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A CONSIDERATION ON THE EQUIVALENT LINEARIZATION OF
RESTORING FORCE CEARACTERISITICS OF STRUCTURES

By Hiroyuki WATANABE* and Hitoshi TOCHIGI**

Concerning the dynamic response analysis based on the equivalent linearization of the
restoring force characteristics of structures, some examinations taking the mechanism of
the analytical procedure into consideration have been conducted with one-degree-of-free-
dom system, As the results, the extent of difference between the solutions by equivalent
linear method and exact ones for both steady and unsteady conditions have been
clarified, The causes of difference have been also clarified. With these results the limit of
validity in the application of the equivalent linear solutions to the seismic design of
structures has been shown clearly. Throughout the process of above consideration some of
new knowledge concerning the numerical procedure for non-linear dynamic analysis have
been obtained and reported.

1. INTRODUCTION

It is well known fact that the force-deflection relations of structures show non-linear hysteretic curves
during strong motion earthquakes without regard to the materials such as steel, reinforced concrete and
soils, Seismic responses of structures beyond yield point have been investigated since Tanabashi’,

Loading tests of completely reversed tension and compression beyond yield stress on steel specimens are
conducted frequently as the low cycle fatigue tests aiming at measuring thermal fatigue? | and many studies
are performed trying to formulate hysteretic stress-strain relations”. From the viewpoint of predicting
the response behaviors of steel structures during strong motion earthquakes, Nakamura et al.? propose
rather general constitutive equations of steel beyond yield point. One of the authors performs an
experimental study to examine the effect of strain rate on the hysteresis loops of mild steel in main
frequency range of earthquake motions?. Instead of steel specimens frames, columns etc. are used in
plastic region repetitive loading tests by many researchers such as lgarashi et al. ¥, Hanson%etc,

Lots of studies concerning the restoring force characteristics of reinforced concrete frames(abbreviated
as RC in the following) have been performed here and abroad. Odaka and Saito” show that every shape of
hysteretic curves of RC frames changes from bi-linear type to medium type between bi-linear and double
bi-linear? as applied axial force is changed. Clough and Johnston® propose Degrading Stiffness system of a
multi-linear type for RC frames. Aoyama et al' investigate the behaviors of RC portal frames subjected to
reversal of horizontal forces under vertical loading and clarify the mode of failure, frame stiffness and its
reduction. Shiga et al. "V compare static hysteretic load-deflection loops of RC frames with dynamical ones
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196 H. WATANABE and H. ToCcHIGI

and show that the static loop is very similar to the dynamical one. They investigate also experimentally
damping and stiffness of two story RC frames'”?. Funabashi et al. ¥ perform static repetitive horizontal

loading tests and forced vibration tests on a steel frame with steel braces and syporexes as aseismic
elements and propose a load-deflection curve of double bi-linear type. Abe et al. ™ propose Degrading

Siffness Model for RC frames. Tani et al.'¥ propose a unique normalized hysteretic curve for RC frames
normalizing the load-deflection relations with both maximum load and deflection and name it Normalized
Characteristic Loop. Nielsen et al. ¥ propose Degrading Bi-Linear System of a multi-linear type of which
stiffness is reduced when the response deflection exceeds the preceding maximum response,

The dynamical stress-strain relationships of soils are usually described by the secant moduli defined
with extreme points of stress-strain hysteretic curves and the equivalent viscous damping constants,
Hardin and Drnevich® formulate strain amplitude dependence of above dynamic constants by hyperbolic
model etc. Formulation of constitutive equations for sands has been almost brought to completion’®, There
may be, however, only a little papers where shapes of stress-strain hysteresis loops are investigated.
Kitaura® performs dynamic loading tests on a model structural foundation-surface layer system and shows
that the shapes of restoring force-relative displacement relationships of sand layer are similar to the
inverse letter of S and formulates the restoring force curves with a modified Ramberg-Osgood
model(abbreviated as R-O model in the following). Hara et al. ® measure the dynamical properties of
Kwanto-Loam and show that no frequency dependence is observed in damping constants. One of the authors
proposes bi-linear model for dynamic stress-strain relationships of crushed stones®.

As mentioned above the actual states of restoring force characteristics are being clarified for each sort
of structural elements or material specimens. In applying these restoring force characteristics to seismic
response analysis of structures we have to express them as simple as possible because every structure
consists of lots of elements. We have a equivalent linearization method as one of the simplification
procedure of restoring force characteristics. A fundamental principle of this method is that every
hysteretic curve is first replaced approximately by that of visco-elastic Voigt model with a certain assumed
spring constant. Then critical damping ratio of one-degree—of-freedom system is defined so as to make the
loss energy per a cycle of original hysteresis be equal to that of Voigt body. lemura et al.?® show that
dynamic constants thus derived from loss energy balance coincide with those of the least mean square error
method. The equivalent linearization technique is devised originally for the system of which non-linearity
is not so strong, so that the spring constant is established primarily as initial tangent modulus of hysteretic
curve. Consequently equivalent viscous damping constant has a upper limit such as 15.9 % for both
bi-linear and R-O models® ®_ In soils, however, maximum of usually described damping constant is larger
than above and attains to 20 ~30%. This discrepancy comes out of the difference between both values of
elastic potential energy®. Jacobsen” proposes to adopt “Work Area Under Skelton ”as potential energy
recognizing that there is an ambiguity about its definition. Kokusho et al.® clarify nonlinear response
behaviors of a model sand layer excited on a shaking table and simulate the experimental results with
seismic response analysis applying dynamic constants of sand obtained by above equivalent linearization
technique in soils and show that calculated acceleration responses to the excitation of recorded
accelerograms agree considerably well with observed responses in both peak amplitudes and phases but the
discrepancy appears remarkably in the smaller parts. On the other hand Tani et al. ® examine numerically
seismic response behaviors of one-degree-of-freedom system with various sorts of multi-linear hysteresis
loops and point out that there exists an influence of configuration of slip type in hysteresis loop on the
calculated responses. Thus it seems that the equivalent linearization technique is practically valid, but its
applicability seems to be limitted. In this paper, taking the mechanism of equivalent linearization technique
into consideration, it is examined with one-degree-of-freedom system whether the equivalent linearization
technique is valid or not, how much discrepancy develops between exact solutions and equivalent linear
solutions both in steady and random responses and what is the reason for above discrepancy if it appears,
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2 COMPARISON OF EQUIVALENT LINEAR SOLUTIONS AND EXACT ONES IN
STEADY STATE RESPONSES

(1) Summary of solutions based on the method by Kryloff and Bogoriuboff

As for steady state responses of single-degree-of—freedom oscillators having hyseretic force-deflection
relationships to sinusoidal excitations Jennings? shows that approximate analytical solution based on
Kryloff-Bogoriuboff method (abbreviated K-B solution in the following) agrees well with exact one. In this
paper we confirmed it too as shown in Fig. 10. So that, it will be valid for us to compare the equivalent
linear solutions with K-B ones. The equation of motion for the forced vibration of a mass m mounted on a
spring of which restoring force is expressed by the function F(x, 1) of both time t and relative displacement

x is

m:’{':+F(x,t)=,ﬁ) COS F --rvererer e e s ( 1 )
Let :

k/m (Uo, w l=r1, x/xy y, F,= kxy, cu/wo 7, _ﬁ;/Fy—_-f ....................................... (2)

where k represents the spring constant in initial or micro-displacement and x, represents a yielding or a
characteristic displacement, Substituting Eq. (2) into Eq. (1) we obtain following expression.

Q2 Y/ AT F (Y, 2)] Fymf QOS Qre+seseesssssssessssss sttt ittt (3)
where g,z represent normalized displacement and time respectively, f represents amplitude of normalized
forced acceleration and 7 represents normalized frequency. Solution of Eq. (3) for the steady state

response is obeained as follows

y( ):yocos(nz—+¢o) ............................................................................................... (4)

X=02=1=Co )/ Yo— 1A (F 150 P —1S(Yo ) [y [P ++evreeeeremmmmrmmmmmisirs (5)

tan ¢,= (yo)/{c(yo)_yo} .......................................................................................... (6)
1 = Fly,cos 6,7)

C(yo)=;£ Aﬂﬁﬂ_cosgdg ......................................................................... (7)

Sty ) =L [”Mﬁ%&lsm D e SO OO O O (8)

where S(y, ) is in proportion to the area bounded by the hysteresis loop. In resonance following equations
have been derived from Eq. (5) to determine the resonant frequency and the maximum amplitude.
P20s= ClUo )/ Yoy S(fo Yo JF +ovreremserssss ettt (9)
(2) Mechanism of equivalent linearization technique
Let k., and c., be the equivalent spring constant and viscous coefficient respectively and let

Koo/ k=1% hea= Ceq/(Z«/M) .................................................................................. (10)
then Eq. (3) becomes

‘fifz/+2heqxdy+xy FQOS 7+ ereeeeemeseseeen e PRI an
Substituting Eq. (4) into Eq. (11) resonance curve and phase angle are obtained in the following
expressions,

RN — 72 P d g 7o 2 e 12)

tan ¢0:_2 heq x 77/(76 .“772) ........................................................................................ (13)

Letting AW be the area bounded by the hysteresis loop and letting W= k., ¥5/2, equivalent viscous
damping constant h,, is given in the following expression,

Progm= AW J(& JEW) oeereeeme e (14)
AW derived for general hysteresis loop is found to be in proportion to S(y,), and following expression is
obtained for Eq. (14).

Prog™ — S(fo /(2 P 2 )-vrrerermereemen e (15)

The parameters x? and h,, in Eq. (11) correspond to dynamic constants of soils such as G/G, and h
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respestively  and y, corresponds to y/7%, in soils'”, Eq. (11), for an example of the simplest simulation
of general structure, is solved first numerically with given initial values of x* and }.,. Then defining new
values from the constitutive equations, that is, relationships of x*~ y, and h,,~ y, with above solution y,,
Eq. (11) is solved again. Above operations should be iterated untill the solution comes to be compatible
with the constitutive equations. In the present simplified simulation, however, the solution for steady
state response of the equivalent linear system to sinusoidal excitation can be obtained analytically such as
Egs. (12), (13) and (15). With similar form to K-B solution, the equation of resonance curve is derived
from Egs. (12) and (15) as follows

X=7p"—1=(1—2h%,) xz—lix/f"’/yﬁ— S(yo (L hZg) [yl -eereeeeemmmmeereee et (12)’
When the equivalent viscous damping is sufficiently small, that is, A2,<1 above equation becomes
X=0"=1= =14/ 50 P—{S(Yo ) [YoJF +-rreremmeemmmeeie e (16)

On the other hand, equating the loss energy due to hysteresis loop to the one due to viscousity of the
equivalent linear system, following equation is obtained,

heq:"'s(yo )/(2 k’?yo) ................................................................................................ (17)

Comparing Eq. (17) with Eq. (15) it is reconfirmed that above two equations coincide only in resonant
condition. Moreover, noting that Eq. (16) comes rigorously into extence when Eq. (17) is substituted into
Eq. (12), it may be said that in numerical analysis with the equivalent viscous damping constant defined
with Eq. (15) the loss energy balance holds accurately even in any frequency range out of resonant point if
the value of A, is small to the extent as h2,<1. The resonant frequency and the maximum amplitude are
derived from Eq. (16) and are given in similar form to K-B solutions (9) as follows

Dasm= a2, S(fo Joof verevrreeremee e (18)
It is evident from Eq. (15) that the equivalent viscous damping constant though defined from a unique
hysteresis loop gives different value if the definition of equivalent linear spring constant x* is different. As
is evident from Eq. (18), however, the response amplitude in resonance remains constant independently of
definition of x® because it is to be determined only with the area bounded by hysteresis loop and the term of
external disturbance,

(3) Comparison of equivalent linear solutions and both K-B and exact ones

The equivalent linear solutions linearized with secant moduli of hysteresis loops in the steady state
responses were derived for bi-linear model, R-O model and 4 sorts of tri-linear models which show various
restoring force characteristics according to the path of maximum response amplitude. Besides, K-B
solutions in the steady state responses were derived for above 4 sorts of tri-linear models. These results
are tabulated in Table 1 and calculated resonant curves are shown in Fig. 1. This indicates that resonant
amplitudes in both solutions coincide perfectly for every model and yet both resonant curves are very
similar to each other except for a slight difference between resonant frequencies, K-B solution with R-O
model was compared with exact one which will be gone into details later. In any way Fig. 10 (b) indicates
that both resonant curves coincide almost perfectly.

3. COMPARISON OF EQUIVALENT LINEAR SOLUTIONS WITH EXACT ONES IN THE
RESPONSES UNDER RANDOM EXCITATIONS

(1) Comparisons of responses and these Fourier Spectra to earthquake excitations

The term of earthquake excitation f;(2) is to be used instead of sinusoidal term in Eq. (1 ). Normalizing
as Eq. (2) and substituting following non-dimensional acceleration f (<) for £, (#)in Eqs. (3) and (11) we
have the equations of motion to obtain both exact and equivalent linear solutions.

T fo (B) ) Fy e eree oo e ettt (19)
When f, (%) is given in time interval A}, time interval of Ar is to be given as follows
A T @y A T reee e e e (20)

We used linear acceleration method in step-by-step integration and stress transfer method in non-linear -

174s



A Consideration on the Equivalent Linearization of Restoring Force Characterisitics of Structures

199

Table 1 Equivalent Linear Solutions and K-B Solutions,
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Resonant Curves by Both Equivalent Linear and

freedon system was adopted to be 10 (rad /s) so as
to make its natural frequency come to the range of
1.0 to 2.5(Hz). The maximum value of f(7) was
set to be 2.(, that is, two times of yielding point.
R-0 model was applied in the calculation of exact
solutions with parameters of ¢=(.1 and r =7.
Relationships x*~y, and A.,~ 1, in Table 1 were
used for constitutive equations in calculating
equivalent linear solutions, Effective amplitude by
which new dynamic constants in each iterative
calculation should be determined was adopted as
2/3 of maximum response displacement as comonly
used. We named this coefficient as “Coefficient of
Effective Amplitude” temporally in this paper. .
Several examples of the response acceleration,
velocity and displacement are shown in Fig.2 to
Fig.4 and these Fourier Spectra are shown in
Fig.5 to Fig.7.

Acceleration responses in above figures indicate
that the equivalent linear solutions agree consider-

ably well with exact ones,

¢ especially better in

ear

maximum value of every case. As a whole similar
tendency to the one reported by Kokusho et al. #® is
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recognized. As for velocity responses the coincidence in near maximum value is comparatively well too in
each case, however, exact solutions become considerably larger in the parts of small responses.
Moreover, in these parts smooth responses of even period like in steady states appear and components of
shorter periods seem to diminish. This fact suggests that in exact solutions the restoring force
corresponding to the parts of small responses still remains near to linear range so that the component of
resonant frequency of the range in input accelerograms comes to be dominant easily because of small
damping. Concerning displacement responses the tendency like to velocity becomes more remarkable.
Above all, we sometimes find that exact solutions come to be considerably larger than equivalent linear
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ones even in near about maximum responses, This fact suggests that damping constant has some possibility
to be rather overestimated.

Fourier Spectra of responses come to be more smooth as a whole than those of input accelerograms and
show such tendency that only remarkably dominant components of input accelerograms remain in
responses, Specially, we can find that Fourier Spectrum of every response such as acceleration, velocity
and displacement in exact solutions predominates remarkably near at the frequency of 1. 6 (Hz) which is the
natural frequency of calculated single-degree-of-freedom system with initial stiffness of hysteresis loop.
At the frequencies except for above natural frequency where Fourier Spectra. of input accelerograms
predominate too, every one of Fourier Spectra of equivalent linear solutions coincides nearly with
corresponding one of exact solutions. There are not a few structures where response accelerations near
about maximum value are important in engineering judgement. For such cases it may be said from above
facts that equivalent linear solutions are practically valid even to earthquake excitations, As for
displacement responses, however, maximum values are sometimes underestimated in equivalent linear
solutions rather than in exact ones, so that equivalent linear ones are sometimes possible to provide data in
dangerous side from viewpoint of design. The reason why such phenomenon comes out is not known,

however, it is considered that “Coefficient of Effective Amplitude” previously named temporally is
possible to be a cause.

(2) Influence of the coefficient of effective amplitude on equivalent linear solutions

Expressing the coefficient of equivalent amplitude as & the converged values y, in equivalent linear
solutions were calculated with various values of ¢ and compared with corresponding maximum response
displacements in exact solutions. The results are shown in Fig. 8. The solutions of g, except for those to
El Centro EW and Taft EW show a tendency to decrease because of the increase of damping as ¢ is
increased, As for the response to Taft EW, for an example, above tendency seems to be stable for the
value of £ greater than (. 6, but it comes to be reversed when ¢ is put to 0. 5. Moreover, putting £ to . 4, 1/,
begins to jump one after the other between two values at different times (t=4. 48 sec and t=7. §1sec in the
original accelerogram in this case). This phenomenon comes out from that the response at one time point
calculated with dynamic constants defined by maximum response at the other time point in previous
calculation becomes to be newly maximum. Even in tne responses to the other input accelerograms which
show stable tendency in Fig. 8 the same phenomena appear when the value of £ is decreased extremely, We
sometimes experience also similar jumping phenomena in seismic

response analyses with common value 2/3 of & for practical design.

EW NS
< —
Concerning a countermeasure for these phenomena it will be thought :\2{ s %%entro om0 &

up to take such an expedient that among several maximum responses 40 :%_l)’ mpia 0——a

E-Zxact Solution

jumping one after the other we should select only one considered to be

most suitable and attempt the convergence of dynamic constants with

it. In addition to above phenomena Fig.k 8 shows that every value of y,

calculated to every input accelerogram with £=2/3 is considerably % e ’FA.L ~\\‘Fxﬁct Solution
smaller than exact one. This fact indicates that damping constants are T 30 8 T\ N i=z
overestimated in equivalent linear solutions because of an excess of ) =T Tl
effective amplittudes estimated with £=2/3. There may be no value f\ .

for the coefficient of effective amplitude coming into common use to _“\V-_

every input earthquake motion, however, some definite value will be

necessary from the stand point of aseismic design of structures, 20

Averaging all values for £ with which g, in every equivalent linear 03 06 3 10
solution agrees with exact one in this paper {j. 48 was obtained though *—E’éﬁf?iii?f z:nplitude( E)
the number of used accelerograms was only 5. Then we would like to Fig.8 Effects of Coefficient of
propose the value (.5 as the coefficient of effective amplitude which Equivalent Amplitude,
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may be somewhat better than 2/3.

4. SOME PROBLEMS IN NON-LINEAR SEISMIC RESPONSE ANALYSIS AND A
CONSIDERATION ON THEM

(1) Effect of formulation of hysteresis law applied to calculation

In above calculations for exact solutions R-O model was used in obedience to following hysteresis law,
We have only to specify the rule to determine a new hysteretic curve which is to be traced after the
direction of restoring force reverses at any time on arbitrary point because we start from a skelton curve
and so we have always initial hysteretic curve memorized as K, in the sequential calculation. We have only
to specify above rule in either one of ascending or descending stage of loading because the skelton curve is
symmetry with respect to the origin. Following five hysteresis curves K,~ K; include every cases. Fig. 9
shows the following hysteresis law.

a) Letting skelton curve be K, and its initial tangent be K7 the latest hysteretic curve coming over K;
in ascending state or under K, in descending state should be memorized as K, in computer,

b) Whether an alternating load is in ascending state or in descending state should be decided (suppose
ascending state in the following).

¢) When reversed point is situated out of the loop bounded by K, and K, as well as over K, new
hysteretic curve being to be traced hereafter should be determined as follows, Letting the coordinates on
K, where the new hysteretic curve is to intersect be unknown parameters the simultaneous equations
consisting of one equation of above new hysteretic curve into which the coordinatres of reversed point are
substituted and another equation of K; should be solved wiht Newton-Raphson method etc. Letting the
solutions be starting point on K; new hysteretic curve should be determined and memorized as K,.

d) Inabove c) when reversed point is situated too close to K; above unknown parameters can not be
obtained easily. Then we had better to obtain the unknowns approximating the new hysteretic curve as
linear. The new hysteretic curve thus obtained should be memorized as K, though it is a sort of K.

e) When reversed point is situated within the loop bounded by K, and K, or under K3, the new
hysteretic curve should be determined by letting reversed point be the starting point and memorized as K,
in the former and K, in the latter,

£) When the responses of restoring force and displacement tracing along K, cross over K; or reversed
point exists over K, from begining K, should be memorized as new K, hereafter. When above responses
attain to K, or K, tracing along K, or attain to K along K, or K, the new hysteretic curve which is to be
traced hereafter should be K, or K, in the former and K; in the latter,

Above rule ¢) is so important that the response displacements do not become symmetry even in the steady
state solutions if it were neglected. Fig. 10 shows, for example, the steady state solutions with R-O model
to sinusoidal excitations. Upper two figures in Fig. 10 indicate that in neglecting above rule the resonant
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curve obtained from each amplitude in plus and minus sides is separated to upper or lower part away from
those of K-B solution and equivalent linear one. Lower two figures in Fig. 10 show that the error has been
removed by applying the rule ¢), and besides K-B solutions coincide almost perfectly with exact ones,

(2) Influence of configuration of Slip Type in Hysteresis Loop

In order to examine the influence of configuration of slip type in hysteresis loop pointed out by Tani et al,
the steady state responses to sinusoidal excitations were calculated with a Tri-Linear model T-] shown in
Table 1 which is simplified from load-deflection curves observed in bolted connections in suspension tower
and shows elasto-plastic behavior in the range from yield point to a certain displacement followed by strain
hardening . Some examples of calculated results are shown in Figs. 11 and 12, The left hand side respornses
show input motion, restoring force, acceleration, velocity and displacerment in order from lower part to
upper respectively. The right hand side figures show the loci which displacement and each of acceleration,
restoring force and velocity draw. It is evidently observed in the figures that response acceleration
changes suddenly as soon as restoring force comes in plastic range., The reason, as is evident from Eq.
(3), is that surplus part of external force which can not be supported by restoring force changes into-
response acceleration in reversed direction, Fig, 11 is a result of response to sinuscidal excitation of which
frequency is smaller than natural one of the system, so that the phases of excitation and response are
reversed. On the other hand, as shown in Fig, 12, the locus with frequency larger than natural one becomes
milder and we obtain more smooth acceleration responses. From above examination it has been revealed
that the configuration of slip type in hysteresis loop does evidently influences on acceleration responses,

(3) Comparison of stress transfer method and incremental strain method

Numerical integrations were carried out with stress transfer method® and incremental strain method in
order to examine the degrees of accuracy in them. Previously used R-O model was used again,

As shown in Figs, 13 and14 all responses calculated by both methods with time mesh defined so as to make
the discrepancy between both solutions become within 1 % coincide very good in both configuration and
magnitude, As for operating time much more time will be needed in incremental strain method in order to
obtain above extent of accuracy, however, permitting the error up to several per cent operating time in
incremental strain method comes to be relatively less than in stress transfer method.

5. CONCLUSION

The following conclusion can be derived from the previous statesments;

(1) Equivalent viscous damping constant, though defined from a unique hysteresis loop, gives
different value if the definition of equivalent linear spring constant is different, however, the response
amplitude in resonance becomes constant independently of definition of spring constant because it is to be
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determined only with the area bounded by hysteresis loop and the term of external disturbance.

(2) The loss energy balance between original hysteresis loop and equivalent linear system holds
accurately in any frequency range out of resonant point if the values of he, is sufficiently small,

(3) Concerning4 sorts of Tri-Linear models which show various restoring force characteristics K-B
solutions and the equivalent linear solutions have been newly derived for steady state responses, Besides,
concerning Bi-Linear model and R-O model the equivalent linear solutions have been newly derived too.

(4) The equivalent linear solutions linearized with secant moduli of hysteresis loops are very good
approximate solutions for exact ones as far as concerning steady state responses.

( 5 )Above equivalent linear solutions under earthquake excitations approximate considerably well the
exact ones in acceleration responses, especially good in near about maximum response, however, the
discrepancy of them from exact ones becomes large in the parts of small responses.

(6) Indisplacement responses of above equivalent linear solutions under earthquake excitations, the
values of maximum responses are sometimes underestimated This causes of applying 2/3 of maximum
amplitude in constitutive equations. (.5 is proposed in this paper,

(7) Concerning the formulation of hysteresis law any drift appearing in responses due to numerical
error can be removed by specifying the rule that new hysteretic curve should start always from a skelton
curve, And the effect of configuration of slip type in hysteresis curve on acceleration comes out from such
mechanism that surplus part of external force which can not be supported by restoring force changes into
response acceleration in reversed direction so that corresponding response acceleration is transformed.

(8) With sufficiently small size of time mesh solutions by incremental strain method coincide almost
perfectly with those by stress transfer method, but much more operating time is needed in incremental
strain method, Permitting error of several per cent, however, it becomes less relatively,
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