163

[PROC. OF JSCE Structural Eng, /Earthquake Eng,  Vol.2, No,1 April 1985}

THREE-DIMESIONAL SEISMIC ANALYSIS FOR SOIL-FOUNDATION-
SUPERSTRUCTURE BASED ON DYNAMIC SUBSTRUCTURE METHOD

By Hirokazu TAKEMIYA*

This paper presents an efficient 3-dimensional sesimic analysis for a soil-foundation-
superstructure system., The dynamic substructure method is used to advantage in
formulating the whole system as an integral of the far-field, the near field, the foundation
and the superstructure, An axisymmetric modeling is taken for the soil and foundation in
order to account for its 3-demensional body with use of the Fourier harmonics expansion
for response in the circumferential direction. The interface or the interbody partitioning is
applied between foundation and surrounding soils, depending on the type of the foundation
.concerned, The general 3-dimensional analysis is carried out for the superstructure for its
complex geometry. The coupled motion between the soil-foundation system and the
superstructure is formulated from the component modes method to attain a drastic
reduction of the degrees of freedom for frequency response analysis. Case studies are
given as numerical examples.

1. INTRODUCTION

The finite element approach is widely used for the dynamic soil-structure interaction (SSI) analysis,
for it can easily accomodate the complex boundary geometry. The direct solution method whcih deals witha
complete soil-structure system under the base input situation has been extensively taken for the practical
application. Some related computer software package are available on the comercial basis ; for instance,
FLUSH? or its extended versions, However, the direct method is hardly preferable in case that sturctures
for analysis are large and complex since the total degrees of freedom become tremendously large. The
computer time and the cost increases accordingly. To overcome this problem, one promising idea is to
extend the concept of the so-called impedance function? in the continuum approach for the SSI problem to
the finite element formulation?. This means splitting up the SSI analysis into two steps ; first computing
the soil impedance functions and then solving the structural motion which is coupled with these elements for
the properly evaluated driving forces through the kinematic interaction between foundation and soil.

Further, in the process of substructuring for the coupled soil and foundation system, two alternative
approaches are conceivable ; one is the interface substructuring” which specifies the common interface
nodes on the foundation face, and the other is the interbody substructuring®®, which makes use of the
principle of superposition on material properties and takes the common interbody nodes even within the
foundation body.

The more sophistication is to take the three-fold substructuring of soil, foundation and superstructure.
For an effective and efficient solution method one may adopt the fixed base superstructural medes to couple
with the soil or soil-foundation impedance”~?, The SSI formulation is thus to use the release modes,
besides the above normal modes, according to the degrees of freedom at the foundation.
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139s



164 H. TAKEMIYA

The reality of the SSI problem is essentially 3-dimensional, In case of a space structure subjected to
seismic input of arbitray direction, the 3-dimensional analysis is definetely imperative. The soil
impedance to be incorporated into such analysis should be accounted for accordingly. The truly
3-dimensional analysis for the whole domain, however, may loose the feasibility for its solution cost due to
the tremendously large degrees of freedom to handle with. An economical but effective modeling is to
assume an axisymmetric nature for the soil-foundation region as proposed herein while to take the general
3-dimensional system for the superstructure, which makes a pseudo-3-dimensional analysis for the
complete SSI system. This approach is implemented into the computer code SUBSSIP-A3D® 9,

2. NEAR FIELD

The dynamics of the soils in the vicinity of foundation, when subjected to seismic input, is essentially
described as a force boundary problem, The finite element discretization for the bounded soil domain, with
use of the fictituous energy transmitting element'’ | gives the governing equaition of steady state motion of
frequency , as

(K"i“éwC“sz)U:Psub‘Pb ..................................................................................... (1)
in which U/ denotes the nodal displacement vector, K, C, and M indicate the stiffness, damping and mass
matrices, respectively; P, signifies the force vector due to the superstructural inertia, P, is the
boundary force vector at soils, and j is an imaginary unit.

The wave field in SSI is given by the superposition of the free field wave and the radiating wave due to
the presence of the strucrture. The displacement is then expressed as

N 1 PPN ( 2 )
in which the asterisk denotes the free field response and the supersprict r refers to the additional response
due to the radiation wave. For the plane body wave input at the base of the SSI system, one can get

szK*U*+R(U_U*) ............................................................................................. (3)
in which K* is the 1-dimensional free field stiffness matrix, R is the transmitting boundary matrix to
reproduce the far field nature.

The substructure analysis yields the soil impedance and the effective seismic force at the common nodes
where soil and foundation are separated. Either the interface modeling or the interbody modeling is
considered both of which can be treated by the same formulation. Fig.1 shows the concept in a
2~dimensional way for convenience. Herein, a compact expression is used for Eq. (1) by introducing the
dynamic stiffness matrix D=K+ (wC— 'M, whose partitioned form is

Dii DiS DiQ UE Pi,
Do Dos Do | {Us) = { Pyl oo (4)
Dgi DQS Dgg U.'] Pg

in which the subscript { refers to the soil 1

nodes in common with the foundation, s to SUPERSTRUCTURE + T+
other soil nodes including the side bound- FOUNDATION < SUPER-

R (RIGID S FOUNDATION STRUCTURE
ary nodes b but excluding the base bound- or FLEXIBLE)| Lo oo o

ary nodes g. The reduced governing equa-
tion with respect to the common nodes ;

only is derived through the condensation

+ HHH +

<~  REDUCED SUPER-

process, as

SEISMIC INPUT

T P Y e FoUNDATION STRUCTURE
X U=P;—P; (5) (a) INTERBODY MODEL
in which the matrix X, defines the impedance
and P} the effective force through the (c)
kinematic interaction, whose formal expres- Fig.1 Substructuring for SSI System®
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sions are given by
Dss Ds;] [ Dsi Dss Do | Py
X=D,~[D:isDil| =~ 1 |, | 6 Pl= D.sD
[D.s QJ{DQS Dgg} o (6) P=(DuDal| )™ 7| |
Note in Eq. (5) that the force vectore P} is nothing but the fixing force for the common nodes immovable.
Furthermore, in case that the soil impedance matrix X; is already known, the effective force is given by

changing the sign of the product of this and the free field motion, i.e.,
PO — X +eovereemeee et (8)
The above concept is applied to the axisymmetric soil medium to get the pseudo-3-dimensional solution
with use of the Fourier harmonics expansion for response in cylindrical coordinates (see Fig.2). The
displacement is thus expressed as

U (r,8,2) [ cos U7, 2))°
U.(r,0,2) 272 cos né U.(r, 2) @
Us(7, 8,2) L —sinn8 ]| Us(r,2)], Jv
_[sinné U (r, 2)* u
+7§‘ sin/ﬁ?) UZ(T,Z) ........................ (9)
i cosnd || Us(r, 2)|, Fig.2 Cylindrical Coordinates

or in a brief form
U (7.’ 0, z)znzrg Hi(@) Uf;(’r, Z)+Z_,; HZ(@) U%(r, z) ......................................................... (9)

in which the first summation takes over the symmetric harmonics and the second summation over the
antisymmetric harmonics, The mimus sign in the symmetric sine-terms leads an identical stiffness matrix
for both the symmetric and antisymmetric harmonics. The details about the succeeding finite element
formulation is given in Appendix A.

For the plane body wave assumption impinging vertically at the base rock level, the components on the
cartesian reference (U¥,, U¥, U¥,) are equivalently expressed by the Fourier harmonic amplitudes as

ut” (o v’ (1 ur]"
UXt=1{11U%, (UEy=1{0 Uk, (U1 =0} Uk, - (10)
ug), 1o Ul 1 Us| 1

3. FOUNDATION FORMULATION

(1) Rigid Foundation ;

A caisson foundation with deep embedment in soils has usually much difference in rigidity from the
surrounding soils, wheih makes a rigid body assumption appropriate for the foundation modeling. Since the
rigid body motion is uniquely prescribed by the movement of its gravity center, the interface
substructuring suits for this analysis,

The soil ring nodes displacements on the interface, when the perfect bond condition is presumed between
soil and foundation, must obey the compatibility with the rigid motion. For this requirement, consider
first the displacement transformation from the cylindrical to the cartesian coordinates, i.e.,

Uz cosd 0 —sing||U-

Usb=| SIn 8 0 0SB |{Ua] reereremrmmimme e 11
U 0 1 0 Us
or briefly
U (2, Yy 2)= G (0) U (1, G, 2) +wereessmmeeesmmes i (n)’
Substituting the Fourier harmonics expansion for displacement, Eq. (9)” into Eq. (11), one can get
Ulz, y, 2)=G(6) (g HO) Us(r, z)+§0 HAO) UL, z)) ................................................. (12)
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in which note that the summation takes only the limited Fourier harmonics concerning rigid motion,
Namely, the n=( symmetric harmonic represents a vertical motion, the n=( antisymmetric a torsional
motion, the n=] symmetric harmonic relates a coupled motion of translation along x-axis (§=0°) and
rotation about y-axis (§=90°), and the n=1 antisymmetric harmonic a coupled motion of translation along
y-axis and rotation about x-axis,

The displacement of interface ring nodes is alternatively represented by use of the displacements at the
foundation gravity center, [. on the cartesian reference as

Udx, v, Z):,,Z:}, Si(r, 6, 2) UF+1§ SUT, B, 2) Up-ervverereenememeeceereseeeieieiettet e 13)

in which the transformation matrices §3 and S, whose detaials are given in Appendix B, should satisfy
the termwise correspondence with Eq. (12). As the result, each Fourier harmonic amplitude is expressed
in terms of U through the specific transformation matrix 7§ and T2 (see Appendix B), so that

1 1
Uiz, v, 2)=G(6) (n;'o HO)T3(r, 2)Ur+ 3, HAO)THr, z)UF) ............................................ (14)
The corresponding force vector on the cartesian refernce is likewise transformed from the Fourier
harmonic amplitudes as
1 1
PAx, ¥, 2)=G(6) (1?:_& H{OP(r, 2)+ 3 HAOPL(r, z)) ................................................ (15)
The soil reaction acting on the foundation face is then integrated along the circumference and summed up

over interface nodes to give the total force vector {P | M{i={P,P,P. | M.M,M_J: with respect to the
gravity center, as

Interface
P .—ngNodes IRN 1 ST s . ps
ML._ 5 { }i =53 ([ 87 (r, 0, 2060H0)d0- P,
+f S r, 8, Zs)G( )Hﬁ(@)dﬁ'Pﬁ,J ........................................... (16)
Executing the integration results in
P IRN 1 .
o 2;1;)072(7'7;(7’ Zz)Pf,n+ Tn(r 2;) gn) ............................................................... (17)
F

in which ¢,=27 for n=0 and a,=x for n=1. In Eq. (17), the 1-st term gives the forces due to the
vertical motion, the 2-nd term due to the torsional motion, the 3-rd term due to the coupled motion of sway
and rocking in the plane perpendicular to the y-axis (§=90°), and the 4-th term due to the coupled motion
of sway and rocking in the plane perpendicular to the x-axis (§=0°).

Substituting the solution in Eq. (5) for P,, and in view of Eq. (14), the dynamic equilibrium is obtained

as
2 ! s malT X7 Tf‘ — 3 T's T4 Xi v
WM+ 23 0l T3 73] [ X?H TzDUF ZelTs T"][ x¢]| vz

in which T, is the expanded diagonal matrix of T, as many as ring nodes, and M; denotes the mass matrix
comprising the mass and the mass moment of inertia associated with 6 degrees of freedom of the rigid body

foundation. The Eq. (18) is simply expressed as

(— szp‘\“ Xr)UszFU}“*‘Psub .................................................................................... (18) ’

(2) Flexible Foundation

In case that the foundation has an axisymmetric nature, the Fourier harmonic analysis is straightforward
with the neighboring soil elements. However, when the foundation is analyzed as a flexible body together
with the superstructure on a cartesian reference, the following formulation is suggested.

First, taking the interbody substructuring, one can get the governing equation for the reduced
foundation by the soil effect filled back at the portion originally the foundation is embedded, as

( Dp,n“— Dsotl‘n) U, = Pi,n+ Psub,n ...................................................................................... (19)
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167 Three-Dimesional Seismic Analysis for Soil- Foundation-Superstructure Based on Dynamic Substructure Method

for a unit of radian volume in the circumferential direction of the n-th Fourier harmonic. From the soil
analysis, evaluating the soil impedance matrix and the effective seismic input and in view of the continuity
condition at the interbody nodes between soil and foundation, one can get

( Den—Dsonnt X ’n) Ui,n= X;,nU:i'fn+ L S PR R R LT ERERRLED (20)
Further, in order to evaluate foundation effect to yield an averaged uniform input motion for the
superstructure, consider the similar coordinates transformation as in Eqgs. (14) and (17) for displace-
ments and forces respectively at every ring node. Then the governing equaition becomes as

53 a ~:1 ~fj‘fz+ Far ~3TZ)UF=1§ an('i‘flr s U+ e @R A Py +eeeeereesesessmsessneeess (21)

n=0
in which the notation D,=Dyn— Dsount Xin is used. The Eq. (21) may be rewritten in the conventional

expression for a multi-degree-of-freedom system, as
(___ CUZMF+ LwCF+ KF)UF=P0F+ Psub ............................................................................... (22)
by retreaving the reduced mass, damping and stiffness matrices for the foundation and the soil impedance

matrix which are obvious from Eq. (21).
4. INTERACTION ANALYSIS

The superstructure may assume any geometry in the 3-dimensional space, The generalized lumped mass
modeling is taken here. The associated governing equation of steady state motion for the superstructure
can be expressed, when the junction nodes with the foundation is retained, as

2 Mea +i [ Caa Cab} _*’{ Koo Ko } U, 0 (23)
- 071 D T S Y S T S PRSP ERP
¢ Mbb SUP —.w Cba Cbb Sup Kba Kbb sSup Sup

U, P,

in which Msup, Csup, Keup, denoting, the mass, damping and stiffness matrices for the superstrucre, are

partioned on the basis of the free nodes (off-base nodes) with the suffix g, or the base nodes with the
suffix . Following the component modes synthesis formulation'” express the total displacement U/, as the
sum of the dynamic displacement /%" due to the inertial force for the fixed base condition, and the
quasi-static one U due to the base movement, i.e,

U= Ugm+ Ugtat ....................................................................................................... (24)
Furthermore, considering a small amount of damping for the superstructure itself, assume that the
classical normal modes decomposition holds for the fixed base condition, which satisfies the following
orthogonality :

VTMWVZI, VTCMV=diag.(2§lwz), VTKWV*—-diag.(wﬁ ............................................. (25)
in which ¥ defines the modal matrix, I the identity matrix, ‘w, the /-th modal frequency and & the damping
ratio to its critcal value, Hence, the displacement transformation results in
U |V Blla
U, "[ 0 I ] U,

in which £, denoting the displacement influence matrix, is generally computed from the static condensation

process for Eq. (23), such that

In case that a lumped mass system is taken for the superstructural modeling and a uniform motion is
imposed at this base, the displacement influence matrix results in the master-slave nodes relationship as in
Eq. (B.1) in Appendix B which comprises only the geometry of the respective lumped mass location,
Substituting Eq. (26) into Eq. (23) and in view of Egs. (27), one can get
(,. 2[ I VM }r a{ diag.2&w) 0 }
“lsym. MotB Mol 0  CutB'Cub
+ diag.(wi) 0
0 k)

q
U,

SUP sup
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The coupled motion of the superstructure with the soil-foundartion system is now established by use of the
displacement compatibility and the force equilibrium between their junction nodes, which are

Ub,sup: 7UF .............................................................................................................. (29)
Pb,sup+ )'TP]:: [ 4 RERERRPRRR R N eesaneeesiaseactoateriarencaetnetararertvasersencana otrernrteaancoaserosntatetnntanrtane (30)

in which 7y is the transformation matrix from the gravity center of the foundation to its junction nodes with
the superstructure. Substituting Eqs. (18)" or Eq. (22) and (28) into Eq. (30) and considering Eq. (29),
one can derive the governing equation for the soil-foundation-superstructure system as

diag.(— o'+ R2&wiwt ) — o’ VTMaaﬁ
R | LT A SO0
sym. P — (B MaaB+ Mi)+ il Copt B7CadB+ Cr || Ur X:U¥

E + Kpot+ Koo+ Kr+ Xr
in which Bzyﬁ_ Note that the final governing equation is expressed in terms of the fixed base
superstructural normal modes together with the physical degrees of freedom of the foundation, In prior to
solving Eq. (31), one may truncate the superstructural higher modes of less response contribution factor
in order to reduce the total degrees of freedom effectively for the complete SSI system analysis,

5. SEISMIC RESPONSE

Following the process given in Sections 2 through 4, the frequency response functions for a unit input
amplitude in the three perpendicular direction on the cartesian reference are computed for nodes of
interest in the complete system, i.e.,

Hoo(w) Hpfow) Hpdw)
H(w)=| Hulw) Hyw) Hyd@) | -eoeememmemoe oo (32)
Hzt(w) sz((l)) sz(&))
in which the 1-st suffix indicates the response direction while the 2-nd one the input direction. The actual
frequency response is obtained by multiplying the Fourier transform of the input seismic wave components
(Fy, F,, F. at each frequency.

{ Yx(w) Yy(cu) Yz(w) }T=H(w)'§ Fw(w) Fy(w) Fz(w) }T .............................................................. (33)
The response time histories are then converted from these frequency responses through the discrete
inverse Fourier transform process. The Fast Fourier Transform algorithm is available for an efficient
computation of the discrete Fourier and inverse Fourier transforms.

6. CASE STUDIES

As applications of the present computer code SUBSSIP-A 3 D, the following case studies are executed,

(1) Chimney Structure

A very high chimney foundation (see Fig. 3 (a) for the general view) is first investigated with emphasis
on the interaction with the surrounding soil in Table 1. Fig.3 (b) is the finite element model for
soil-foundation system in which the interface substructuring is taken. Figs, 4 indicate the soil impedance
functions with respect to the foundation gravity center. In thses figures, comparison is made with the
solutions from the Novak’s approach'? in which aplane strain assumption is used, and from the soil reaction
coefficient formula of Japan Road Association Specification’”, One may note that the present solution,
being different from other soulutions, shows a strong frequency dependent nature, which might be
important for evaluating the foundation response coupled with the surrounding soils.

(2) Blast Furnace Structure

As a second case study, a huge blast furnace structure which makes steel materials (see Fig.5 (a) fora
general view) is analyzed. For the finite element modeling, either a rigid body or a flexible body
assumption is made for the caisson foundation for comparison, while a conventional 3-dimensional lumped
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Table 1 Soil Profile (Case Study 1)

€&
Layers | Depth | Velocity|Poisson | Weight Damping —
(m) (m/s) Ratio (t£/m?®)| Ratio !
104 | 2.5 150 1/3 2.0 0.1 ]
508 | 2.5 300 1/3 2.0 0.1 L
9 12 7.5 500 1/3 2.0 0.1
Table 2 ~ Soil Profile (Case Study 2) F E
sl
NO. DEPTH | VELOCITY| POISSON | WEIGHT | DAMPING !
(m) (n/s) RATIO | (tf/m®) | Ratio iE
1 6.0 150.0 0.45 1.50 0.10 N " ,
2 7.0 150.0 0.45 1.50 0.10 d
3 7.0 150.0 0.45 1.50 0.10 & - ® |@e
4 4.0 95.0 0.45 1.50 0.10 == ; o 3 et
5 8.0 95.0 0.45 1.50 0.10 2 1l @ |@|@
6 8.0 220.0 0.45 1.70 0.10 i . B i
7 10.0 460.0 0.45 2.00 0.10 S e oo
8 5.6 230.0 0.45 1.70 0.10 s éz‘]m o b o
lL4.1m
9 9.7 480.0 0.45 2.00 0.10 I )
10 9.7 480.0 0.45 2.00 0.10 )
1 11.0 260.0 0.45 1.80 0.10 (a) General view (b) FEM Model for Soil-Foundation
12 18.5 440.0 0.45 2.10 0.10 Fig.3 Chimney Structure (Case Study 1)
Sr ——  SUBSSIP-A3D
al —-=——  Novok™

~-=—  JRA Spec.

Cxx
o} 10 20 30 40 50 60 o 10 20 30 40 50 60 o] 10 20 30 40 50 60
) w (rad/s) w (rad/s) w (rad/s)
(a) Translation (b) Interaction (c) Rotation

Fig.4 Soil Impedance Functions (Case Study 1)

wﬂ_m ToP
famsw STRUCTURE
g
GLAT00 RIGID CAISSON gy,
SQUARE RADIUS T
TOWER 17.77(m) 2
GL 25,300 MASS 3 2 3
|- FURNACE 6.0764 x10°(t/m/s T
MASS MOMENT ) 5 [Transmitting
ﬁt—:«ﬂ— 172 2,2030 x10 (t.m.s 6 |Boundary
7 {Ub
CAISSON GL~55800 g
FOUNDATION 9
10
GLe33600. 1pyie J Usj j1t
12
GL~104500
GL-104,500 $lf° Ug Rigid Base
(a) General View (b) FEM Model for Soil-Foundation

Fig.5 Blast Furnace Structure (Case Study 2)
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located at 104 m below the ground surface (the point 1PO in Fig. 5 (a)) in the x-direction. In Figs,7, the
point of investigation is placed on the SSI effect from the comparison with the rigidly supported case at the
structural base. Note that the response is greatly changed in the low frequency range to have peaks due to
the soil motion as the free field and the soil-structure inertial interaction. In the high frequency range, on
the other hand, the response is reduced due to the increase of damping through the SSI. The fact that the
response in the perpendicular direction to the input direction is relatively induced emphasizes the
importance of the 3-dimensional analysis. In Figs, 8 is geven the response comparison by the foundation
modeling as a rigid or a flexibkle body. Almost identical results are attained in the frequency range of
interest from the seismic analysis. Also, note that the frequency responses are very indicative of the
response features of the respective part of the structure.

7. CONCLUSION

The author has developed an efficient computer code SUBSSIP-A3D for the 3-dimensional SSI seismic
analysis, The primary point of this paper is to present its theoretical aspect and the applications to some
case studies to get engineering findings regarding the SSI effects,

The unique features of the SUBSSIP-A3D are summarized as follows . (1) The response analysis is
based on the substructure method, which makes use of the soil impedance to couple with the
superstructural part for the effective input force through the kinematic interaction between soil and
foundation concerned. (2 ) Either the interface or interbody substructuring approach is available
depending on the type of the foundation for analysis, The latter formulation makes use of free field
response to advantadge in evaluating the effective seismic forces together with the soil impedance matrix:
(3) The aximsymmetric modeling is taken for the soil and foundation in order to account for their
3-dimensional body, which facilitates the Fourier harmonics expansion for response in the circumferential
direction, The specific appropriate Fourier harmonics are chosen for the type of response concerned.
(4) The general 3-dimensional formulation is taken for the superstructure and the normal modes
decomposition is presumed for the fixed base condition, Among them, the modes of large participation
factors are selectively adopted, in view of the frequency contentents of the seismic input motions, to make
a coupled system with the soil-foundation system, which therefore reduces the degrees of freedom
drastically in an effective way for the complete system response analysis,
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Appendix A, Axisymmetric FEM Modeling for Soil Medium

The governing equation for steady state motion of frequency « for a visco-elastic soil medium is given
from the virtual work principle by

f&eTadv’:f&UT(-psz*f- b)dv-f—fé‘UTtds ............................................................... (A. ]_)

in which U denotes the displacement, U signifies the virtual displacement and e the corresponding
virtual strain all of which satisfy the boundary condition, & defines the body force and # the surface
traction, ¢ the internal stress, and p is the density.

The soils in the vicinity of the foundation is modeled as an axisymmetric body that allows the Fourier
series expansion in the circumferential direction for describing the behavior. The displacements in the
cylindrical frame reference, Eq. (9) are given in a brief form by
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Ulr, 8, z)= Z:“ SOUr, z)+ZlH“(0)U"(r ) (A.2)

in which the terms U$ denote the symmetric harmonic amplitudes while the terms U5 the antisymmetric
ones, The forces are likewise expanded as

P(r, 8, Z)'—“ngL(ﬁ)PfL(T, Z)+g HEQ)PY T, Z)wreeeressessessememsssisissisi i (A.3)

Substituting Eq. (A.3) into the strain-displacement relationship in the cylindrical coordinates yields

» [ cos N8B » [ sin 70Bis
e= o Ufz+ . ng ................................................................ ( A, 4)
sin n6 B 7=t| c0S néBum
in which
r o 1
or 0 0 A
o n 1,9
gl = | g |7 ( 5)
n -_1. 0 MA—ZIL s 2n 0 ﬂ i
T T T oz
2 2
L 9z Oor J
The stress components, on the other hand, are given through the constitutive matrix as
bl D1 COS @B}n hid D1 Sin @B;n
o=, s Us+> . [ R P PR PP PP PP TP PEP PR A5
n~o[ Dz}["Sin neBZn:l n=o{ Dz}[cos nﬁan] ( )
in which
At2u A A
1A At2u A lu
D=y A At2u D’_[ u}

u“
and A and g define the complex Lame constants. By using Egs. (A.4) and (A.5) in Eq. (A.1) and

integrating termwise along the circumferential direction, one can get
[ [ a2 US BIuD Bl )+ ain (U BiaDuBnU)
+ 0% (OUS BI.D BinU+ o (0US BinD,ByUldrdz
= [ [ sUiaitour Ut bdrdz+ [ [ UL atlow Uttt bdrdz

+£§Un ant,.derLaUn QEBEG v e e (A.6)

in which eS=diag.(a{, af, a5, and el=diag.(a¥, af, af,), whose elements are

atv=aly=2n, am=al=0 for n=0; ef,=aip,=af,=nx for n*0
Note that Eq. (A. 6) reduces the 3-dimensional equation into the 2-dimensional one. Furthermore, the
symmetric harmonics and the antisymmetric harmonics are separated.

The dicretization is carried out by assuming a proper shape function N (7, z) for either of harmonics
such that

Ulr, z)=N(r, Z)I}n ............................................................................................... (A.7)
in which [ . designates the nodal displacements. Following the conventional finite element foumulation,
one can get the associated multi-degrees of feedom system whose equation is in geneal expressed as

‘“sznUn'{”KnUn Pn ............................................................................................. (A. 8)
in which M, and K, defining the mass and stiffness matrices, respectively, are computed by

Mn:fopNTaNd’rdz .......................................................................................... (A.9)

K=l [ [ (BN DiBuNIdrdz+asn [ [ (BN DiBuN)drdafsooseosvesvosveros (A.10)

and the force vector f’n is by
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ﬁn=§{ffNTanbndez+£NTantnd8} ................................................................. (A.11)

Appendix B. Transformation Matrices § and T

Among the nodes on a rigid foundation face, a rigid linkage exists with its gravity center like a
master-slave nodes relationship so that the displacement vector of the interface nodes ; is uniquely
determined by that of the gravity center. :

Uy 1 ; 0 zi =y ]| U

Uyl = 1 —2; 0 X Uyl cvereeriii (B. 1)

Uz, 1 iy —xo o0 U,
in which (x;, ¥, z.) is the distance of node { from the gravity center as a origin on a cartesian reference.
In order to be consistent in the present modeling for the soil foundation system, Eq. (B, 1) is expressed in
a cylindrical coordinates, which results in a combination of displacement modes of

3 6 1 5 2 4
Ux 0 i i —rsing] [1 1 = 0: 0 Uz
Ul =|| 0 + 1 rcosd |+ 0 | 0 +H o1 -z Uy - (B.2)
U.), 1 g 0 0 i —rcosé 0 : rsing || (U,

in which the ]-st term represents a vertical mode, the 2-nd term the torsional mode, the 3-rd term the
coupled motion of translation and rocking in the xz-plane, and the 4-th term also the coupled motion of
translation and rocking in the yz-plane. The Eq. (B. 2) then gives the explicit expression for the respective
term S5, S7, 7, and S7in Eq. (13) in that order. From the termwise correspondence for the respective
modes of motion between Egs. (12) and (B.2), the Fourier harmonic expansions end up in the

transformatrion matrices, T and T¢ in Eq. (14), as

3 6 1 5 2 4
0: 0 1 & 11—z
5= 0: - r| Ti=lo | =z a=l ¢ E*z" .................. (B.3)
1i Poo 0 i —r 0 i
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