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ANALYTICAL STUDY OF AN OVERHEAD FIGURE-8 TELECOM-
MUNICATION LINE UNDER A STEADY WIND

By Hiroki YAMAGUCHI*, Yoshio YAMAWAKI¥**, Yozo FUJINO***
and Manabu ITO****

The aeroelastic behavior of the overhead telecommunication line of figure-8 section is
studied analytically in order to investigate the wind-induced galloping motion of the line.
The governing equations of the telecommunication line are firstly derived taking account of
its torsional displacement. Numerical analyses are also made on the wind-induced static
deformation, the linear free oscillation under wind load and the dynamic response in a
steady wind. The results of numerical analyses explain well the experimental fact seen in
the wind tunnel test reported in Refs. 1) ~4) and it is found that the galloping of the
figure-8 telecommunication line can be simulated to some degree using the present

analysis,

1.  INTRODUCTION

The telecommunication line which consists of a telecommunication cable and a suspending steel cable with
lashing wires has a particular geometric configuration of figure-8 section. It has been reported that
wind-induced galloping motion of this telecommunication line frequently occurred under wind and caused
serious operating problems, The authors have made a wind tunnel study and also some theoretical
considerations on the galloping oscillations of the figure-8 telecommunication line”~®. Those studies
revealed the fundamental characteristics of the galloping phenomena of the telecommunication line.

The objectives of this study are to analytically estimate static and dynamic behavior of the
telecommunication line under a steady wind and to consider the galloping oscillations in more detail.
Analysis of mono-cable equilibrium and stability in a steady wind has been made using the finite element
method®, However, since the telecommunication line consists of two cables and torsional displacement was
found to play an important role in the phenomena”, the formulation and results in Ref. 5) are not directly
applicable to this problem.

In the present paper, the governing equations of the telecommunication line are firstly derived taking
account of its torsional displacement as well as its geometrical nonlinearity. Using these nonlinear
equations, wind-induced static deformations, which are the fundamental cause of galloping”, are secondly
calculated. Thirdly linear free oscillations about the wind-induced static configuration are solved by the
complex eigenvalue analysis and lastly nonlinear aerodynamic responses of the telecommunication line
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under a steady wind are simulated.
2. ANALYTICAL MODEL AND COORDINATE SYSTEMS

The telecommunication line consists of a structural cable and a telecommunication cable as shown in
Fig. 1. The telecommunication cable is attached to the structural cable and its stiffness is considered to be
negligible, The Bernoulli-Euler hypothesis is employed and St.

Venant’s torsion is considered for the structural cable, i X3

The locus of the centroid of the structural cable at time , as is
also shown in Fig, 1, is a smooth curve line which is determined by
a right-handed Cartesian coordinate system x', x?, x° in the
space. The curvilinear coordinate s is taken along the real length
of the curve line at time . The state variables of cable are hence
represented by the two independent parameters s and ¢.
Therefore the position vector r of the structural cable can be

structural
cable

A

Yy telecom.
a cable

written in the form : £
r(s, t):[xl(s’ t) IL‘Z(S, t) (1‘}3(8, t)] [11 iz is}'f... (1 ) Fig. 1 Telec‘.)mmunication line and
in which {f,, i,, i} are the orthonormal base vectors in the {x', coordinates.
x®, x°l space,
In Fig.1, A, u and y denote the three unit vectors in the tangential, principal-normal and bi-normal
directions on the curve, respectively; these vectors are defined as®

_or L OR L OB ) e .
A= as’ *Txas VT T (88+M> (22, b, ¢)

in which x, 7 are the curvature and torsion of the curve, respectively. Substitution of Eq. (1) into Eqgs.
(2-a~c) yields
[y o A T=[TEr Gy Ga oo (3-a)

in which

l(gz_ﬁ ox®  ox’ 82933) l( o'x’ ax' or’ azsc‘> _L( o'x' ox*  ax' 82332)

x\ 9s® Os 9S8 Ps? x\ 9sg: Os oS8 9s? x\ 9s* 98 OS Qg?
[T]: l ale lazxz }“82.1,3
* x 9s’ x 9s x ost
ax’ axt axt
o8 os 28

........................................................... (3+b)
The Lagrangian local coordinate system {£, 5, ¢/ fixed to the cable is also defined : & and 7 are two
principal axes of the cross section while ¢ is the axis along the tangential vector A. The axis £ contains the
centroid of the telecommunication cable. The angle ¢ is taken from the vector v to the axis ¢ and this
parameter represents the twist angle of the cross section (Fig, 1). Then the following transformation holds

[y yr /\]T-‘—[Tm}[ie in i{}T .................................................................................... (4.3)
in which
cosa —sine 0
[ijz sin a COS @ | oo e (4b)
0 0 1

and {i,, i, i are the base vectors in the coordinates |&, 7, ¢].

3. BASIC EQUATIONS

(1) Equations of motion
The vector equations of motion of the telecommunication line can be readily derived by considering the
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equilibrium of forces and moments acting on a differential
segment of the cable shown in Fig.2;

oF a'r o’

Bs Mo Pap (r+d)+(opt+p)gis+p=0- (5-2)
oM . o' o
= —m—= A—dXo— (r+
s TAXF+dXpgi—m-—pg A—dX e, PYE (r+d)
RIS e s (5 b)
Fig.2 Forces and moments acting on
in which differential segment.

F : stress resultant force vector,

M : stress resultant moment vector,
o1, p, . masses per unit length of the structural cable and the attached cable; respectively,
. position vector of the structural cable,
: relative position vector of the attached cabre from the structural cable (=dXi,),
: distance between the centroids of two cables,
: vectors of external distributed force and moment,
: torsional moment of inertia per unit length,

|
® 3 3 a e~

: rotation angle of cross section,
Note that the third term of Eq. (5-b) accounts for a pendulum effect of the attached telecommunication
cable mass.

(2) Stress resultant-deformation relations

The stress resultant force vector F' may be decomposed into tension vector T and shear force vector Q
while the stress resultant moment vector M is rotational moment vector M, because of the negligible
bending rigidity, i.e.

F=T+Q=TA Quut Qutt, M=Mr==DMqA-- e (6-a, b)

The tension T and the rotational moment M, are related to the unit elongation ¢ and the rotation angle €
respectively as

T=EAe, M= GJ—%% ........................................................................................ (7-a, b)

where EA is the longitudinal rigidity and GJ is the torsional rigidity of the structural cable.
(3) Deformation-displacement relations
The elongation ¢, curvature x and torsion 7 are defined as
— ar Z— ax) . axJ .....................................................................................

2 -~ — .
(+e) o8 28 08 (8-2)
e | DA | P | O'r [P 2% O T e, .
¥~ los| |astl  as' as? (&0
_ov, 10wt O DX e, .

T =3s X/l"‘xz €ir5g ost o8 (8-¢)

in which the index j is the dummy index and the symbol e,;, denotes the permutation symbol.

Considering the differential rotation of unit vector i, along g, the relation among the rotation angle 8,
the twist angle o and the torsion r can be obtained as follows :

OO O e,
—ag—as+t (9)

4. GOVERNING EQUATIONS OF TELECOMMUNICATION LINE

Substituting Egs. (1) and (6-a) into Eq. (5-a) and using the transformation given by Egs, (3) and
(4), the equations of transverse motion in the {,, i, and {, directions can be derived as
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B (@, o ot Quotx nox\_ . o sy e
as< ey G T AT as) (ot o) ST+t plgdatd'=0  i=1, 2, 3
............................................................ (10)

in which P° is the component of external force vector p and the symbol §;, is the Kronecker delta. The

inertia force caused by the torsion was neglected in Eq. (10).

Similarly, the equation of torsional motion (Eq. (11)) and the shear force-moment relations (Eq. (12))
are obtained from Eq. (5-b).

oM '8 o'x’ sina o'x’ ox*  cose dxf\, __ .

os —m EYE +,02d(9312 EYE )( % €iik 25’ Os L 35 >+mr—0 (11)
2 2

Quz—xMrhozgd cos aaa%_mw Qﬂzngd sin a 883:; Ry e (12.3’ b)

in which 7,, 7, ", are three components of the external moment vector 7i;
T =Tyl T e T p A oo oo e (13)
The moments in y and g directions caused by the inertia force were neglected in Egs. (12-a) and (12-b).
The governing equations of telecommunication line, i.e. Egs. (10), (11) and (12) are nonlinear
equations in displacements x', x?, x° © and o. Considering that the angle o is represented by other
displacements in Eq. (9), the unknown variables are only x', x? x°® and ©.

5. STATIC DEFORMATIONS DUE TO WIND FORCES

(1) Wind forces
The steady wind forces, drag D, lift I, and moment M on the figure-8 section have been experimentally
measured? and are expressed as

Dz%PoUZ(Z [ O R (14-a)
L:%poUz(Z 17 O T (14 b)
Mz-%poUz(Z d)ZCM ................................................................................................ (14-(:)

where p, is the air density; U is the wind velocity; C,, C, and C,, are the steady wind force coefficient of
drag, lift and moment obtained in the wind tunnel test (Fig,3).

Consider that the wind direction is along the x*-axis, The strip theory was accepted and the effect of the
inclination of cable segment, caused by the initial sag and the deflection of cable, was neglected. The
external forces and moments in Egs. (10), (11) and (12) are hence given as

D=0, D=L, PPmmD oot (15-a, b, ¢)

2.0

60
157 £ e at 1/4
g P a4 at 1/2
D o at 1/4
1.or @ 6 A at 1/2
6”40 calculation ,experiment

(@]
(]

201

)
©
o

steady wind force coefficient
=]
(%]

Re = 2.8x104%

il 0 59 10.0 5.0
angle of wind attack 6° wind velocity U (m/s)

Fig.3 C, C. and C, of figure-§ section (d,/d,=5)?. Fig.4 Static deformation angles ¢ and @ vs. wind velocity U.
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=0, T,=0, Tp=M e (16.3’ b’ c) Table1 Model parameters,

(2) Static analysis by incremental method span length . 15 m

Considering the small displacements (u, v, w, 8, 7) sag-to-span ratio M 0.03
from a static equilibrium state (x,, Y., Ze, & o), the structural cable | dianeter d, 4-0m..

mass [ 25.0 g/m
rigidity | EA | 3.31x10°N

three components of position vector of cable (x', x? %

and the two torsional variables @ and ¢ are written as o 1 1. 32x10- “nm
.xl:xe(se)‘i' U(Se, t), xZ: ye(se)+ U(Se, t), z:;izommunication diameter d, 18.0 nfm
L= 2 Se)F W(Se, T)-ererrerrmreemsrenmenmmniinns (17-a, b, ¢) mass P2 375.0 g/m

=08+ (3¢, 1), a=adse)+ 7(Se, )

where s, is the curvilinear coordinate defined along the length of the static equilibrium curve line,
Substituting Egs. (17-a~e) into Egs. (9), (10), (11) and (12) and neglecting the terms of higher
orders, one can obtain the linearized equations of motion.

Taking account of the approximate shape of a catenary, the unknown independent-variables u, v, w and
§ in those equations are assumed to be of the form (Appendix) :

u(se)=§ﬁ oi{ o‘”“)"(%)ua], v(se)=g} pi[ a”-(—;‘—)“}, w(se)=i‘. qi{ a”—(%ﬁ ----- (18-a, b, ¢)

i=1 i=1

2i 0,(2&' 2)
f(s ) 7‘1"‘2 7»1{2‘ 378 } ................................................................................ (18‘d)
where ¢ is the curvilinear coordinate nondimensionalized by the mltlal cable length [*:
e L e
7= ¥ 2 (19)

Egs. (18-a~d) are substituted into the linearized equations and Galerkin’s method is applied.
Neglecting inertia force terms, the coupled algebraic equations are finally obtained,

[KUGI=1FL, 1q1=[00 e, Dreee, Gueee, FreeTesememememsssme s (20)

Giving a small increment of wind speed, that is, a small increment of the generalized external force
vector |f], one can compute the generalized displacement vector {g} by Eq. (20) and then the increments of
each displacement (u, v, w, §) from Eqgs. (18-a~d). Repeating this incremental technique, the static
deformation of the telecommunication line under a certain wind speed can be calculated.

(3) Results and discussions

A numerical analysis is made for the single-span telecommunication line model which were used for the
three-dimensional wind tunnel test in Ref. 1) and the model parameters are given in Table 1. The number of
term N in Eqs. (18-a~c) is taken as 3 and M in Eq. (18-d) as 7.

Fig. 4 shows the calculated values of the inclination angle of the line (cable plane angle) ¢ and the angle
of attack relative to the wind @. Their experimentally measured values” are also plotted for comparison in
Fig. 4. One can see in Fig, 4 that the calculated static deformations fairly coincide with the experimental
results,

6. LINEAR FREE OSCILLATION UNDER WIND LOAD

(1) Quasi-steady aerodynamic forces
The linear free oscillations of the line about the wind-induced static configuration are studied,
considering a steady wind with speed /. The quasi-steady aerodynamic forces on the figure-8 line are

D=%poUi(2 d)Co, L=% 2 U%2d)Cy, Mzé— Do U2 AP Cpyrerrrrrerrermmmmmmemeeesenienens (21-a, b, ¢)
where
U Z_U.'l.‘i ﬂ*:tan‘l e (22'a b)
" cos g% U—w ’
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in which a superposed dot represents a time derivative.

Accepting the strip theory, the non-zero external forces 7 and 7° can be written as :

52:_]4 cos B*_D sin ﬂ*-_:% ,OOUZ(Z d)cF2 ................................................................ (23.3)
@'3=—Lsin,8*+D cos /8*:%“:00(]2(2 d)CF3 ................................................................ (23.b)
where aerodynamic force coefficients Cy, and Cy, are defined by
Ury2 .
CF2:<_U_> (“COS}?*'CL_‘SIHﬁ* . CD) .................................................................... (24.a)
. Ur 2 . % & .
Cps-(‘U“) (-—smﬁ 'CL+COS/9 . CD) ..................................................................... (24.[))

Provided that the velocities of motion, # and ¢ are small compared with the wind speed U , one can
approximate 8% to

B L (25)
By this approximation, the non-zero external forces p* and 7° and moment 77, are written finally as
52:%%(]2(2 d){"(l—Z%)CL_(%>CD} ................................................................. (26-a)
=L U d) [ ~(5)Cut (122-2)Cof (26-b)
—mT:% U2 d)z(l—-Z%*)CM .................................................................................. 26-¢)

(2) Computational procedure

Taking into account the geometric boundary condition of no restraint in torsional motion at both fixed
ends, the following forms of free oscillation are assumed,

. i7Se . ImSe ¥ L7Se
u(se, T Z {t)sin o Use B)= Z pdt)sin s wlse, )= Z} g{1)sin 5
=1 =
L4 InSe
8(se, 1)= Z (1 )COS_lr ........................................................................... (27-a, b, ¢, d)
5
% pay
3 Asym.2 e
> 4 4 A A—‘*A“"‘”i Aai?;A 0.8
e i e w 0.7 Sym.1 e a
g Asym.1 © 2
2 Sym.2 & o 0.6 Sym.2 & < e o
> " T el (= Asym.2 & /
= a— 2 Qa 0.5} * “
«© R
5 Sym. 1 — 8 04 / va
- T e o
g 0,3,—0 g 03 /o /
24 S e g 0.2 g
Asym.1 o, 1 o/" A —?
0.1 f,r/‘ 4
et — \~
Sym.1 0 A\ D q
1 o,
~0.1 Afy 2
<2 1 \3
-0.2
-0.3 : ;
0 5 10 15 0 5 10 18
wind velocity U (m/s) wind velocity U (m/s)
Fig.5 Nondimensional natural frequency * vs. Fig.6 Modal damping (logarithmic decrement) & vs.
wind velocity U. wind velocity U.
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~'5.46° ~="5.46°
' | v
3 2 W
1 1 2 1
U= 0 m/s U=2.18m/s U=4.08m/s U=2.18m/s. U=4.08m/s
~¥11.8° ~Y'20.5° ~ X 30.8° 30.8°
i ; i
| I
2
1W “W 1 1 1
U=5.96m/s U=8.00m/s U=9.98m/s U=5.96m/s U=8.00m/s U=9.98m/s

53.3°

2

U=12.0m/s U=14.0m/s Us=12.0m/s
Fig.7 Lissajous diagram of the first two symmetric Fig.8 Lissajous diagram of the first two asymmetric
modes at the mid-span. modes at the quarter-span.

in which 0;, p; ¢; and 7r; are the generalized coordinates, )

By Galerkin’s method, the linear ordinary differential equations for the generalized coordinates are
obtained in the form

[M]qu[Ca]{(}}“F[K]qu:iO} ........................................................................................ (28)

Applying the complex analysis, the natural frequencies, the associated modal damping coefficients and
the modes can be calculated.

(3) Results and discussions

The complex eigenvalue analysis was carried out for the static deformed telecommunication line under
various values of the wind speed : 0, 2.18, 4.08, 5.96, 8.00, 9.98, 12.0 and 14.0 m/s. Note that the
numbers of term N’ and M’ in Eqs. (27-a~d) are taken as 5 and 20, respectively.

The natural frequencies @*, which are nondimensionalized with respect to the fundamental frequency of
a tight string at U=(0m/s, are presented in Fig.5 and the modal damping (logarithmic decrement) & in
Fig. 6. There are two kinds of natural oscillations which have the same or similar mode shape. In the case
of still-air condition, these two kinds of oscillations are in-plane and out-of-plane motions, Small
characters 1 and 2 for each mode in Figs.5 and 6 distinguish between these motions and indicate the
in-plane and out-of-plane motion at U= m/s, respectively.

It can be seen from Fig, 5 that the netural frequencies change slightly as the wind speed changes, This is
because the restoring force is partly dependent on the aerodynamic forces. On the other hand, the modal
damping coefficients change drastically as the wind speed changes (Fig.6). The modal logarithmic
decrements of the asymmetric first and second modes turn from positive to negative at about 10 m/s,
indicating that the galloping of the telecommunication cable can occur in the asymmetric modes at this wind
speed level. This result agrees with the experimental fact?.

Although under still-air condition the linear free oscillation of cable is either in-plane motion or
out-of-plane motion” | in the case of steady wind action the principal directions of the free oscillations are
in different planes which are not mutually perpendicular. The directions of motions calculated by the
complex eigenvalue analysis are shown in Figs, 7 and 8 ; the Lissajous diagrams of the first two symmetric
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modes at the mid-span in the vertical plane are presented in Fig, 7 while those of the first asymmetric modes
at the quarter-span are in Fig. 8. The small characters ] and 2 in Figs. 7 and 8 correspond to those in
Figs.5 and 6. These figures suggest that two kinds of the modes are not clearly identified as in-plane and
out-of-plane motions, Furthermore, at U=12.0m/s, it can be seen from Fig. 8 that one of the first
asymmetric modes which has a negative modal damping coefficient oscillates in the direction inclined 27.5°
from vertical direction. This angle 27. 5° is smaller than the inclination angle of the line 42. 1° calculated in
5. (3). Instead, it is very close to the angle of the self-excited motion in a small amplitude range measured
at the wind tunnel test.

It should be noted that these natural symmetric and asymmetric modes are coupled with torsional motion
as also verified by the experimental fact.

7. NONLINEAR AERODYNAMIC RESPONSES

(1) Analytical procedure

Should x!, x?, x°, © and ¢ be composed of the static equilibrium position (x., ¥e, 2., ., a.) atthe
wind speed, where the galloping oscillation can occur, and dynamic displacements (u, v, w, 4, y) from
the position. In this section, however, the dynamic displacements are finite and the equations of motion are
nonlinear.

It is convenient to assume expansions for the solutions of nonlinear equations in terms of linear normal

mode in the form

[u v ow 9]T:Zil qi(t)[ggm ¢m, ¢wi ¢6i]T ................................................................ (29)
in which [¢y; - ¢e:] are the linear natural j-th modes calculated from the undamped system by the modal
analysis,

Using Galerkin’s method, one obtains the nonlinear ordinary differential equations for the generalized

displacement vector {g};

[M]{(‘]'H{Ca(q, q)]{q}+[K(q, q)]{q}={0% ........................................................................ (30)
Including modal structural damping, Eq. (30) becomes
I+ M2 huat101LCua, DIGHIR(G, glmi0f oo 31)

where h, is the structural damping of the j-th mode,

The time history of the telecommunication line can be computed by the linear acceleration method. The
adopted modes for the solution in Eq. (29) were only the first two asymmetric modes and a small initial
velocity was imposed in the direction of largest aerodynamic exciting force of the first asymmetric mode.

(2) Results and discussions

Fig. 9 shows the calculated time-history responses of v, w and @ at the quarter span and the locus of
motion in the vertical plane at /=12. 0 m/s. The corresponding growth process of the galloping oscillation

4 v&cr:n) -10
AR \
N \/ v
-4 i -5
43 wlcm)
da AN NN wiem)
. NN /| M| S0 5 0o 5 10
107 6ldeg 5
ol AL t
i V A 2n/w 10 v(cm)
-10 1 2 3 4 5
Fig.9 Time-history response and locus of motion Fig.10 Growth process of galloping motion in
(U=12.0m/s). the wind tunnel test! (U=11.5m/s).
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in the wind tunnel test? is also presented in Fig, 10. 41 Viem) 210

In the experiment, it is reported that the galloping o) J'\ AT J,\ (\I

motion stays almost in a plane without torsional -4 -5
41 wicm)

motion for a small amplitude range and that, after

0 /\ /\ w(cm)

J—1o—5 0 5 10

occurrence of torsional motion, the amplitudes

increase rapidly into an elliptical locus with large 13 e§§ & 5
torsional motion?, 0 f /\ \ \ t

Comparing Fig, 9 with Fig. 10, the present cal- “10 \/ V] Yenre 101 viem
culation well simulates the self-excited motion in T2 38 45
the small amplitude range. However, the signifi- Fig.11 Time-history response and locus of motion

cant torsional motion does not occur and the (U=14.0m/s).

oscillation does not grow to the large amplitude

motion. In the case of U=14.0m/s (Fig.11), the elliptical locus of the steady-state motion can not be
simulated either, while the self-excited oscillation grows up with relatively large torsional motion, It is
because the assumed solution for the torsional motion, that is only the torsional motions coupled with the
asymmetric flexural modes, was insufficient to describe the large amplitude oscillation. It can be said from
these results that the torsional response plays an important role in the growth of figure-§ telecommunica-

tion line,

8. CONCLUDING REMARKS

The aeroelastic behavior of the figure-8 telecommunication aerial line was studied analytically; the
governing equations of the telecommunication line were derived taking account of its torsional displacement
and numerical analyses were made on the wind-induced static deformation, the linear free oscillation about
the wind-induced static configuration and the nonlinear aerodynamic response of the telecommunication line
in a steady wind. Results of this study lead to the following brief conclusions :

(1) The calculated static deformations of the figure-8 telecommunication line under a steady wind
fairly coincide with the experimental results.

(2) The natural mode shapes of the telecommunication line under wind load are not clearly identified
as in-plane and out-of-plane motions,

(3) As the wind speed changes, the natural frequencies of the telecommunication line under wind load
change slightly, but the modal damping coefficients change drastically. The modal logarithmic decrements,
only for the asymmetric modes, turn from positive to negative at a certain wind speed level and this result
is consistent with the experimental fact.

(4) The direction of the calculated first asymmetric mode at that wind speed is very close to the
measured angle of the galloping motion in a small amplitude range.

(5) TItisfound that the present analysis is effective in the prediction of the galloping of the figure-8
telecommunication line. However, a nonlinear time-history response analysis proposed needs a further
refinement in order to simulate the growth process of the galloping motion,

APPENDIX——ASSUMED SOLUTION FOR THE ROTATION ANGLE

The boundary condition of no restraint in rotation at both fixed ends is adopted. That is,

o8 1

kA t e A

30 0 a\ =15 (A-1)
Considering that the wind-induced static deformation of the rotation angle 4 is symmetric along the span

»

the first derivative of § with respect to ¢ is assumed to be of the form :

%zg ngzi—3<02_%> ............................................................................................ (A-2)
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Integrating Eq. (A-2), one can obtain the assumed solution of Eq. (18-d) for 4.
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