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CYCLIC BENDING TESTS OF THIN-WALLED BOX BEAMS

By Yuhshi FUKUMOTO* and Haruyuki KUSAMA**

This paper presents a’ study on the deformation behavior of thin-walled welded box
beams under cyclic bending. The specimens are tested under two-point load bending to have
a uniform moment occur in the central segment of the beam. Two different simple models
are introduced to predict analytically the cyclic moment-curvature curves of the beams.
The numerically obtained stress versus strain curves of plate elements are utilized to
calculate the moment-curvature curves.

1. INTRODUCTION

For collapse study of steel structural members under extreme loading condition, such as, earthquake or
wave motion, the entire behavior including cyclic loading must be considered. It is expected that a properly
designed structural members would suffer damage, but would not callapse due to the ductile inelastic
response under cyclic loading. The axial cyclic load-deformation behavior of steel columns has been the
subject of intensive investigation in recent years. Some significant investigations in this field have recently
been reported. )

Popov et al. ? and Sherman among others'®, have conducted experimental researches on inelastic cyclic
behavior of steel columns and beam-columns. A considerable amount of data and some significant findings
were presented, Attempts by Chen!”- and Hanson® have also been made to develop analytical tools such as
mathematical models and computed codes with which the cyclic behavior can be estimated.

When cyclic loads act on the thin-walled structural members, the plate elements are subjected to the
alternating cyclic stress since the tensile and compressive force act alternatingly on the flange plate of the
members, Effect of local deformation due to local instability of plate elements on the load-deformation
relationship of the entire member should be an important subject to be solved. '

A series of investigations has been conducted by the present authors to solve the inelastic cycli behavior
of the plate elements under transverse or in-plane loading” 9. The authors presented an experimental study
on the inelastic cyclic load-deformation behavior of welded built-up square box short columns subjected to
cyclic uniaxial loading®. The emphasis of the experiment was placed on the development of alternating local
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142 Y. FukuMoTO and H. Kusama

instability of plate elements associated with cyclic loading sequences. The hysteretic loops of average
stress versus axial strain curves for plate elements were expressed as a result.

This paper is the consecutive study of previously mentioned investigation” to grasp the deformation
characteristics of thin-walled welded box beams under cyclic bending, Ten specimens are tested under
two-point load bending to have a uniform moment occur in the central segment of the beams. Furthermore,
two different simple models are introduced to predict analytically the cyclic moment-curvature curves
(M — @ curves) of the beams, The average stress versus strain relationships of plate element, which are
obtained in the previous investigation, are utilized to calculate the M — & curves,

2. TEST PROGRAM

A total of ten square box beams were tested to obtain the load-deflection and M — @ relationships under
cyclic bending, of which, six were fabricated from SS 41 (0,=240 N/mm?® mild steel (B series), the rest
from HT 80 (0,=700 N/mm?) high strength plates (BH series). The nominal plate thickness is § mm. In
addition, four specimens were prepared for residual stress measurement (RES series). The measured
mean yield stresses of mild and high strength steels are 348 N/mm? and 760 N/mm?, respectively, A test
specimen is shown in Fig.1. Manual single fillet weld with 6 mm weld leg were used to built-up the
specimens, Two intermediate diaphragms at the location right under loading points and two end diaphragms
at the location rigth above supports were spot-welded to the flange and web plates,

The measured dimensions of the test specimens are listed in Table 1 with notations as shown in Fig, 1. In
the B and BH series, the number following the letters (B and BH) represents the value of width-thickness
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Table 1 Dimensions of Test Specimens,

Specimen B D t A b/t R d L Mu
(mm) (mm) (mm) | (mm?) (mm) | (mm) | (KNM)
(1) (2) (3) (&) (5) (6) [@))] (8) (9) (10)
B-40-1 263.3 234.7 5.54 5515 43,6 0.950 720 2120 144
B~40-2 263.0 235.0 5.60 5569 43.1 0.940 720 2120 153
B-60-1 383.3 354.7 5.68 8375 63.7 1.309 | 1080 3080 258
B-60-2 382.9 354.6 5.72 8427 63.1 1.300 | 1080 3080 265
B-80-1 503.1 474 .4 5.62 |10974 85.7 1.877 | 1440 4040 389
B-80-2 503.0 474.6 5.62 (10971 85.7 1.877 | 1440 | 4040 402
BH-40-1 262.2 234.8 6.00 5958 40.0 1.236 720 2520 311
BH-40-2 262.2 234.8 5.99 5949 40.1 1.239 720 2520 311
BH-60-1 381.9 354.2 5.98 8805 60.2 1.884 | 1080 3280 493
BH-60-2 382.6 354.2 5.96 8780 60.5 1.918 | 1080 3280 529
RES-S-40 - - - - - - - 1340 -
RES-5~60 - - - - - - - 1640 -
RES-H-40 - - - - - - - 1160 -
RES-H-60 - - - - - - - 1640 -

Note: B = (B; +B,)/2, D= (D, + D) /2, £ = (g + £y +tg tA)/‘*-
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Cyclic Bending Tests of Thin- Walled Box Beams

Photo 1

Test Set-Up.

Fig.3 Measured Points of Deflection.

loading beam to prevent twisting.

143
ratio (b/1) of plate elements where b is the flange
width between centers of webs as shown in Fig, 1.
Two specimens with the same nominal dimensions
are prepared for each b/} ratio. The distance
between the both intermediate diaphragms is three
times width, b. For the specimens of RES series,
symbols S and H following the letters (RES) mean
mild and high strength steels, respectively.
Ordinary two-point loading method for bending
test is applied to cyclic bending test. The ex-
perimental layout to perform the cyclic bending test
is illustrated in Fig.2. The test set-up is also
shown in Photo 1. The loading beam is attached by
bolts to the upper pressure plate of testing machine
which is fixed so as to be held in the horizontal
position. Load is transmitted to the specimen k
through the two loading points of round steel so
that the uniform bending moment occurs in the part
between the both intermediate diaphragms. Both
end supports are covered with teflon sheets to make
the friction very low as possible. In setting the
specimen, special attention is paid to coincide the
geometric centroidal axis of specimen with one of

Load-control technique is employed in the initial range of loading and displacement-control technique in

the neighbourhood of the peak load, Ppax. It is defined as the reversed point that a specified increase of the

center deflection of specimen from the peak load is recognized. Load-control technique is again used in the

unloading state. After the load is vanished, the hydraulic ram is raised up and the specimen is turned

one-half revolution round the longitudinal axis. This process is repeated seven times and, as a result, the

three and half cyclic loops can be obtained experimentally.

The measured points of deflection are shown in Fig, 3 with arrows. Each measured value is represented

by symbol d;(i=1 to 6). The strains at the center of specimen are measured for all the plate elements.

Tensile Coupon Test

The test specimens are made from seven original plates, of which, three are SS 41 steel and the rest

Table2 Tension Coupon Test Results

Specimen Cross Young’s Yield Ultimate| Strain Poisson’s | Elongation
Section | Modulus Stress | Stress Hardening Ratio
Series Areazn E s ) Gy cu Modulus v
(mm*) (x10°N/mm*) ®/m?)| /) Eoe %
(x10°N/mn?)

@ 2) (3) (4) (5) (6) N (8)
A 220 2.08 351 461 2.21 0.247 29.1
B 229 2.09 340 443 2.24 0.251 34.7
C 221 2.11 352 446 2.31 0.238 28.6
D 237 2.13 780 849 1.37 0.228 10.9
E 235 2.13 723 792 1.29 0.223 9.8
F 232 2.12 736 811 1.85 0.224 11.0
G 234 2.12 740 805 1.57 0.228 8.8
Note Series A for B-80-1,B-80-2; Series D for BH-40-1,BH-40-2;

B-80-1
Series B for B-60-1
Series C for B-40-1

Series E for BH-60-1;
Series F for BH-60-2;
Series G for RES-H-40,RES-H-60.
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Table 3 Measured Compressive Residual Stress, HT 80, by flame cutting. Three tensile coupons are

Specinen /e %/ e mmy | Cut out from each original plate. Two plastic gages

W @) P ’ o parallel to the tensile direction and a same gage per-
RES_$-40 0 0.228 803 pendicular to the two gages are pasted on both sides
RES-5-60 60 0.196 69.0 of the coupon to perform the tensile coupon test.
RES-H-40 40 0.110 81.4 Mechanical properties of steels which are the mean of
RES-H-60 60 0.076 56.2 three tensile coupon test results are listed in Table 2

for each test series,

Residual Stress Measurement

Residual stresses are measured by the sectioning method with a contact-gage of 100 mm gage length,
Measured residual stress patterns are all similar in shape, i. e., nearly constant compressive stresses are
observed over the central portion of each plate element, and high tensile stresses are measured near the
flange-web junctions. The average compressive residual rsresses over the central portion of plates are
listed in Table 3.

Initial Out-of-Flatness

The welded square box beams are built-up from four plate elements. Initial out-of-deflections of only
flange plate elements are measured in the three dimensional space between both intermediate diaphragms.
The out-of-flatness is defined as the maximum offset from the line perpendicular to the flange-web junction
line of the plate element. The average values are found to be 5/309 and 5/552 for SS 41 and HT 80
specimens, respectively.

3. CYCLIC LOADING TEST RESULTS

The cyclic curves of load versus center deflection of the typical beams are shown in Figs. 4 (a) ~4(c). In
these figures, the magnitude of load, P, is taken as the ordinate and the average center deflection, §=(d,
~+d;) /2, of the beam as the abscissa. Note that the load and center deflection are assumed positive when
the upper flange plate is in compression at the first setting. The process of loading and unloading is carried
out in a half cycle of loading. After the first half cycle is finished, all the data are registered in the
measuring instrument, When the second half cycle is commenced, the final data of the first half cycle are
set as the initial data of the second half cycle.

Similar procedure is repeated seven times and, as a result, three and half cyclic loops can be
established. The peak bending moment of virgin curve, M,, are given in Table 1. In Figs. 4(a) ~4(c), the
dashed line, which represents the linear relationship, is expressed by the following equation.

6}=Pl3a(3-4 02)/48E1+Pax/2 A~ e e ( 1 )
in which [=the distance between both end supports, I=moment of inertia, a=q/], a==the distance
between support and loading points, G=modulus of elasticity in shear and x=the coefficient determined
by the cross sectional shape,

Ordinarily, the curve of bending moment versus curvature of section (M — @ curve) is employed to
investigate the deformation behavior of beams. M — @ curves corresponding to Figs, 4 (a) ~4 (c) are drawn
in Figs.5(a) ~5(c). In these figures, the moment nondimensionalized by the yield moment is taken as the
ordinate and the curvature nondimensionalized by the yield curvature as the abscissa. M and M, are
defined by the following equations,

M= Pa/z ................................................................................................................ ( 2 )

My=Zon/(D+2 t) ................................................................................... RXETTETTPPEPREPRD (3)
The curvature @ is calculated from the deflection readings by the following equation,

@3(51—2 5\0_;.37)/1‘21 .................................................................................................. (4)

in which §,=(d,+dJ)/2, 8.=(d,+d)/2, 8=(ds+de)/2 and [,=1.5b.

The yield curvature @, is calculated from the following equation,
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@y___z(gsy_é\w)/ e e ( 5 )
dcy and &g, are defined by the following equations.

Ocy=PulPa(B3—=4 @) /48 FEI +++ e evrneeetii e (6 )

Csy=PylPa(B3—4 @)/ 12 EI «« - evreeeteeneii i e (7)

in which P,=2 M,/a.
The dashed lines denote the linear relationship of M /M,=@/ @,

The following findings are apparent from Figs, 4 and 5,

(1) Cyclic loops form almost always the symmetric spindle shape.

(2) The peak load and beam stiffness in each cycle are reduced as cycle increases.

(3) The gap of peak loads between the first and second cycles is drastic for the specimen with large b/1
ratio. This is due to the early occurrence of local instability of flange elements.

The specimen B-40-2 after failure is shown in Photo2, in which the out-of-plane deformation of the
flange element can be recognized. The failure patterns of flange and web plate elements after cyeles can be
characterized by the occurrence of the highly localized deformation of a whole section, The
out-of-deformation like the bellows of accordion of web element which was led by the alternate flange
instability under cyclic bending may be accumulated locally after each cycle, and the beam is shortened
gradually. The amount of shortening A/=9. ] mm for BH-60-2 and A]=8. 4 mm for B-80-1, for example,
are measured after test,

4. ANALYTICAL MODELS FOR CYCLIC CURVES

Two previous investigations?® by the authors are applied to calculate numerically the cyclic M— @
curves of thin-walled beams. The object of the experiment” was to obtain the out-of-plane deformation of
plate element under cyclic uniaxial loading. The cyclic curves of average stress versus average strain
(¢/0,~¢/e,) were obtained experimentally, For example, the cyclic 7/ oy—e/ e, curves of the plate
elements with R=0. 867 and 1. 965 are shown in Figs. 6 (a) and 6(b), respectively, by the solid lines. R,
called buckling parameter, is defined by the following formula.

Rz(b/i)x/l.?(l—"vz)ay/n'zkE ...................................................................................... (8)
in which k=4 is the buckling coefficient for simply supported plate with the plate aspect ratio larger than
1.0. R=0.867 and 1. 965 are the minimum and maximum values of buckling parameter of the plate element

in the previous investigation, respectively.

The method presented in Ref. 4) was developed for inclusion of the effect of initial deflection but not for
residual stresses for the numerical calculation of cyclic behavior. Reduction of the ultimate plate strength
due to the effect of residual stresses has been clarified numerically?? and its numerical effect to the
ultimate strength will be included as follows in this section.

The technique, that the computed 5—¢ curves with the measured mechanical properties and initial
deflections are nondimensionalized by the modified yield stresses and strains, is herein employed, Senior
author established a numerical data base from which the existing plate data of ultimate strength tests are
arranged statistically?. In Ref. 2), the following mean ultimate strength formulae are proposed from the
results of 383 plate tests with residual stresses and 172 plate tests without residual stresses,

respectively. ;
ou/ 64=0.968/R—0. 286/ R*+0.0338/R%, 0.57T1SR<C2. 0 rvevreeereermsmmmssomiiiiniiiiiieieneeneannn. (9)
O'ul/ayzl133/R-0384/R2+00463/R3, 0.652C R<C2. () cevvereererseeemeneiniiiieaiiiiinaaes (10)

The difference between both Egs. (9) and (10) denotes the reduction of plate strength due to the residual
stress. Calculating the difference between both equations,

f(R)=O. 165/R—‘0. 098/R2+0. 013/R3 ......................................................................... (11)
For example, the values of f(R) corresponding to R=0.9, 1.4 and 1.9 are (. 080, 0.072 and 0. 062,
respectively. The change of f (R) is comparatively insensitive with R. InRef.7), Komatsu et al, perform
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Fig.6 Comparison of Experimental and Computed 5/o,—e/e, curves of plate elements,

a parametric study and proposed an ultimate strength formula. [ They presented the similar consideration for
the reduction of ultimate strength due to the residual stress. Therefore, after the cyclic G—e curves of
plate elements are computed for without residual stresses, the values of 7 and ¢ are nondimensionalized by
the yield stress and strain modified with the value calculated by Eq. (11). The dashed lines in Figs. 6(a)
and 6 (b) denote the numerically analyzed results for R=0. 867 and 1. 965 to compare with the experimental
curves. As seen from Figs, 6(a) and (b), the analytical results agree well with the experimental ones in the
experimental range.

The maximum tension load of cyclic uniaxial loading test was fixed to be P,,=441 kN because of the
limitation of tension capacity of testing machine®. When the cyclic M — @ curves of thin-walled beams are
calculated, the cyclic 5/g,— e/ ¢, curves obtained by the cyclic uniaxial loading test are utilized as the
7/ oy— e/ e, relationship of the flange elements. The numerically obtained 5/ s,— ¢/ &, curves of thin plate
under uniaxial cyclic loading are used for the calculation of the M — & curves to extend the limited tension
range in the test. The following models, i.e., Models ] and [I are introduced herein to calculate M — @
curves of the beam section. '

Model T

Model T is a double-flange section model, also well known as lattice column or van der Neut-column®,
which has been frequently used to analyze the buckling strength of steel members such as box section
columns, A double-flange cross section is constituted by two load-carrying flange plates and two
unspecified fictitious web plates which simply serve to maintain the structural integrity of the beam. The
flanges are therefore assumed to be simply supported along the longitudinal edges.

The following assumptions are used to analyze the cyclic M — & curves of thin-walled beams for Model
I.
(1) Both upper and lower flange plate elements are connected by -the double ‘web plate elements of
zero area,

(2) The cyclic 5/g,—¢/e, curves of plates under uniaxial in-plane loading are calculated by the
method presented in Ref 4).

The nondimensionalized M — @ curves of Model T, M;/M, and &;/®,, are defined by the following

equations, 7
M/ M= (Eu/o'y_?’-t/o'y)/z .......................................................................................... (12)
By Bry=eu) y— €1/ £4)]2 ++r+rsmermerrrene s 13)
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in which 5, (7,) and ¢,(e;) are the average stress and strain in the upper (lower) flange, respectively and

they are positive in compression, and

M[y:Bth(D+ 7 DR P (14)
¢Iy=2 8y/(D+ t) ....................................................................................................... (15)
Model [I

Model T is a cross sectional model which includes the contribution of webs as well as double flanges for
the cyclic ultimate bending strength of box beams, The following assumptions with the assumption (2) for
Model I are used for the numerical analysis of M — & curves.

(1) Web elements are elastic and no buckling occurs during cyclic loading.

(2) The neutral axis of the beam is determined to satisfy the equilibrium condition so that the
summation of normal stresses is zero in the cross section, i.e.,

[UdAZO ................................................................................................................ (16)

Fig.7 shows a thin-walled beam section with longitudinal strain distribution in a loading state. The
linear strain distribution of the webs is assumed from assumption (1) with no stress shedding in the webs,
In the figures, y, and y, are the distance from the obtained neutral axis of the beam to the middle surface of
upper and lower flanges, respectively, d,=y,—t/2 and d,=y,—1/2. Gu, 7, e, and ¢, are the same
definitions for Model T . The following quadratic equation with respect to ¢,/ &y is derived using the second

assumption,

<—+ﬁ>( y>2+ (EFZZ %)m—(l-he)( ) () e (17)

in which §=D/B, E,=7,/e, and E;=7,/¢,. When the lower flange is in the linear elastic state (E,/JE=
1), &/eyis obtained by assuming ¢,/¢, and E,/E of Eq. (17) and the location of the neutral axis is easily
determined. When the lower flange is in the nonlinear state, the location of the neutral axis is obtained by

the iteration method,
The stress hysteresis of upper and lower flanges during loading are shown schmatically in Figs. 8(a) and
(b), respectively. These curves, G,/0,=f,(e./c,) and G,/0,=f,(e,/e,), are neccessary as basic
informations to proceed the iterative computation,

f— 8 —+ ) When the both curves pass the points (p,, p,, ---,
]: sl JT,, D) as 0= p,— D= Dy Py —> Py —> Py, for
| AT example, we will consider the state at the j-th
w1 44§ s T )
B Yy point, It is impossible to calculate directly (E,/E)
Flange  Web ; and (g;/e,),; for specified (E,/E), and (e,/ey) ;.
Fig.7 Strain Distribution assumed for Model | of values by Eq. (17) Therefore, (El/E)i_l is used
Thin-Walled Beams. instead of (E,/E), as a first trial for further
iteration, Thus, Eq. (17) is rewritten as follows
% LT oy for a first trial.
‘ v i ; Oy 7y E 2 E
N | (7). 8 ()2 F)
Comp, n, Comp. o pMD; E /i Ey/i Ey E /i
1 1 1\( r)' ; E
' (B} () vem e o
9 o) &y
(Bt fa g € :
S v S| vy (e/ ey) ; 1s calculated by Eq. (18), and the second
P 7 approximate of (E,/E), is obtained by substituting
P Py
5 Uoper Bl B Lower Pl (e/ey) , into the function f,(e,/e,). Similar proce-
dures are repeated until the approximate of (E,/E),
Fig.8 Schematic Stress Hysteresis of Upper and Lower converges the value with the required accur acy.
Flanges of Model [ during Cyclic Loading. The bending moment of Model [I, My, is thus
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calculated from the following equation, .

Mn=Bt(Tiuyu—Tr}y;)JrEt(eudZ— eldf)/?) ....................................................................... (19)
The yield moment, My, and the nondimensionalized curvature, @/ ®yy, of Model [| are obtained by the
same formulae with Eqs. (3) and (13), respectively. Model ]I is simple and accurate for the computation
of cyclic M— @ curve owing to the first assumption.

The validity of the present models, Model T and Model I, is examined by comparing with other existing
models for the peak strength under monotonically increased load. The ultimate moments of the box beams
obtained from the present two models and other two models” ¥ are listed in Table 4. In Table 4, (M./
M,) £x is the authors’ experimental values nondimensionalized by the yield moment M,, and (M,/M,) ; and
(My/Ms,) yn are calculated values for Model T and Model 11, respectlvely (M,/M,) ; is calculated by the
following formula®® based on the effective width concept.

(L‘L) _@AB/@NC/RIAFLHT | e (20)
M,/ 4+a+3/a

in which@=(D+1)/b, C=the coefficient determined by plate tests, C=0. 785 is employed from Ref. 5)
and R is given by Eq. (8). The bending moment of (M,/M,) r, MF, is calculated by the following formula’
which is proposed by Frohlich in Ref. 1).

M=(o T+ 0,)BtH [2+0ntd JdH—dy)+ oytd (H— p)errermmm e @D
inwhich H=(D+ 1), &} and 5% are the ultimate stresses of flange and web plates, respectively. The ratio

of the experiment divided by the reference moments are given in the columns (7) to (10). The average
values and the standard deviations are also given in the table. Model [I values may be close to the

experiments among others with small variations.

The cyclic M/M,— &/ &, curves for Model I are shown in Figs. 9(a) and 9(b) by the solid lines. The -
dashed lines in the figure represent the corresponding experimental curves which are already given in
Figs. 5(a) and (c), respectively. Note that the the parameters M, and My, in the ordinate in Figs. 9 denote
the actual yield moment of the specimen and the modified yield moment of Model T, respectively. As seen
in Figs. 9(a) and (b), the analytical curves based on Model ] agree quite well with the experimental one
for the beam with small b/ ratio, but the large discrepancy between the analytical and experimental
curves with large b/t ratio is recognized with the number of cycles. For large b/t ratio, the flange
instability occurs at an early stage of bending, and the contribution of the flange elements to the bending
strength of the box beam may be reduced with as cycles increase. Instead, the behavior of web elements

may become significant large for the beam strength.

Table 4 Comparison of Experimental and Several Approximate Ultimate Strengths.

Experimental Approximate Experimental/Approximate
M M 54 * M E* M
Specimen () (5 ) | G | G @ W@ @
vy EX y MI y E y F y MI (B) () (D) (E)
4 (8) ) (D) (E)

1) @) (3 %) 5) (%) [€)] (@) 9) (10)
B-40-1 0.938 0.899 0.891 1.016 0.935 1.043 ¢ 1.053 | 0.923 1.003
B-40-2 0.976 0.927 0.897 1.012 0.946 1.053 | 1.088 | 0.964 | 1.032
B-60-1 0.760 0.604 0.750 0.784 0.767 1.258 | 1.013 | 0.969 | 0.991
B-60-2 0.773 0.615 0.752 0.788 0.771 1.257 | 1.028 | 0.981 1.003
B-80-1 0.635 0.440 0.636 0.625 0.678 1.443 | 0.998 | 1.016 | 0.937
B-80-2 0.651 0.447 0.636 0.621 0.678 1.456 | 1.024 | 1.048 0.960

BH~40-1 0.841 0.640 0.772 0.801 0.782 1.314 | 1.089 1.050 1.075
BH-40-2 0.841 0.638 0.771 0.799 0.780 1.318 | 1.091 1.052 1.078
BH-60-1 0.647 0.448 0.635 0.614 0.664 1.444 | 1.019 | 1.054 | 0.974
BH-60-2 0.685 0.466 0.631 0.608 0.696 1.470 | 1.089 1.127 0.984
* Usami Mean Value 1.306 | 1.049 | 1.018 | 1.004

%% Frohlich Standard Deviation 0.150 | 0.035-] 0.057 | 0.044
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(a) (b) Fig. 10 Large Discrepancy of M — & Curves
Fig.9 = Comparison of Experimental and Analytical M — & Curves for Model . due to the Gap of 5—¢ Relationship,

As seen from Figs, 6(a) and (b), there exists a gap between unloading and reloading paths in the cyclic
5/ 04— ¢/ ey curves for the cyclic uniaxial loading. The physical meaning of the gap may by explained that a
plate element is in a nonlinear behavior as soon as the plate is in unloading and reloading stages., When the
gap between the unloading and reloading paths is neglected and a straight line is assumed as shown by a
dash-dotted line in Fig. 6(a), the cyclic M — & curve as seen in Fig. 10 may be drawn by the solid line. The
large difference of the shapes with (dashed line) or without (solid line) the gap is recognized in Fig. 10.
Even though the specimen B-4(-1 has the smallest gap because of the small p / t ratio, the large difference
occurs as shown in the figure, The effect of the gap may thus become significant for beam with large b/t
ratio.

The cyclic M — @ curves with Model [ are shown in Figs. 11 (a) and (b) by the solid lines. The dashed
lines in the figures are the experimental curves. From Figs. 11, the analytical curves based on Model ]
agree well with the experimental ones for the specimens both with small and large b/1 ratios.

v, Y |
( /Mv) ity

BH-60-1 1.0 LT

B-40-1

= Computed Computed H

_______ Experimental

‘‘‘‘‘ Experimental

(a) (b)
Fig.11 Comparison of Experimental and Analytical M —& Curves for Model T[.
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5. CONCUSIONS

The following main conclusions have been drawn from the present study.

(1) Cyclic loops of load versus deflection and moment versus curvature of thin-walled beams form
almost always the symmetric spindle shape under cyclic bending.

(2) The ultimate strength and bending stiffness of beams become small with the number of cycles.

(3) The difference of peak loads between the first and second cycles of cyclic bending test is significant
for the specimen with large b/ ratio. This is due to the early occurrence of local instability of flange
elements, ‘

(4) Two models are proposed to predict the cyclic M — @ curves analytically. The numerically
obtained cyclic 5/ a,— ¢/ e, curves of thin plate under cyclic uniaxial in-plane loading are used for the cyclic
behavior of flange elements of thin-walled beams under bending.

(5) The analytical cyclic curves based on double-flange section model (Model T) agree well with the
experiment for the plate elements with small b/ ratio, but the large discrepancy between the analytical
and experimental curves of the plate elements with large b/ ratio is recognized.

(6) The influence of the gap between unloading and reloading paths in the uniaxial cyclic 5/oy— ¢/ ey
curves is significant on the cyclic M — @ curves of thin-walled beams,

(7) The analytical curves based on Model II, in which webs are linear elastic during cyclic loading,
agree quite well with the experimental ones for thinner and medium plate elements. Model [ is simple and
accurate enough for the cyclic bending behavior of the box beams.
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