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3-D DYNAMIC ANALYSIS OF GROUND MOTION BY FEM
WITH NON-REFLECTING BOUNDARY

Takanobu SUZUKI* and Motohiko HAKUNO**

Dynamic Finite Element Method is frequently used in analyzing wave propagation
problems. In the case of infinite or infinite half media, the presence of artificial boundaries
introduces wave reflections from boundaries. Authors tried to solve the problem applying
Smith-Cundall’s method and extended the method to three dimensional problem. Smit-
h-Cundall’s method is to solve the problem by superposing two types of reflected wave from
Dirichlet’s and Neumann’s boundaries. This method is theoretically complete. Authors
made clear the weak point of the method, however, the influence of the weak point on the
computed results is small, therefore, the results by this method is reliable. This method
treats problems in time domain, so nonlinear problem such as liquefaction can be solved by
this method in near future,

1. INTRODUCTION

Frequent applications of the Finite Difference Method and Dynamic Finite Element Method using
numerical analysis are made to wave propagation problems. However, in many cases artificial boundaries
are set when modeling analysis media. When ground motion propagation on infinite, or infinitehalf
boundaries, is considered, the waves which should propagate to infinite distance are reflected by artificial
boundaries and do not remain within an analysis model, which nullifies computed results. If there is a
computer with sufficient capacity to allow setting of large numerical analysis, the influence of boundaries
can be neglected. However, it cannot be applied to actual instances. In order to solve these problems,
therefore, many boundary treatment methods have been proposed as follows :

(i) “Viscous Boundary” proposed by Lysmer and Kuhlemeyer is provided with a dashpot at the
boundary to absorb incident wave energy at the boundary (1961) 1).

In the case of actual wave incidence, the cofficient of the dashpot becomes constant, but it cnnot be called
theoretically perfect against incident angles because it is generally dependent on frequencies,

(ii) “Transmitting Boundary” proposed by Lysmer and Waas, makes, surface waves, propagating on
elastic bodies on a rigid base, work on lateral boundaries by establishing a formula for the waves by
FEM. 2)

The theory is perfect on assumption of modeling, and boundary conditions dependent on frequencies are
provided. However, it is considered that assumption on a rigid base is not practical, and its improvement is
being worked for.

(iii) “Superimposing Boundary” proposed by Smith, is a combination of the Neumann condition and
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Dirichlet condition, by which reflected waves of phase and antiphase are produced to eliminate reflected
waves by taking the average of both waves 3) (1974).

This treatment method is excellent for incident angles at boundaries because of its non-dependence on
frequencies, but its weak point is that reflected waves cannot be eliminated when the waves again reach the
limit of the boundaries. The same treatment method as this has been proposed by Tamura and Nakamura 4)
(1976).

(iv) The aforesaid weak point has been removed by Cundall and others by improving the boundary
treatment method proposed by Smith 5) (1978).

The details of this method will be described in Chapter 2. However, it is considered that the method is
perfect from the theoretical point of view and that there are few adverse conditions in analysis models,

Although many other methods have been proposed, only the representative examples above are
introduced here,

For example, a method to obtain variables on boundaries by substitution has been proposed by Akao and
Hakuno, however, it is considered that the method is lacking for general application (1980). 6)

For response calculation of the ground-structural system, the above boundary treatment methods, and a
combination of these are used as required. In the famous programme, called “FLUSH”  “Viscous
Boundary” is used in combination with “Transmitting Boundary”. 7)

On the other hand, it has been proposed by Kunar and others that the method by Cundall be applied to the
lateral boundary and the models with viscous boundary be applied to the bottom boundary. (8)

Another method has been proposed by Akao and others, which is a response calculation method made by
the combination of the aforesaid substitution method with the analysis method for multi-layer ground. (6)

Now, representative boundary treatment methods (i) through (iv) as aforesaid can be classified into
two groups, (i), (ii) and (iii), (iv) ;the former is dependent on frequencies and does not allow the
existence of reflected waves, while the latter is not dependent on frequencies and is based on the
assumption that reflected waves exist.

In this paper, it is considered that wave propagation problems in elastic media be solved in the time
domain. Application of the boundary treatment method by Cundall to three dimensional problems indicates
that an equivalent analysis to infinite domain can be made by finite models,

2. THEORETICAL BACKGROUND OF NON-REFLECTIVE BOUNDARY

(1) Methods by Smith and Cundall

It was proposed by Smith that the reflected waves produced at boundaries could be removed by neatly
superimposing Neumann's condition on that of Dirichlet. It was with Cundall that boundary conditions were
contrived further based on the idea proposed by Smith, Now, the difference between the two can be
examined using a simple model.

Wave Equation on 1 :

2 2

aat'l::cz aax'l: § OO (), B> +vveee e (1)

The solution of equation (1) for the free boundary has a reflected wave in the same phase as the incident

wave and a reflected wave in the opposite phase for the fixed boundary, therefore, by taking an average of
these two solutions, the term of reflected wave is erased. This is the superimposing boundary proposed by
Smith. On the other hand, the method proposed by Cundall is based on the assumption that Equation (2)
is satisfied.

ou

.é.i_(o’o):_c.f'(o)’ %:f’(o) ................................................................................. (2)

If solved by a boundary condition as expressed in Equation (3 ), solution as expressed in Equation (4)

is given,
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au( 0,0)==— €7 () ++++vsrrreesermeesanee et e et (3)
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When Equation (4) is substituted in Equation (3), the following solution is obtained [Equation (5)].

2 , , ,

SHEO=—clf (—ch)+A S (—ctl=—c/ (0)

1= O e,
A=—1+ g (5)

As shown in Equation (5), A, becomes a function of ¢, therefore, 1, does not satisfy the original wave
Equation (1). As stated hereinafter, however, the time of reflected wave within the boundary region is
only (3-4) xAt. Therefore, A, within microtime, seems to be constant, which does not make any
difference. Eventually, a larger factor seemed to prove that the adequacy of this of this method is that
wave FEquation (1) has symmetrical expression to ¢ and ;. Boundary conditions in i) and ii) have also
expressions symmetrical to the first differential of ¢ and the first differential of x. It seems that if y, of
Equation ( 6 ) has an error, it has symmetrical expression against the error in analysis y, of Equation(§).
Therefore, they will completely compensate each other in the process of adding 1, and 1,

Therefore, the following Equation is given.

u;(t,m)=f(x—ct)+{—-1-1-7{;—(%%}‘f(—x—ct) ........................................................... (6)

If solved by a boundary condition as expressed in Equation (7), solution (as expressed in terms of 1)
is given in Equation (8)
ou u

the same as in ).

B

ﬁ) ax(to) ax(oo) f(o) .................................................................................... (7)
UQ(t,JS)'—’f(.’L‘—Ct)‘*‘{l—;/(f?;)}f("‘x_Cl) ............................................................... (8)

The reflected waves can be erased by calculation of (4,/u,)/2.

Initial condition of waves moving to the positive direction of x is satisfied in y, and y, while the initial
condition is satisfied under the condition of f(x>0)=0. The differerence in limitation of this initial
condition of f(x)is of importance, and will be the decisive factor in the difference between the two. In the
method by Cundal, initial condition in any time, f=1,(>>0), can be set :

u(to,x)=f(x—cto) gt(t"’) Cf( Cto) gx(to’()) f(—Cfo) ................................. (9)

However, it cannot be set by the method by Smith,

The initial condition is renewed and reflected waves are erased in A# of uniform time interval in the
method proposed by Cundall, therefore, the domain in which reflected waves exist can be limited to a small
domain near the boundaries (—cAt<x<0).

In the method proposed by Smith, reflected waves proceed to all domains, and when reflected waves
from the point, =0, are reflected again to reach the point of x=0, if other boundaries exist, it has the
weak point that it can erase the waves no longer. However, the method by Cundall solves this problem.
Analysis of assumptively infinite domains can be made in finite domains for as much time as desired.

(2) Application of Cundall’'s method to Three Dimensional Problems

a) When the followwing condition of non-reflective boundaries is considered,

1 2°u_0o°u_ 2*'u_ 2'u_

c® ot'  ox®  ay* ozt
the waves proceeding to the z direction are generally expressed as follows :

u (2,2,0,2)=exp (iEx+ iny+ ifz— lot), (20 H =2/l E30) e, (11)
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As is the same case with the first dimension, trial calculation of the amplitude of reflected waves is made
under Neumann and Dirichlet conditions as follows . (They are expressed in terms of A" and A”

resectively. )

?;;(t 0,¥,2)=—iw(l+A”) exp (iny+ ifz — lwt)=—iw exp (iny + ifz— lwi,)
A”z—l—i—exp(iw(t—to)) ............................................................................. (12)
U (1,0,9,2)= it (1— A") exp (iny+ itz — iwh)= i€ exp (iny+ itz — iwto)

ANZI —exp (iw(t“ to)) .................................................................................. (13)
Therefore, if the average of the two solutions obtained from i) and ii ) is taken, the terms of reflected
waves in the equations are erased.
Now, in the case of condition i), the following equation is given,

ou . . . _ou;
ay(t 0,y,2)=tu exp (iny+ifz lwto)““"ay (20,0,9,2)
. . . . ou; A
au(t 0,5,2)= it exp(zr}y+b§z—La)to)=“a‘g(to,0,y92) ................................................... (14)

b) Combination of Neumann's Condition and Dirichlet’s Condition in 3 D Elastic Media
Equation of 3 D elastic media is expressed as follows :
az
o
where, p . density, A, u . Lame constant
When the above equation is expressed using potentials, the following equation is given,

(/\+2,u) grad (dl’l) u) ,urotrotu u= (u v,w) ................................................. (15)

DB amr g AT e
atz—a Vig,a"'= P (16)
atz =87V 24 ;}922%, A=Az, Ay AL), U=grad ¢+Tot A - an

Now, in the case of incidence of waves into the boundary of x=0, like a), it may be solved by boundary
condition as to ¢ and A as described in a). As ¢ and A are obtained independently, combinations of

boundary conditions as shown below are considered,

c o[B8 OAx DAy OAz e
i) (55 Bz ar a0 ’”“St}x:o (18)
. O OAx  OAy DAz L
ii -a) {8t’ 3t ox' ox ’C°“S‘}x=o (19)

Note “Const” means constant regardless of time. (only y and z become functions)
In the case of combination of i—a) the following equation is given,
OA, OA oA, 24,
27; 5t (ai +~§gj_ az”) 57 (gi>+ ( 57 >_% (.é_t_> ................................... (20)
Therefore, the following is obtained,
ou
Il | x-o0 ,
Now, explanation is given as to why A, at left of equation (20) becomes constant, By equation (18), the

following equation is obtained.

o'u _
ot?
2
Where : 9 e =
t x=0
and the following equation can also be establised.
V ZA lx:o:()
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Therefore, it must be as follows ;

I’A,

ox?

From equation (22), equation (23) is obtained.

ov _ @ <a¢> 2] <8Ar) 2" A,
j— P +7 J—

=const
x=0

=57 55) 55 (2 S (22)
av Pl 6 8 10 1) AR R R I I I I I R AR
™ x=0~const (23)

Therefore, the following combinations are obtained,

: OU DU OW il e
i -b) {815’ ox’ ax’CO“St}x=o 24)

Conversely, the following equation is obtained from equation (20) and (21) through calculation.
“a_(’@ﬁ)“a'(av)— i(az“x LazAnazAZ) 1 &°A.
oy \ ot ot

5 T at axz t ayl + axz — ﬂZ atS .................................. (25)
When boundary condition at x=0( is considered, it becomes as follows :

2° A, - ‘

ais xzo__const .................................................................................................... (26)

However, it is equivalent to equation (27), and it is the condition of i -a). It can be verified likewise on
other conditions, Therefore, the boundary condition of i-a) is equivalent to that of i -b).
OA.
.—_const .......................................................................................................
ot | x=o . @n

Likewise, the following can be obtained from ii-a).

. QU DU W b e
ii =b) [ax’ ETRET) ’“’"“LO

Taking an average of i -b) and ii-b), reflected waves are erased.

When Dirichlet condition in i -b) and ii -b) is considered, the following can be obtained in i -b) like
equation (14).
ou

317 xzo:const, ax x=o:const .............................................................. e (29)
As to ii-b), the following can also be obtained.
ov(w) | _ B0 | gt

oy Izo—const, Eys I:O——const (30)
Now, stress working on plane of x=0 is considered. In the case of i-b), the following are given,

_,,(2u_ ou e [(OU L OWN e

e=in(G5 5y ) =55+ 50) G
Therefore, the following equation are obtained.
O'xy[xzozconSt, o‘wz!x:o—_—COBSt .................................................................................... (32)
Although reverse verification is omitted, i -b) and ii -b) can be expressed from the above as follows :
: ou CCOMSE | +vereerese et ettt
1 C) [ at $ Oxys Oxz s COl’lSt ]x=0 (33)
.. oV ow
i —¢) [gm 52, 52 ; const L:a .............................................................................. (34)

Boundary conditions of i -¢) and ii —¢) are of simple form for handling in numerical analysis such as the
Finite Element Method.

(3) problems in multi-reflection

In Section 2-2, boundaries at x=0( were reviewed. However, the problem arose that the incidence of
reflected waves from plane at x=0 into plane at y=0 occurs when boundary at y=0 is added. For such
multi-reflection problems, the matter can be settled by obtaining the following four solutions. (As to
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equation in a) of 2-2)

ou ou

U ou

M Bt — adied _ o 3 el = Pdiadl — t

i) s const, o0 | oo const ; ii) Evll const, ot | oot | 5)
ou ou . ou ou

. == = [ = t

iii ) 1 xzo—const, 55 | v const ; vi) ot | L, oconst, 5y | =cons

Although verification of the above is omitted, it is self-explanatory that it can erase even rereflected
waves of reflected waves. (See Fig.1)

Now, if renewal of the initial condition is made every A, the above reflected waves against any £,7>0)
exist in the following domain,

%—cAt<x<ﬁ,‘—cAt<y<0} ................................................................................... G@

Therefore, four solutions, i) through iv), may be obtained only in this domain,

Further, in the case that boundary at z=( is added, eight solutions are required, which are shown in
Fig.2, like Fig.1.

Now, the method by Smith is compared with that by Cundall on the assumption of a rectangular
parallelopiped. In the method by Smith, it is necessary to obtain sixty-four types of solutions (2°=64),
because six boundary regions exist. On the other hand, eight solutions may be required in the method by
Cundall by setting adequate time intervals for renewal of the initial condition. This is because only the
influence by three boundaries may be considered due to the existence of reflected waves in the only domain
definite distance apart from the boundaries.

Of course, this method has some defects. This is that re-reflected waves from boundary corners are
produced because grid points are treated as belonging to either side of a boundary surface, Re-reflected
waves from those corners are so small as to enable ignoring them in calculation. However, this may
adversely effect the result in an extreme case.

3. APPLICATION OF AFORESAID METHODS TO THREE DIMENSIONAL ELASTICITY
PROBLEMS

The results of application of the aforesaid methods to Three Dimensional Elasticity problems is
introduced here. In the case of Three Dimensional Elasticity, analysis models incur a large amount of
limitation due to the degree of freedom. However, a model not required for external memory of the
computer was set.

a) Half infinite elastic surface excitation

An analysis model is shown in Fig,3. It is ((1z)=0) g @ D/
assumed to be a rectangular parallelopiped consist-

N N D

ing of 2400 units (15X16X10=2400) of solid . . .

(x=0) (y=0)

elements. It is also assumed that one surface is of
free surface and the others are non-reflective ) (s) 6)
boundaries. All regions are only divided into an

inner region and a boundary region, but the D .
boundary region is not divided further to fine

9] 8
a @y I COI N D

(y=0)
N D N D p ? n P
(x=0)
(N: Neumann condition, D: Dirichlet condition)
(N: Neumann condition, D: Dirichlet condition) Figz Boundary conditions at three boundaries
Fig.1 Boundary conditions at two boundaries(x=0, y=0). (x=0, y=0, z=0).
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regions. The inner region is inside the dotted lines shown in Fig, 3. Jointing of both regions is realized by
having a common element along the boundary. For the degree of freedom it is required to set one kind in the
inner region and eight kinds in the boundary region. Physical characteristics of the finite element models is
set as below when one side length of a solid is expressed in terms of h.

V. . . . . .
—2 =50 0=0.3 Where, V,: Shearing wave velocity, ¢ . Poisson’s ratio

h

When uniformly distributed sinusoidal force of one wave length is applied to the area shown in the
oblique lines, trial output of response wave from observed points S, to S, is provided.

Fig. 4 shows response waves when one wave of sine type external force (cycle T=4(0 At) is applied to
the z direction under the following conditions;0<¢ After primary portion of wave movement has
passed, no remarkable reflected waves occur though there still remains some undulation. When running
time from the first peak of displacement wave shown in Fig. 4 is obtained and converted in terms of phase
velocity, the following are obtained.

0.92 Vs in S;—S;, 1.78 Vg in §;—S; (0.95 V,, provided V, is velocity of P wave).

It is considered that wave like Rayleigh waves are propagated from observed points S, to S, and waves
close to p waves are propagated from S, to S;. These calculations were made by Hitachi super Computer S
810, and time to obtain results shown in Fig.4 was 150 seconds by CPU.

b) Response of lens shaped soft surface layers

As shown in Fig. 5 finite element models are so set that lens shaped deposited layers considered as
analysis models are included in inner regions. Input in x direction. By symmetry in construction, modeling
is made of half of a region to obtaine finite models consisting of 3456 elements (24X12X12=3456).
Physical characteristics of top and bottom layers are shown in Fig. 5. Boundary surfaces of both layers are
close to approximation in step shape because of their simplicity. For shorter waves, five times of element
size, influence of approximation in step shape is considered smaller. The area inside of dotted lines in
Fig.5 is the inner region,

(Boundary Region) 1

. . L Z N )
< S1 S2 S$3(S4,85)
x (u} Applied Force

S2 @ Free Surface

S4

S3

sS4

|
|
_lss |
|
|

(Inner Region)

———— g

I Ss

/
| |
‘ ; g Szﬂfﬁ\/ﬁ\__
/
.{_.
|
Wﬁ
S
%

(Boundary Region)

0 0.2 0.4 0.6 0.3 1.0
Time
Fig.3 FEM model used for an impulsive excitation on Fig.4 Computed displacement responses due to impulsive
free surface of three dimensional elastic half loading in z direction with the conditions as shown
space. in Fig. 3.
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Lx , Lz J\Wu

A A

| AR
B

]

P L) roe

EE: Vs(m/s) 100 200
Inner Regiomi—] v 0.4 0.3
Boundary Region_:::' 1 1 L L . +
| 0 1 2 3
Time (sec)
Fig.6 Layer with soft deposit like a lens, Computed velocity
Fig.5 Three dimensional FEM model of ground surface. response of soft surface layer shown in Fig.5 with

impulsive input at the bottom (3-D).

In this case, it is presumed that there is no internal attenuation, because adjacent areas of irregular
region become one dimensional problems against incident seismic waves. Earthquake motion U, is
calculated independently by the conventional multi-reflective theory. On the other hand, wave
displacement [J, at lateral boundary is the sum of earthquake motion ascending over boundary and wave
composition x diffusing to the outside region passing through the boundary. As U, is calculated
independently, diffused wave U, can be identified by retracting U, from U,. Therefore, wave eliminating
treatment may be provided to U, at the boundary. 1t is possible to input any seismic motion, but one sine
wave of 3 Hz is input in x direction in the bottom, and response velocity of the free surface is checked.
Observed points are A, B, C, and D shown in Fig. 5, velocity waves of which are shown in Fig., 6. Response
was obtained in 3 seconds, provided time interval is set in At/=1/200 (s).

From Fig. 6, it is clear that a complex wave movement phenomenon is formed by repetition of reflecqion
and reflection in the top layer. Because of much-difference in physical characteristics of the top and bottom
layers, wave motion energy is retained in the soft top layer, by which large amplitude of vibration
continues for a longer time. It is remarkable, especially at observed points on asymmetrical surface, and
four waves 3-4 times of input amplitude continue at D point.

4. CONCLUSION

The study was successful by creation of non-reflective boundaries using Cundall’'s method and
application of it to the three dimensional finite element method. It is expected that seismic motion
characteristics in the soil of a complex structure, dynamic interaction of soil and structures, liquefaction
of soil, and forecast of earthquake motion using hypocenter fault models that have been difficult to clarify,
will be made clear by application of this finite element method in the near future.

In closing, we wish to express our appreciation to the Ministry of Education for their cooperation
extended to us in carrying out this study, subsidising our research and study on natural disasters,
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