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A NEW APPROACH TO PREDICT THE STRENGTH OF
COMPRESSED STEEL STIFFENED PLATES

By Yoshiji NIWA*, Eiichi WATANABE** and Hidenori ISAMP***

This paper provides a simplified approach to the strength of compressed steel stiffened
plates from a knowledge of the catastrophe theory. The strength prediction for both global
and local buckling modes is presented.

The elasto-plastic buckling stress is firstly obtained with consideration of the
elasto-plastic behavior of the material and the residual stresses of both stiffeners and plate
panels. Then, the reduction of the ultimate strength due to the initial out-of-flatness can be
explicitly determined by the imperfection sensitivity curve based on the concept of the
bifurcation set in the catastrophe theory.

1. INTRODUCTION

The stability and the strength of steel plates and stiffened plates in the elasto-plastic range have been
oné of the subjects of the greatest concern of civil engineers. They are being used for such members as
plate and box girders, chords of trusses and arches, bridge piers and towers.

Several theoretical and numerical procedures have been proposed so far on problems of the initial
buckling, the postbuckling and the ultimate strength of stiffened plates. They can be classified with
respect to the method of approach? : firstly, the orthotropic plate approach; secondly, the beam-column
analysis using the concept of the “effective width” ; thirdly, descretization methods such as finite strip
method, finite difference method, finite element method adopting the incremental energy-approach ; and
finally, the nonlinear bifurcation theories based on the hypoelasticity and the topological considerations,

The first orthotropic approach for stiffened plates was initiated by Huffington et al. ». They determined
four orthogonal rigidities of “equivalent” elastic homogeneous orthotropic plates. Improvements of the
procedure for flat plates in the inelastic region beyond elastic limit were made by Stowell? and Bleich?
using some reduction factors of orthogonal rigidities, Attempts have been made to evaluate the
elasto-plastic buckling stress of stiffened plates. Mikami et al. ¥ studied the inelastic buckling stress of
continuous stiffened plates through the Bleich’s factors,

The second beam-column approach have been developed by Faulkner?, Little?, Carlsen”, Horne et
al. 99 and Rhodes®. They derived foundamental relationships between the average axial stress and the
corresponding strain in the theoretical and numerical form, and compared the results with available
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experimental results. Also, Moolani et al.!” discussed on the parametric study of the behavior of
eccentrically stiffened plates.

The third approach of discretization is now being widely accepted as reasonably accurate. The early
researches in Japanese civil engineering field on the numerical elasto-plastic buckling stress of stiffened
plates were accomplished by Usami'?, Hasegawa et al. ™, and Yoshida et al. ¥ using finite strip methods.
Furthermore, the large-deflection elasto-plastic analyses of compressed stiffened plates have been
developed by many researchers in the world such as Crisfield®, Komatsu et al.'®, Marchesi'” and Webb et
al.'® through finite element methods and finite difference methods in order to solve the relevant nonlinear
simultaneous equations,

The final group of approach is based on the concept of nonlinear bifurcation. Tvergaard et al ™
investigated the elasto-plastic bifurcation behavior, the initial postbuckling behavior and the imperfection
sensitivity of eccentrically stiffened plates. They employed an incremental linearized Rayleigh-Ritz
method for the stiffened plates regarding as hypoelastic plates neglecting the effect of elastic unloading.
They also discussed the stability and the imperfection sensitivity of the elastic simultaneous interaction
among the global buckling of the panels as a wide Euler column and the local buckling of the plates between
the stiffeners®?  Some powerful contributions on such interaction problems of stiffened plates have been
also provided by Koiter® and van der Neut®,

These theoretical and numerical analyses allow the maximum ultimate strength of stiffened plate models
to be determined in an isolated form for a selected set of geometrical and material parameters,

The authors have proposed a new simplified approach to evaluate the ultimate strength of steel slender
structures such as columns, beams and unstiffened plates in the elasto-plastic range® =, The approach
does not require a nonlinear process of simultaneous equations concerned, and means a simplified

~ prediction of the imperfection sensitivity of the structures in view of the singular bifurcation set through
the catastrophe theory. This paper reports an application of the procedure to the elasto-plastic strength of
compressed rectangular stiffened plates with axial longitudinal stiffeners. The strength prediction for
both global and local bucklings of stiffened plates is presented.

2. BASIC CONCEPTS

(1) Residual stress distribution

A rectangular stiffened plate with four edges simply supported under uniaxial compression as shown in
Fig.1 is analyzed as a typical basic model, The stiffened plate has only several longitudinal stiffeners of
equal area and equal flexural rigidity arranged in certain equal distance. The residual stress is assumed to
be distributed in an appropriate form in the local plate panel with the magnitude ¢, and o,, in compression
and tension, respectively, and to be uniform in the stiffener section with the magnitude Ors.

In view of the self-equilibrium of the residual stress distribution over the entire stiffened plate, the
equivalent tensile residual stress G,; may be assumed to be distributed uniformly in the global orthotropic
plate in addition to the residual stress distribution of the plate panel alone, Hence, the magnitudes of or
and g;; can be replaced by the corresponding “prime” value, respectively :

o= Or—TCrs and a’nzmﬁ.gm ..................................................................................... ( 1 )
where
y
g, 0,
gt il o g
~ ¥
B
= b
ARG i_.x
e~ @ —»
(a) Parabolic Distribution (b) Triangular Distribution (¢) Trapezoidal Distribution

Fig.1 Distributions of residual stresses,
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_ No
rszm Ors
and & refers to the ratio of a stiffener area A, to the plate panel area b¢, and N denotes the number of
stiffeners. The relationship between ¢, and ¢, can be determined from the initial self-equilibrium
condition of each distribution of residual stress,

The distribution of residual stress with the maximum compressive stress g, is assumed to be in either
parabolic, triangular or trapezoidal form as shown in Fig. 1 (a) ~ (). The relationships among the tangent
modulus E,, the secant modulus E,, the average axial strain = and the average axial stress & can be
obtained as :

E%—%‘kE and Es——;— ....................................................................................... (2-a)

and
=0y B2 kK o,
EZ% [ov+31—k)Yor—or]
for parabola (ECR D] rerrererrerrr e (Z‘b)
T=0ay— k0%

e= [O'Y 2]f 1 0'7]

for trlangle (S s ] wrvveemee s s e (2-¢)
=0y k' (ort o UT;ZY)Z

S

for trapezoid 0< k< Ug jffay ...................................................................... e (2-d)

where E and gy refer to the Young’s modulus and the yielding stress of the material, respectively,
Furthermore, k denotes the ratio of the elastic portion of the cross section to the total section of the plate,
namely, it indicates the global tangent modulus factor of the orthotropic plate section,

(2) Ideal elasto-plastic buckling load

From the boundary condition, the buckling and the initial imperfection modes of the equivalent global
orthotropic plate are assumed in both elastic and elasto-plastic ranges as follows :

mnx
a

., Y(y)= smLZy ........................................ (3)

W=wY(y)sin ML w.=w,Y(y)sin

for all edges simply supported
in the coordinate system as shownin Fig. 1. In which, w, w,, Y(y), m and n designate the magnitude of
the total out-of-plane deflection, that of initial out-of-plane deflection, mode of deflection in y-direction,
numbers of half waves in x-and y-direction, respectively.

Consider the compressed rectangular stiffened plate with N longitudinal stiffeners with stiffener

parameters . ®

8—% and y= fli .................................................................................................. (4)
where b, & and D, refer to the total width, the net thickness and the elastic flexural rigidity of the plate
panel, respectively. Also, As and [, denote the cross- -sectional area and the moment of inertia of a
stiffener, respectively. The torsional rigidity of stiffener itself is not considered in the paper. Through
the classical orthotropic approach using partial differetial equations, the basic equation of equilibrium of
the stiffened plate can be written as [ 9%
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2
DeV§W+?to%=O ............................................................................................... (5)
where
EP?
=, 1= N+1)d},
D=1 L= UI+H(N+1)]
_, o o o
Vi=sk Fy +2(k;+2 k.;)w‘i‘ka oy

in which, v, %, and k,;(j=1, 2, 3, 4) refer to the Poisson’s ratio, the equivalent thickness and the
constants to designate flexural and torsional rigidities of the orthotropic plate in the elasto-plastic range,
rspectively.

Upon substitution of W in Eq. (3) into Eq. (5) and through the Galerkin’s method, the critical stress

Ter can be defined in the following form : %

Defb YYldy
e TR (6)

wf () vray
where

V()= k() Yy -2k 2 k) (25

1 d'Y a‘'y
ay’
The buckling coefficient K can be given by

K g mm e (7)

where

_'D.

S b

thus, K can be obtained as

0o

(%)
= \m/ [, m) e ] e
K= T V115 [kl(w) +2(k,+2 k4)<n¢> + k] (8)
where
¢E% . aspect ratio

Let us define a factor f by .

— KS ..................................................................................................................

—KSE (9)

where K, refers to the minimum elastic buckling coefficient. Thus,

— FCT 1 — ;CT

f_ . KSE_ ;E ...................................................................................................... (10)
where
2
D.
EEEKSEO'ozKSEJ;)Z—t
k= 2IHVIF V1) ]
SET 1+(N+1)6

that is, o, refers to the Euler buckling stress for the global buckling of the stiffened plate.
Then, the non-dimensionalized equation of equilibrium in the elasto-plastic range can be rewritten as ; ®
fagw_éwzo e e e et et e e e e ke e et e e e e e e e e et et a et (11)
where
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5E§EE=—1—2— =" &Ei RSE=£ 120 =y o
or Rse’ r’ ay’ ' Kse E
in which, the symbol “~” designates the non-dimensionalization in terms of the yielding strength, oy, and
the thickness, #, for the stress and the displacement, respectively. Rs; and K refer to the generalized
width-thickness ratio for the buckling of the global stiffened plate and the corresponding elastic buckling
coefficient, respectively.
In this paper, however, numerical examples are demonstrated using only the Bleich’s approach to
evaluate the elasto-plastic buckling stress, Now, using the Bleich’s factor r, the coefficients f; in Eq.

(5) are defined in the elasto-plastic range as follows : 3~

k151[1+<N+1)7], szV«/;, k=1, kAEl_—ZZE_\/; ..................................................... (12)

In order to take into account the effects of residual stress on the elasto-plastic buckling stress, the
factor ¢ is set to be equal to the tangent modulus % in Eq. (2). Upon substitution of Eq. (12) into Eq.
(9), the factor f can be obtained by :

f=[1+(N+11)3]n2KSE ([vE vIFWFDy (5 )—n( L) | +2m v LV TF D7) - (19
where k. refers to the value of the factor k£ in Eq. (2) at the elasto-plastic buckling point.

Now, by evaluating the minimum values of K, the value of f can be obtained simply as

f=fc= m ............................................................................................................ (14)
since, for the elasto-plastic buckling,
2k I+VIFINF1)7 ]
(Kshmin= e (15)
at

=1 and ¢g=m ¥k [1+(N+1)y]

Thus, using Eqs. (7), (8), (11), (14) and (15), the elatso-plastic buckling stress 7., can be given by

Gonm= [ CGgneeereemere st e sttt 16)
where

. _ Ocr

Ucr'—‘;

It implies that the elasto-plastic buckling stress of the stiffened plates can be expressed in the unified form
similar to that of columns, beams or compressed plates.

(3) Postbuckling path

The rigorous prediction of the significant postbuckling behavior of stiffened plate in a closed form is
entirely difficult even in the elastic range. Thus, for simplicity, a modification on the von Karméan’s
equations is made in order to evaluate such postbuckling reservation using the analogous orthotropic plate
approach. The modified von Karmén’s equations for such orthotropic plates in the elasto-plastic range lead
to the following postbucking path : ®

5.25‘”_,_[3117;02 JET TP PP 17)
at

n=1 and ¢=m{/m
where

- _3(1—v) 1 Es 1+k{1+(N+1)y] _ /_—K _b [120—) or

Co= 4Ks: R4 E AN+ Ra=R Kss’ R= “FK E’ K=4N+1)
and R denotes the generalized width-thickness ratio for the local bucklmg of the plate panel. It is clearly
seen that Eq. (16) provides the elastic postbuckling path if Es=FE and k=1.

(4) Ultimate strength
Ultimate strength of the actual stiffened plates can not be determined by evaluating only the
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elasto-plastic buckling strength. It is further affected by the initial lateral deflection and the plastic
unloading curve as well as by both the residual stress and the elasto-plastic postbuckling path. The plastic
unloading curve is obtained from the failure mechanism corresponding;tothe jultimate state of the stiffened
plate. The failure mechanism of the plate under uniaxial pure compression is assumed to consist of fold
lines for the global buckling mode as shown in Fig.2. Many investigations have been performed on the
failure mechanism curve in the last two decades. In the present paper, the following simple interaction
formula between the in-plane axial stress and the associated bending moment is applied : ®

in which, M and M, refer to the bending moment perpendicular to teh corresponding fold line and the full
plastic moment, respectively. Then, for the global buckling mode of the stiffened plate, the plastic
unloading curve can be approximately predicted by :

1—¢*

=1w,=A R RRRITI PR (19)

where, for ¢*=¢/m=cot 6,

* hs
1 1+¢* cot 0+N§T

A=2 1+N(N+2)3 (N : even)
N+1
* hs
1 1+¢ COt0+N5?
A=) T IF N T (N - odd)

for ¢*<cot 61,
hs
1+¢* cot 0+N6‘T

Nu(Ny+2) 5 cot @
N+1 B*
in which, ¢ denotes the angle of the yielding fold line as shown in Fig. 2. In the second type in Fig. 2 (b)

=1
A=3

(N:NI+NII)

2—¢*tan 0+2 N6+

N; and Ny, refer to the numbers of longitudinal stiffeners on the fold lines of (1) and (I[), respectively.
Moreover, h, designates the height of a stiffener from the surface of the plate panel, and the factor hs/t
can be given as a function of the stiffener parameters,

Now, let us consider the “equivalent bifurcation point” as the intersection of the elasto-plastic
postbuckling path in Eq. (17) with the plastic unloading curve in Eq. (19). The point can be obtained by
solving the following simple quartic polynomial equation :

(:}pAz(}"“‘&s—(Z épAZM(;cr)&Z_f_ épAZ:O ....................................................................... (20)

Let 6* and @* designate a proper real root of the equation and the corresponding deflection calculated by
Eq. (17) or (19), respectively. Hence, the equivalent bifurcation point can be given by the point C (5%,
w*) in Fig.3.

g [o] -
g g S ot
- 107 ’ I\) S posthuckling
—fe o n® N
5t <04 5% i
36 _ 45_95__;4 5 T llli:sﬂ!t’:_
e = < g unioaaing
- -
- i\@7 ) ~w ) : curve
= .
(a) ¢*zcotd (b) ¢*<cotd 0 Wo w w
Fig.2 Plastic failure mechanisms, Fig.3 Equivalent bifurcation point.
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In order to evaluate the ultimate strength of the imperfect plate, a pseudo-potential may also be defined
near the equivalent bifurcation point C. Then, the ultimate strength &, of the imperfect stiffened plate can
be predicted in terms of the bifurcation set through the catastrophe theory. It can be defined by a set of
'singular points %

%:1.{.&*@0_\/2 a*&)o<l+% a*fvo> ........................................................................... (21)
where
- __On
om=—"—
Oy

and o* can be approximated by the slope of the plastic unloading curve at the equivalent bifurcation point
C, that is,
% 1 1 * (

T dw,/ds | e AL+67)

Furthermore, the concept of the “equivalent initial imperfection” is adopted herein in order to describe
the actual strength behavior of the stiffened plate :

Z’ZJS'(EM(R)on ............................................................................................................. (23)
where

dR=pe( )

¢ 1s a constant specified below, and R, refers to the value of the generalized width-thickness ratio R for
the local plate buckling between stiffeners, at which the buckling point changes from the elasto-plastic to
purely elastic, and is alternatively used the generalized width-thickness ratio Rs; for the global stiffened
plate buckling.

As a result, the form of x(R) may be approximated by

#cE%, 552(1_7{}%) ............................................................................................... (24)

similarly to the case of compressed plate panels so as to formulate a unified strength prediction for both
global and local bucklings of stiffened plates. Finally, the imperfection sensitivity or the load-carrying
capacity can be determined by Eq. (21); however, with the slope o* of Eq. (22) and the equivalent
imperfection of Eqgs. (23) and (24)%-%,

On the other hand, the ultimate strength for the local buckling of plate panel of stiffened plate may be

evaluated as four edges simply supported rectangular plate in the same manner,

3. NUMERICAL EXAMPLES AND DISCUSSIONS

Several numerical illustrations are provided on the strength of the simply supported stiffened plates
under in-plane uniaxial compression. A single longitudinal stiffener is assumed to be spliced with equal
interval and can be characterized by the geometrical and material parameters such as N, &, v and E/oy.
Moreover, torsional rigidities of the stiffener are assumed to be neglected. The type of residual stress
distribution of the local plate panel is assumed to be either of a parabola, a triangle or a trapezoid as shown
in Fig. 1(a) ~ (c), and that of the stiffener to be tensile uniformly distributing in its cross section, For all
the distribution types, the magnitude of the maximum compressive residual stress ¢, in the local plate panel
and that of the uniform tensile residual stress ¢, in the stiffener are restricted to 0.4 oy and 0.2 gy,
respectively. Moreover, the magnitude of initial deflection of the stiffened plates are assumed to be
a/1 000 and /300 with its global and local modes, respectively. The values are prescribed on the basis of
the tolerances allowed by the JRA Specifications for Highway Bridges, which “g” denotes the half-wave
length of the stiffened plate for the global buckling and “5/2” indicates the width of the loaded edge of the

plate panel.
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For given parameters such as N, &, y and E /gy, all the bifurcation sets or the ultimate strength curves
can be calculated under the following condition : the “equivalent” orthotropic plates have such aspect ratio

¢ to take the least buckling strengths in the elasto-plastic ranges. That is,

n=1 and ¢=m YEF W71
.......................... (25)

The ultimate strength curves in the
elastic range for the slender stiffened
plates are entirely the same, regardless of
the residual stress types of distribution
from definition of f in Eq. (9). In the
elasto-plastic range for intermediate
values of R, the ultimate strengths in the
case of the trapezoidal distribution are
shown to be the lowest, and those of the
triangular distribution are the highest.
However, the effect of the types of re-
sidual stress distributions on the strengths
may be found to be insignificant quantita-
tively and qualitatively, Therefore, in this
paper, the numerical results are presented
with only the parabolic distribution for the
types of global and local bucklings.

Fig. 4(a) and (b) illustrate the proposed
bifurcation sets for the global and the local
bucklings of stiffened plates,
tively. In these figures, the generalized
width-thickness ratio R of the local plate
panel is chosen as the abscissa; whereas
the the

dimensionalized ultimate strength in terms

respec-

ordinate  designates non-
of the yielding stress oy.

Here, the results of the strength predic-
tion by the present analysis is shown
together with those by von Kérmén, Fuku-
for high

strength steel stiffened plates, Komatsu's

moto’s data-base approach®
large-deflection elasto-plastic finite ele-
ment analysis'®, and furthermore by the
practical design formula such as JRA,
DASt and ONORM®

Especially, in the case of the latter local
buckling, Flg. 4(c) compares the same re-
sults with the numerical calculations by
Crisfield, Little, Harding,
Horne and the JRA specifications for

Dawson,

compressed plate panels®.
For both the global buckling of the
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stiffened plate as a wide Euler column and the local buckling of the local plate, it may be found that the
present imperfection sensitivity curve in Eq. (21) using Eqs. (22), (23), and (24) gives a unified
strength prediction of stiffened plate. Moreover, this unified method of approach has been!consistently
applicable to columns, beams and compressed unstiffened plates as well? .

In this paper, all the calculations on the ultimate strength of stiffened plates are made for only tipical
values of parameters; N, &, 7 and E /oy, as shown in these figures. For various values of such
parameters, the similar strength prediction may be explicitly determined by Eq. (21) through Eqs. (22),
(23) and (24).

4. CONCLUSIONS

A simple unified approach to the ultimate strength of compressed steel stiffened plates is presented in
the light of the catastrophe theory. The main conclusions are summarized as follows :

(1) The inelastic strength prediction of the stiffened plates may be explicitly determined in the form
of the bifurcation sets or the imperfection sesitivity curves characterized by the 1/2-power rule for both
global and local bucklings,

(2) The bifurcation sets can be explicitly defined near the “equivalent bifurcation point” being the
intersection point of the elasto-plastic postbuckling path with the plastic mechanism curve,

(3) The initial imperfections are modified and replaced by the “equivalent imperfections” proposed
herein.

(4) All the calculations herein can be made using only a microcomputer with small memory storage.

(5) The general philosophy adopted in this paper may also be applicable to other type of engineering
structures such as arches, trusses and shells as well as columns, beams and compressed plate panels.
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