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VIBRATION MODES CHARACTERIZED BY LOVE WAVES IN AN
ELASTIC LAYER OVERLYING A RIGID BASEMENT

By Shigeaki MORICHF*, Tatsuo OHMACH** and Takumi TOSHINA WA***

As for dynamic shear deformation of an elastic layer of finite length overlying a rigid
half-space, such vibrational characteristics as natural frequency and vibration mode shape
are well characterized by Love waves in the layer. This fact is demonstrated first by
several kinds of laboratory experiments, and next by theoretical discussions, On this
basis, impulsive response of the layer is formulated by the mode superposition procedure,
giving a well-known statement of Love wave characteristics such as the quarter wave length

law and the reciprocal theorem, and indicating a good accordance with the experimental
results,

1. INTRODUCTION

Prediction or, at least, characterization of earthquake response of sedimentary layers has become one
of the major subjects of recent earthquake engineering”~®, This is mainly because seismograms observed
on a thick deposit usually show amplification in amplitude as well as elongation in ‘duration, and partly
because large scale structures of great importance with longer periods of vibration have increased in
number lately. In the last decade, vibration analysis techniques have made so remarkable progresses that
even non-linear dynamic response of structures with complicated configuration could be accurately
evaluated without much difficulty. On the other hand, seismic wave propagation in an actual ground has by
no means been clarified enough for us to predict seismic performance of the ground with a satisfactory level
of accuracy. .

It has been well-known that natural modes of shear or longitudinal vibration of a bar can be definitely
related to shear or longitudinal wave propagation in it, .and that noting the relations would lead us to have a
good grasp of general dynamic phenomena. As for surface waves, however, it does not seem that great
efforts of this kind have been made to be available for practical application,

On this basis, it is the authors’ belief that primary contribution to the still unclarified subject could be
made by merely describing surface wave characteristics in terms of vibrational concepts, and vice versa. A
finite element technique can apply to study on surface waves propagating in complicated models like
nonhorizontally layered structures®?. For the sake of simplicity in experiments and mathematical
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formulations, only dynamic shear deformation of an elastic medium rested on a rigid basement is treated in
this article.

2. EXPERIMENTS

(1) Experimental procedure

Specimens of a homogeneous elastic layer with uniform depth were made of acryl-amide gel whose mass
density and Poisson’s ratio were 1. 0X10° kg/m® and (. 50. Due to it’s low elasticity, this material is more
suitable for this kind of experiments than materials of high elasticity used elsewhere such as poly-urethane
foam”, aluminum alloy?, acrylite”, duraluminium'®, Plexiglass' and Panelyte!’. Table1 shows
dimensions and shear wave velocities of the specimens to which either harmonic or impulsive excitation was
applied in a horizontal direction. The shear wave velocities were measured by applying horizontal shear
vibration to other smaller specimens with the same mixtures. Bottoms of all the specimens were fixed to
alminium plates rigid enough to be regarded as rigid body in comparison with the specimens. Vertical sides
of the specimens were either fixed or free as shown in parentheses in Table 1.

The harmonic excitation was done in different two ways, one is free surface motion excitation along the
center line of the specimens A and B with zero excitation otherwise, and another is basement motion
excitation of the specimen C loaded on a shaking table. In both cases, the harmonic excitation was applied
in direction parallel to the fixed ends to give rise to
resonant vibration in the specimen by gradual change in Table 1 Dimensions and boundary conditions

the applied frequency, from which vibration mode shapes of specimens.

and natural frequencies were investigated. Spec. Heiant L‘?Egrﬁg Hiden ch?gc‘;’g’f Exc&zgzion
The impulsive excitation was done by a so-called (B.C.) (8.C.) 1n cn/s
plate-shooting procedure which is to produce horizontally A% (F?Sgd) (Flgg y 179 Harmonic
directed impulsive motion by means of a hammer blow on B 50 (FESQd)(Flgg LE Harmonic
the side face of a wooden block, The impulse was applied C o 60 600 o A
at point P( and induced time-varying displacements in (Fixed)(Free )
the transverse direction were observed at three points b (;?ggd)(g?ggd) 300 Impulsive
P 1, P2 and P 3 of the specimen D locations of which are
shown in Fig. 1, by using piezoelectric pickups with mass A - A SECTION
of 1.28. 10
(2) Experimental resulis 36 101010 5
a) Harmonic response modes vl o1l o2 o3 =
At a resonant frequency, deflection patterns of a , :
specimen generaly show a standing waveform made up of -
independent two sinusoidal waveforms, one is horizontal
and the other vertical. Both these sinusoidal waveforms
can be well defined by number of antinodes counted in )
each direction, Since the harmonic excitations were 9
applied in a symmetric manner with regard to the middle A EXCLTATICH POINT A
cross section. of the specimen, vibration modes having L-, _,M__.fg.finfﬁfz_._m__~-_._’
only odd number of horizontal antinodes could be Zoéiwum_@mm
observed in each series of experiments, o
Deflection patterns observed in Specimen C at diffe- (unitsem
rent three resonant frequencies are shown in Photo 1, in
which m and n define order of the vertical and horizontal
modes of vibration, respectively. It is important to note Fig.1 Location of excitation and observation

the present definition that the number of the horizontal points of Specimen D.
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(a) m=0 and n=7 at' f=19.6Hz (b) m=1 and n=] at f=33.9Hz (¢) m=1 and n==3 at f=35.5Hz

Photo1 Examples of vibration modes observed in Specimen C,

antinodes is given by n, while that of the vertical 15 7
antinodes is given by m—1. A gradual increase in the
applied frequency gave rise to, one by one, horizontal
higher modes with a single vertical antinode as far as the
frequency remained less than 33. 9 Hz. Photo 1 (a) shows
one of the examples, At 33.9Hz, a lot of horizontal
antinodes disappeared with an appearance of a mode
having two vertical antinodes shown in Photo1(b).

Photo 1 (c) is shown another example of vertical higher
modes observed at 35.5 Hz, These photos were taken
using a stroboscope with a flash frequency set at double

c/v

the respective resonant frequency.

The resonant frequencies and the numbers of the
horizontal antinodes observed in each experiment are
summarized in Table 2, for which wave length A and
phase velocity ¢ were calculated by

DIMENSIONLESS WAVE VELOCITY

A=2 L/n ................................................. ( 1 ) /
Cmfh et i s (2) £I’ o SPECIMEN A
Dimensionless quantities in the rightest two columns in / ® SPECIMEN B

Table 2 are readily obtained by reffering to the shear © SPECIMEN C

wave velocity v and height of the specimen H shown in

Table 1.

From Table 2, the two dimensionless quantities are 0 0 < 10 15 )
plotted in Fig.2, in which both solid and broken lines DIMENSIONLESS WAVE LENGTH  A/H
show phase velocity dispersion curves for Love waves in a Fig.2 Experimental results of harmonic excitation
homogeneous elastic layer having a rigid semi-infinite and Love wave dispersion curves.
basement. Note that the phase velocity to shear wave
velocity ratios and the wave length to height ratios obtained from the vibration experiments fall on the

dispersion curves for the Love waves. This fact indicates that the observed vibration modes are simply
characterized by the Love waves. This will be closely discussed later from analytical viewpoints.
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Table 2 Experimental results of harmonic excitations,

Speci Frequency Number of Phase Velocity Wave Length Dimensionless Dimensionless
pecimen f (Hz) Antinodes N c (cm/s) X (cm) Phase Velocity c¢/v Wave Length A/H
A 4.60 1 5.52x10° 120 3.25 13
5.90 3 2.36x10° 40.0 1.39 4.4
(1=9.0cm) 7.90 5 1.90%10? 24.0 1.12 2.7
10.1 7 1.73x102 17.1 1.02 1.9
17.0 9 2.26%10% 13.3 1.33 1.5
19.0 11 2.07x102 10.9 1.22 1.2
22.0 13 2.03%10° 9.23 1.19 1.0
B 8.10 3 3.24x10° 40.0 2.23 8.0
9.30 5 2.23x10° 24.0 1.54 4.8
(H=5.0cm)  10.9 7 1.86%102 17.1 1.28 3.4
12.8 9 1.70x10? 13.3 1.17 2.7
c 12.6 1 1.51x10° 120 5.37 20
13.0 3 5.20%10% 40.0 1.85 6.7
(H=6.0cm) 16.2 5 3.89x10° 24.0 1.38 4.0
19.6 7 3.35x102 17.1 1.19 2.9
22.8 9 3.03%10% 13.3 1.08 2.2
27.0 11 2.94x10° 10.9 1.05 1.8
31.2 13 2.88x102 9.23 1.02 1.5
33.9 1 4.07x10° 120 14.5 20
35.5 3 1.42x10° 40.0 5.05 6.7
Table 3 Dispersion characteristics estimated from Fourier phases of
observed displacement waveforms.
£ (u [P ACPRY . .
z)  ¢1(rad) (rad) (rad) c(em/s) A(em)  c/v A/H
$3 Ad3a
7.6 1.05 ¢ 0-765T  0.280m  1.26x10° 71.4 4.19 16.2
. . 0.372m 0.673m 1.05%10°  59.4 3.49 13.5
. 1.62 7 0.6207n 6.29x10%2 32.3 2.10 7.33
19. -
9:3 2-26 1.06 7 1.18 7 6.61x10% 33,9 2.20 7.71
25 LA G 1ygn 1063w 5.29x107 24.6 1.76  5.59
2.35 w 1.09 o 4.31x10%  18.4 1.44 4.19
23.4 343w 1.49 w 1.94 7 4.82x10% 20.6 1.61 4.68
1.96 1.23 = 4.14x10%  16.3 1.38 3.70
254 319 g gsgr 2,53 4 4.02x102 15.8 1.34  3.60
5 1
]
j FIRST
/' MODE FUNDAMENTAL
i MODE
4 -
057 xe
- PL .
g D\ 51 <
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S 0 V\/ V V' Vi 055;& > 3
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Fig.3 Displacement waveforms with their power spectra Fig.4 Experimental results of impulsive excitation
induced by impulsive excitation, and Love wave dispersion curves.

206s
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b) Impulsive response ;

In Fig. 3 are shown a set of displacement waveforms simultaneously observed at the three points P 1, P 2
and P 3 together with their power spectra. Apparently, vibration components of around 20 Hz are
predominant in each observed waveform, but difference in the waveform is appreciable. This is supposedly
attributed to dispersion characteristics of the Love waves induced by the impulsive excitation.

To demonstrate this supposition, phase velocity of the transient motions was estimated from Fourier
phase spectra of the observed waveforms by the following relationship

c_—_z,tfﬁ_é ............................................................................................................. (3)

where A¢ and A[ denote phase difference and distance between two observation points. Although the phase
velocity given by Eq. (3) is indeterminant due to multiplicity of the phase difference, extremely high or
low velocities compared with the shear wave velocity can be excluded from estimates for the present
purpose, Wave length associated with the estimated phase velocity is determined from Eq. (2).

Finally selected estimates are listed in Table 3, from which the dimensionless phase velocities ¢ /v are
plotted against the dimensionless wave lengths A/H as shown in Fig. 4. According to Fig, 4 in which two
lines are the phase velocity dispersion curves of the Love waves, it seems highly probable that the
observed transient motions were caused by the Love waves travelling in the specimen. Natures of the
impulsive response are to be analytically discussed in the following section,

3. DISCUSSIONS

(1) Eigen-solutions for a surface layer
Consider a homogeneous elastic layer with a uniform depth H resting on a rigid basement and a
right-handed coordinate system for it, as shown in Fig. 5. If only plane shear distortion in the y direction
is permitted to take place, the essential properties of the layer are its shear modulus G and its mass
density p. From dynamic equilibrium of forces acting on an infinitesimal rectangular element shown by
hatch in Fig.5, the equation of motion is given by?
9'u _ Oty
P or T ox
or alternatively

DU (MU DU e
P at2~G<ax2+azz)+f(x,z, 1) (5)

where f(x, z, t) is a dynamic force externally applied at the position x=x and z=z. Equation (5) isa

afyz
oz

+ +f(x, z, ) LR R R CRTETPE (4)

well-known differential equation for plane Love waves propagating in the x direction expressed in terms of
a displacement component. Since Eq. (5) holds regardless of a boundary condition for the layer, it applies
equally well to an elastic layer bounded by rigid vertical walls locating at x=( and x=1, as shown in
Fig. 6. It is a usual way to obtain the solution of Eq. (2) by setting first the applied force equal to zero,

Ty Ty,
dz TyxSTyx e
7 dx
- [
| X
dz (” )
H _—
: . H
, p .6 (RIEID) PG
/| " 7
X o (RIGID) L
Fig.5 Definition sketches of an elastic layer Fig.6 An elastic layer bounded by rigid vertical
overlying rigid basement. walls and basement,
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which is equivalent to evaluate motions in free vibration, The resulting homogeneous equation is

L 0% DU DM e (6)
vt ottt ox' 97’ ‘
where v=+/G/p.
Boundary conditions imposed on the bounded surface layer are
ou

u] 220=0, B2 2=H—:0 ............................................................................................ (7)

u!x:&}:u‘x:L:O ....................................................................................................... (8)
Expressing the displacement in geometric coordinates as

u(x, z, t): U(I)W(Z) exp(iwt) .................................................................................. (9)
and substituting this into Eq. (6) lead to

—0-); Ulx)W(z)+ W(z) dzU(f) + Ulx) de(22) S () et (10)

v x dz

where ¢ denotes vibration circular frequency. Solving Eq. (10) by integrating separately with respect to x
and z, and incorporating the boundary conditions of Eqs. (7) and (8), provide the circular frequency

and mode shape as

W _(2Zm+l 7\ () m=0,1,2,00 e,

vzn< 2 H) +( L ) n=1,2,3, (11)

Un(x):a Sinﬂ%x— .................................................................................................... (12)
g ain BN 2 e

Wa(z)=a sin 5 i B R LI TP T P T T PP PP SPTP PR 13)

where a is an arbitrary constant,
For Love waves, on the other hand, boundary conditions in Eq. (8) are not required usually, It is
known that the characteristic equation for Love waves in double-layered media is generally expressed by

where k=2 n/A, and the subscripts 1 and () refer to the upper and lower layers, respectively. In the
limiting case where the shear modulus of the lower layer is infinite, Eq. (14) is reduced to

W (ZmEL N I )
=)+ (%) 15)
or alternatively
2 + 2
%;(%l%) B P PP (]_6)

Equations (15) and (16) express the dispersion characteristics of Love waves in explicit forms, and were
used to draw the dispersion curves in the foregoing figures,

It is apparent by comparison of Eqs. (15) and (11) that the expression for the Love wave frequency is
quite similar to that for the natural frequencies of the surface layer bounded by the rigid side walls, The
only difference between the two expressions is that the wave length of the Love waves in Eq. (15) or (16) is
a continuous quantity, while that of the vibration modes in Eq. (11) is a discrete one which is specified by
the horizontal length of the layer I and an integer n. Hence, it will be useful to notice that in Eq. (11) the
vibration frequency obtained by setting the integer n equal to 2 and changing the surface length L
continuously in the interval (< < oo gives the dispersion characteristics of the Love waves expressed in
Eq. (15) or (16). This process to derive the dispersion characteristics from the discrete natural vibration
frequencies may seem to be anologous to a process to extend the Fourier series to the Fourier transform.

Anyway, the above mentioned equivalence in the frequency characteristics can be attributed to the facts
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that the expressions in Eqgs. (12) and (13) also apply to deflection patterns for a Love wave component
having the wave length of A=2 L/n, and that the zero displacement conditions in Eq. (§) are practically
satisfied by the Love wave component at every 2 s phase.

(2) Unit impulsive response

Response of the surface layer to dynamic loadings can be evaluated by the mode superposition procedure,
which permits us to express any responded displacements as

u(x, z, t)zyﬁ‘_'; Un(x)Wm(z)an(t) ............................................................................... (17)

where Qn,(1) denotes modal amplitude; and U,{x) and W, (z) are modal shape functions normalized as g
=] in Egs. (12) and (13).

Trigonometric funcions in Egs. (12) and (13) have normality®® which is written as

lLsin—@f—fisin nfx dx=0  (n¥*n)
“o.(2m+1 az\ _. (2m'+1 nz

[ s (B ) sin (P2
Thus, multiplying on both sides of Eq. (17) by U,(x) and W, (2) and integrating the resulting terms in the

intervals 0<x<L and 0<z<H, lead to an uncoupled equation of motion, giving

F e P G A P (18)
)dz=0 (m=+=m’)

an(t)+w$anmn(t)= RS (19)
mn
where a superposed dot denotes time derivative, and
=" i I s @mADaz o
an(t)—[[ flx, z, t)sin T osin g QLA (20)
=" i X s @ m A Drz —PHL -
an”j;l o sin I sin o0 dxdz= 4T e (21)

In deriving Eq. (19) from Eq. (5), the relationship in Eq. (10) was used.

When a unit impulsive loading applied at x=u, and z=2, is considered, the applied force can be written
by

f(x, z, t)=6‘(x—xo)3(z-zo)6‘(t) ................................................................................. (22)

where §(-) is the Dirac’s delta function. Substituting this into Eq. (20) gives

o naxe . (2m+1)xz, :
an( t)_sm T sin oH 5( t) ......................................................................... (23)

Noting that Eq. (19) is an expression equivalent to the equation of motion of a single degree of freedom
system, readily provides an expression of the modal response to the impulsive loading as

_ 4 1 .onmxe . 2m+1)rz, : :
an(t)—————pHL o, SIn—7—sin S SIN @gpk *reereereetrrraaae e (24)

In Eq. (24), it seems reasonable that the modal response to the unit impulse should be inversely
proportional to the mass density as well as the cross sectional area HI of the surface layer. Several
findings of interest can be drawn from Eq. (24). They are, for example :

i) Since the modal amplitude is inversely proportional to the vibration frequency, the fundamental
mode shows the largest amplitude. Regarding vertical higher modes, the amplitude becomes 1/3, 1/5, 1/7,
-- of the fundamental mode in correspondance with the mode number m equal to 1, 2, 3, ---.

ii) From Eq. (11), the fundamental frequency satisfies

OH S T e e, (25)

v 2
in which the equal sign is valid for the limiting case H /L — 0. In terms of the fundamental period T, Eq.
(25) can be rewritten as

Tg% .................................................................................................................. 26)

Introducing Eq. (25), or alternatively Eq. (26), into Eq. (24) and noting the above mentioned relationship
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between the modal amplitude and the frequency, provide a statement of what is called the quarter
wave-length law,
i) Modal displacements of the layer um,(x, 2z, 1) in geometric coordinates are given by

4 1 . naxe . nrx . Cm+lnz . @m+lzz . -
:pHLZ);;Sln I sy s ol sin o SIn wgpt- e (27)

This is a simple representation of the resiprocal theorem, indicating that the time-varying displacement at

point (x, z) induced by the unit excitation applied at point (x,, z,) is identical to the one at point (x,, 2,)
due to the unit excitation applied at point (x, z).

iv) When location of the unit excitation becomes deeper inside the layer, the resulting displacements
on its surface decays in magnitude. ;

Needless to say, all the above findings i )~iv) regarding vibration characteristics of the impulsive
response are valid to the Love waves as well'Y=1" The quarter wave-length law in the findings ii ) implies
that the vibration component given by T,=4 H /v will be most predominant in the impulsive response. If
the rigidity of the lower layer is finite, the predominant period of vibration becomes shorter than the
period T,. In the previously mentioned impulsive experiments, the predominant period was about 1/20 s.
The period predicted from the quarter wave length law is T,=4X4.4/300=1/17 in sec. Thus, the
observed predominant period is found to be a little shorter than T, but the difference between the
observed and predicted periods is slight. This consistency of the observation with the analytical findings
confirms validity of the foregoing formulations,

After all, we may conclude that shear vibration of a surface layer is well characterized by Love waves in
the layer, as far as motion of the layer treated in this study is conserned.

4. CONCLUDING REMARKS

Experiments followed by theoretical discussions have demonstrated that shear vibration of an elastic
surface layer is characterized by Love waves. Although the present study is limited to the simplest case
where only shear deformation is permitted to take place in the medium rested on a rigid basement,
extension of this kind of study to more generalized cases seems to be prospective!®.

In principle, both surface wave and natural vibration have been interpreted as mathematical solutions of
an eigenvalue problem, Difference in each solution procedure or solution itself derives from boundary
conditions concerned. For surface waves boundaries are usually extended to infinity, while those of finite
length are set for natural modes of vibration. From this point of view, it would seem that this article has
dealt with a self-evident truth in a sense. Yet, it is to notice the self-evident truth that will be useful and
helpful in the vast majority of cases to be met in the field of earthquake ground motion,
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