22 30 P,/ P,, induced to the upper flange plates
Rotational angle er/{%"%} and the corresponding average strains,
(a) Case 1 (u/a)-(E/os), where P,, designates the
1.0 My/Mp=0.880 - fully-plastic  force of flange plate
L (=B-t;05). The symbols, @, on the
0.8 o : Position of initial P~ curves indicate the locations of ulti-
£ - yield monent Hy/p mate states of stub-columns. The ultimate
= My/Mp=0.580 B =(/Mp) / (P/Py)
5 06 Lo s strengths of flange plates analyzed as the
£ 15 simply supported plates, P¥%,/P,, are also
Zo 0.4 " B-0.852 PE@*’W YD shown in this figure,
e =D e) As is seen from this figure, the stiffness
2 0.2 Gase 2 (Rg=0.821 of flange plate or the slope of P~ curves is
L Res0.616) independent of the ratio g up to P,/ P,,=0.6
CoTTe s e 1.5 2.0 2.5 in both the Cases1 and 2. Whereas, the
Rotational angle 8,/{%" 2a. GY } stiffness somewhat depends on £ in the range
(b) Case 2 where P,/P;>0.6 and the P~y curve in
Fig.4 Bending moment-rotational angle curves, case of larger £ is situated above the curve

with smaller 8, This means that the flange

plate becomes stiffer and stronger, because the web plate more or less restrains the flange plate from
rotating at the unloaded edges. This tendency seems to increase as the ratio £ increases, i.e. ; the case
where the applied bending moment is predominant, This figure also shows that the flange plates reach to
the ultimate state in all the cases except §=0 prior to the ultimate state of stub-columns, but the
difference of P,/ P,, at two ultimate states is so small that this phenomenon can be ignored to develop the
approximate method for evaluating the ultimate strength of stub-columns.

¢ ) Ultimate strength of flange plate

The comparisons of the ultimate strength of flange plate, P,,/P,, with that of isolated plate (Fig. 5)
show the following points. (i) For the pure compression (§=(), the former is a little bit smaller than the
latter in Case 1 (R,=0.616) and vice versa in Case 2 (R,=(.821). This tendency coincides with the
result of Ref. ) i. e, ; a slender plate element in a stub-column is strengthened by other stocky plates and
the latter is weakened by the former. (ii) In case where 80, P,,/P,, is larger than P¥,/ P,, by 3~6 %,
because of the stiffening effects due to the web plates,

(2) Interaction of Gompressive Force and Bending Moment

The ultimate compressive force, Pg,/Py, and ultimate bending moment, M,/ M,, of stub-column are
summarized in Table 2 and Fig. 6. In this figure, the curve ] means the fully-plastic state of stub-column
and the curve | corresponds to the curve [ divided by the factor k. which is a non-dimensionalized
ultimate strength of stub-column subjected to pure compression and given by a function of parameter R w0 @S
follows?;
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1.0 Linear EEE
L theory _"‘“"Lpfy'=0.877
. o8 L (Rg=0.616)
SO Z ® : Positi ‘
&~ | /// osition of Pry/Pgy
o
o 0.6 g = M/Mp
2 | P/Py
g .
9 0.4k —— 1 0.385
o —-—: 0.822
§ e 1 1,642
a 0.2 —_——— ™
§ Case 1 (Rf=0.616, Rw=0.821)
0 s 1 PRI | PPN BV ST SR S . | PR SN AT S Y
0 0.5 1.0 1.5 2.0 2.5 3.0
Average compressive strain éi é?
Y
(a) Case 1
1.0 .
Linear @ : Position of EfU/Pfy
o - theory Pfu_
£ s . by 0750
= i . -2
£ L = (Rg=0.821)
@
2 o6l M/tp
W P/Py
9 " ! : 0
7 / : 26
9 0.4 / 2 0.4
3 1 0.852
’é - 1 1.703
8 0.2 2 ——— [ee]
Case 2 (Rf=0.821,
J Rw=0.616)
0 Ka P B ST A PR U NS VAR T
0.5 1.0 1.5 2.0 2.5

. . E
Average compressive strain -~ =
Y

(b) Case 2

u

a

Fig.5 Compressive force-strain curves of upper flange plate.

Table 2 Analytical results of Pg,/Py and M./M,.

Ttems 8 UltimiZZIYtigiiiizi:lgistance DE:%;;iL Errori
compressive bending | from (0,0) froqL(OlQ) lu-lu
_ M/Mp S;zjngth m;ient to (3:1:,?30) to (liu,Ps@ Tu
Case P/Py ~I—;Y-:(l) Tp :(2) /ZT)‘Z‘;(T)? lu (%)
¢] 0.802 0 0.802 0.812 -1.2
0.385 0.660 0.254 0.707 0.683 3.4
1 0.822 0.532 0.438 0.689 0.663 3.8
1.642 0.384 0.630 0.738 0.711 3.7
o5} 0 0.966 0.966 0.812 15.8
0 0.802 0 0.802 0.813 -1.4
0.426 0.626 0.267 0.680 0.661 2.8
2 0.852 0.496 0.422 0.651 0.640 1.7
1.703 0.348 0.592 0.687 0.686 0.1
o+ 0 0.906 0.906 0.812 10.4

al>. Lo Full plastic interaction
Al L curve I
v
>
o Interaction curve IL
a (kp7=0.813)
&
g 0.5
o
0. O F.E.M
R
< o
£
L on
84
0

0 0.5 1.0

Ultimate bending Mu

moment Mp

(a) Case 1 (Rg=0.616, Ry=0.821)
2l 1.0 Full plastic inter-—
By action curve I
o
3 Interaction
I curve T (kp7=0.813)
g
g 0.5 o : F.E.M
o
o]
P
© b
5%
el
= e 4]
= 0 0.5 1.0

Ultimate bending Mu
moment Mp

(b) Case 2 (Rg=0.821, Ry;=0.616)

Fig.6 Relationships between P,/Py and
M/ M,.

kn=1.0, (R7<=0.3)
=0.542" R%,—1.249° Ry
+0.412° R 7,1 0.968,
0.3<R=1.3)

In Table2, [, means the distance
between the origin (0, 0) and a point
(Mu/M,, Psu/Py calculated by the
F.E.M. analysis, [* being the distance
between the origin and a’ point on the
curve ]| as shown in Fig. 6.

The slight differences between [, and
[* in these table and figure show that the
numerical results are close to the curve
I except the case of pure bending
(8=00). For the case of pure bending,
the values on the curve Il give the
conservative ones compared with the

numerical results by about 16 % and 10 % in Cases1 and 2, respectively.

These results suggest that the curve | can be utilized for predicting the ultimate strength of thin-walled

stub-columns,

(3) Approximate Interaction Curve
From these results, the ultimate strength of thin-walled stub-columns can approximately be predicted by

modifying the interaction curve with respect to the fully-plastic one as follows ;
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5’>4 A(0,1) A . . . Mu:(kplﬁpsu).(MfP/pr)’ Psqupz‘pr
Y 1.0 pproximate interaction - - - - - -
H": L /curve :gz(l"‘pr)"(Mﬂ:'Pwi’)/Pfli%'(Pmi/ow)s/kf:l
= : - (1) 'i"%g(l_pr)"‘(pr'PwY)/PfY;'(Psu/PwY)Z/kpl_kpl,
é r Psu< kpl‘Pwy
§ﬁ 0.5'— B(MTZR,%) .................................... (11)a'b
: § L where
féi : 2 Mu:Mu/Mpy I_Dsu:Psu/PY, Pf}’_:PfY/PYy Pwa_—“'PwY/PY
g' ;:‘ 0y '0[5’ = .1.00(1,0) Pry=2A4, 05, Puwy=2Ayp" 0wy, M o= Mo/ My,
Ultimate bending _1  Mu Msy=Ps(D/2)
moment kpg Mpo (12) ah
Fig.7 Approximate interaction curve of Eq. (11) can be plotted in Fig. 7 as an interaction curve for
box stub-column. (1/ k)« (Mu/M,) and (1/ky) - (Pou/ Py).

Although this approximate interaction curve is comparatively conservative in the case where the bending
moment is predominant, it will be useful for evaluating the ultimate strength of thin-walled box columns
subjected to larger compressive force in comparison with bending moment.

4. ULTIMATE STRENGTH OF CENTRALLY LOADED COLUMN

(1) Modified Column Method for Analyzing Ultimate Strength

It is assumed in a modified column method proposed herein that the interaction between local buckling
and overall buckling can be neglected and the thin-walled box columns reach to the ultimate state when
either the stress-resultants M, and P of a cross-section (Fig.8(c)) satisfy Eq. (11) as is proposed in the
above for the local buckling or the column reduces to the unstable state without accompanying the local
buckling of plate elements,

The centrally loaded columns, shown in Fig. 8(a), were analyzed by the modified column method, which
was formulated by the transfer matrix method'¥ on the second order and elasto-plastic theory. The initial
imperfections and residual stress distributions are illustrated in Fig.8(a) and (b).

(2) Verification of Modified Column Method

In order to verify the validity of the above modified column method, experimental results® on the
interactive buckling strength of fifteen box columns are compared with those by the modified column method
as shown in Fig.9. The modified column method gives good results and their errors are within +5%

Residual
stress . Experi tal
.5 P men
P disribution\imy‘é]j Oy 1.0r g . Rg:igﬁgsﬁzrcgizmsol }results
@ te 3 Orc umn, by Ref. 8)
z A4 N i
T t K e}
W e
4 - o.8F
A D| y=—jo %
S o
. Ll I
X Deflection ! ‘I A o
|~ curve tel 1_B/2 E 0.6 il
So + & Ore Oy - S
gre = -0.4.0
z (80 =2/1,000) , Y ) (£2) = I
¢ (b) Section A-A =1 Py “ex Py
P o 0.4
. ow
‘ . M7 - L —
Element % i 3¢ YT
i 27
Ew 0.2
1 et T So , orc : measured
%Mi =53 - values in Ref. 8)
ﬁ P 0 PR N R S )
(c) Compressive force P 0 0.2 0.4 0.6 0.8 1.0
P and bending t M
momen o Ultimate strength P ifi
(a) Centrally loaded column applied to element 7 column metho; ® ufPy by modified
Fig.8 Analytical model for centrally loaded columns with Fig.9 Comparison of ultimate strength P,/P, by modified

initial imperfections, column method with (P,/Py) ., by experiments,
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against the experimental ones.

(3) Parametric Study

The box columns with the dimensions, B=D=500 mm and {,= #,= ¢, which are listed in Table 3, were
analyzed by the modified column method. The thickness, %, and column length, [, are decided so as to
fulfill that the plate slenderness, R, and the column slenderness, A,, are within the ranges 0.3~1.3 and
0.15~1.05, respectively, in which 7\y is given by;

- _ L1 Jov TTTO T T ST USROS ORI
W= 7N E (13)

where r, . radius of gyration of column,

a) P-§ curve

The relationships between the non-dimensionalized compressive force, P /Py, and central deflection,
&, of the columns with R,,=0.7 are shown in Fig. 10 with the variations of Jy. The symbol, O, on the
P-& curves indicates the location where the maximum stress-resultants M and P satisfy the approximate
interaction curve Eq. (11) for the local buckling. Thus, the value of P at this location is taken as the
ultimate strength of thin-walled box column, P,.

It is obvious from this figure that the ultimate strength is affected by the local buckling in the columns
where A,<0.9 and column buckling in the slender column where A,=>1.05.

b) Ultimate strength

The ultimate strength curves of columns for the plate slenderness R,,=0.3~1.3 are plotted in Fig. 11
as a function of 7\y, in which the curve for R ,,=0. 3 well coincides with the Shultz’s curve!” or the ultimate
strength curve of box columns without local buckling. This curve is, then, referred to as a basic column
curve,

It can be seen from this figure that the ultimate strength of columns decreases from the basic column
curve in accordance with the increase of R ., and decrease of A The ultimate strength curves approach to
the basic column curve as 1, becomes large, because the ultimate strength becomes independent of the plate

slenderness, R,, in accordance with the increase of A,

Table3 Plate thickness and plate slenderness R, of box

section of columns.

t (mm) 34.24 1 20.54 | 14.67 | 11.41 | 9.34 | 7.90
Ry 0.3 0.5 0.7 0.9 1.1 | 1.3
Notes: B=D=500 mm, tf=ty=t, Oy=314 MPa.

. Euler’s
ic column
Bas Kcurve

K
3 0.
0.8 &
- -
&« Ay=0.75 o
Ay — =)
- 3y=0.90 w 0. -
s 0.6 - @ B
g Xy=1.05 5 MRS
— y=i. JJ)'
g So+8 g e
. 0.4 o T Analytical
E.";J P »or‘?‘éﬂd—P o: Position of E resui]ts by
1 ‘Z local buckling 2 0.2k modified column
g R ‘ load Pu = method
S 0.2 fw = 0.7 |
0 L ! T L l PR B Lo
0 . PV B B PR TN B 0 0.2 0.4 0.6 0.8 1.0
0 0.5 1.0 1.5 2.0 2.5 = 1 1 (S
1 2 i W
Deflection §/1 (x10-%) slemderness parameter Ay 5w //E
Fig. 10 Compressive load P/P,—deflection §/] curves. Fig.11 Column strength curves considering local buckling.
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R -~
1.0 fw s Py
o 0'3 Analytical ,// /{7 Mean ValU%
@ : 0.5 results by /9}3/// of analyti-
s b A 0T pidified \\\,// e, cal results
0. 4090 o1um L7 ‘ <;\\
i oo Ll.d method L )/// Mean value of
x5 m: 1.3 e experimen—
& tal 1t
S el results
%
§ o L $
8 Py Py AKX
SRRLIEN ol B TN 7 \ 8)
s Py €xp| /// Experimental results
g L /7 {Q : Square box section
A - ® : Rectangular box
o
= 0.2 ‘/ii/ section
0 . L L 1 L L L 1 ) 1
0 0.2 0.4 0.6 0.8 1.0

Ultimate strength Pu/Py and (PU/PY)EXP

Fig.12 Comparison of ultimate strength P¥/P, calculated by Eq. (14) with analytical

results P,/P, and experimental results® (P,/Pyexs.

(4) Approximate Formula for Ultimate Strength

The results shown in Fig. 11 lead to the following approximate formula for calculating the ultimate
strength of box columns having the possibility of local buckling of plate elements :

P%/Py=Py/Py s ku=1—(0.48: A,

= Pu/ Pylbont(0.48- 3, ku<1—(0.48- A,
where P,/ Py is the ultimate strength on the basic column curve, With regard to a formula of Puo/ Py, the
column strength curve of JSHBY

Pu/Py=1.0 , X=0.2

:1.0__0_545(7\3,_0_2), 0.2< AL b ooeerrereee e (15) a—e
=1/0.773+2)  , 1.0<a,
can be recommended in stead of the basic column curve for the sake of simplicity.

The ultimate strengths, P¥/P,, calculated from Eq. (14) are compared with the results by the modified
column method, P,/Py, and with the experimental ones, (Py/ Py)exp, obtained by Fukumoto et al®. as
shown in Fig. 12. From this figure, P¥*/P; is nearly equal to P,/ P, and their errors fall within +5%.
The approximate formula gives the conservative ultimate strength compared with (P,/ Pylexo by about 20%
on average, because Eq. (14) is derived on the basis of ultimate strength of columns with the severer initial
imperfections, §,=1/1000, and residual stress, ¢,,=~0.4+¢, than §,=1/3850 and ore=—0.2* 0y of
test columns on average,

In practical design, the approximate formula proposed in the above can be useful for predicting the
ultimate strength of thin-walled box columns having the possibility of premature failure by local buckling,
because of the fact that the approximate ultimate strength is conservative in comparison with the test

results,
5. CONCLUDING REMARKS

(1) Through the preliminary study by the F. E. M. analysis, the approximate interaction curve of
thin-walled box stub-columns subjected to compression and bending is defined as the fully-plastic curve
divided by the factor k,, which is derived by the non-dimensionalized ultimate strength of stub-column
under uniaxial compression,

(2) The modified column method to calculate the ultimate strength of thin-walled box columns is
proposed on the basis of a column analysis considering the local buckling of plate elements by using the
approximate interaction curve with respect to an ultimate state of cross-section of columns.
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(3) The approximate formula for evaluating the ultimate strength of thin-walled box columns is also

proposed for the use of practical design.

(4) The modified column method and approximate formula are verified by the test results,
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