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OPTIMUM CROSS SECTIONAL SHAPES OF STEEL COMPRESSION
MEMBERS WITH LOCAL BUCKLING

By Akio HASEGAWA*, Hidenori ABO**, Mohamed MAUROQOF***
and Fumio NISHINO****

Strength evaluation and optimality of steel compression members are examined focusing
on the interactive behavior between overall and local failures. The results of optimization
indicate that optimal and efficient design is basically obtained in the region where the local
buckling does not occur before yielding of component plates, even if the occurrence of local
buckling is allowed for design. This implies that restricting the local buckling by specifying

. the maximum width thickness ratios may be worth while again to consider to accommodate in
design specifications, particularly for ordinary civil engineering structures. The practical
importance of allowing the occurrence of local buckling may appear only in the designs of
large scale and/or specialty-oriented steel structures and components,

1. INTRODUCTION

Design for steel compression members can be made by either allowing or restricting the possible
occurrence of the local buckling of component plates, So far it has been common practice to determine
cross sectional shapes of compression members through restricting the local buckling by specifying the
maximum width thickness ratios applicable for design. This seems because the design procedure needs to
be simple and/or, even if desired, rational design methods for the interactive behavior of columns with
local buckling have not been found at present,

However there are opininos, as hinted by Usami and Fukumoto? especially for very high strength steel
columns, that efficient design only be obtained by allowing the possible local buckling of component plates
and thus enlarging the freedom for the determination of cross sectional shapes with arbitrary selections of
width thickness ratios. With this consideration, some of specifications have adopted design procedures
which allow the local buckling. However, rational theoretical basis has not been given for the interaction
formulae available, and moreover it still remains to be resolved in a wide range of practical applications
whether allowing local buckling may lead to efficient design or not,

This paper firstly discusses the interactive design formula of the Japanese specification for the design of
steel highway bridges?, referred to as the JRA specification, and compares, for reference, with that of
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the appendix C of the AISC specification® which is equivalent to that of the AISI specification®. Secondly
and rather important in this paper, optimality for the design of compression members is presented in order
to facilitate efficient design, based both on the original JRA and the AISC interactive formulae with some
revised variations, Steel columns examined here include box, H and stiffened box shapes with a variety of
steel grades, Structural optimization technique is applied to examine whether allowing local buckling may
lead to efficient design or not. Load maximization method® is used to obtain optimum solutions in which
maximum load carrying capacity under constant weight of materials gives the optimum configuration of

structures.
2. OPTIMIZATION BY MAXIMUM LOAD DESIGN

In general, a structure is designed so as to satisfy the conditions as

Dj(P, X, Y)SCJ(P’ X’ Y) (]:1' 2’ .nn> ............................................................... (1)
in which D; and C;, are the structural response called design function and the corresponding limiting value
called code function respectively, and subscript j indicates the incident of concern for design such as
stresses and deflections, where both of D, and C; can be functions of load P, geometrical configurations
X=lx,, ---Zn} with m degrees of freedom, and material property Y. Introducing the analysis function as
S,=D,/P and defining the incident capacity function as P,=C,/S,, Eq. (1) is transformed into

PSP,(P, X, Y) (j:L 2, n) .............................................................................. (2)

Noting that linear analysis is used for common practice to evaluate D; and most of the design codes
stipulate C, irrespective of applied load P, the incident capacity function P; is assumed the function only
of geometrical configurations X without detriment to the practical consequence, when material property is
fixed as constant. Design is considered most efficient when the geometrical configuration is determined so
as to attain the maximum load under the constant weight of materials. This is mathematically expressed as

Pmax:M§X{Min Pj(X)} (j'——:l, 2, B L R RTRERES (3)

subject to W(X)=const.
in which Ppay is the maximum of applicable load P, and W is the total weight or volume of materials used.
By selecting total weight or its equivalent as one of the geometry X with the remaining geometry denoted by
X, Eq.(3) is reduced to the unconstrained maximization as

Pmax‘—“Mg.X{Mjin Pi(X)l (JEE1, 2, woeq)rereereetoneensemse oottt (4)

in which the number of the degrees of freedom is decreased by one to X=(x;, *Xp_;)
3. INTERACTIVE DESIGN FORMULAE

Consider a box shaped column as shown in Fig. 1. Utilizing the effective width concept, the Ultimate
strength P, of the column is given symbolically as

2 2
“ lEzIe:a ”51 %:P“CTITE crsrreisicscnienceeseees (5) P
in which P,.=ar*EI/I* is the ultimate strength of the column & N
disregarding the local buckling with the Young's modulus, the length of J
the column, and the buckling coefficient reflecting all the influences other b £
than the local buckling denoted respectively by E (=2.06X10° MPa), Fig.1 A Box Shaped Column.
{ and o. The original and the reduced effective moments of inertia
denoted respectively by I and I, are given approximately for a boxed Af

Afe
shape as
I=02A,/2, L= Age/2 «+oooveeemveesmmmemiinaiseiiiee, (6-a, b)
Afe

in which b, A, and A, indicate the depth of the web, the original and af
the effective areas of the flange respectively as shown in Fig. 2, Taking Fig.2 An Effective Cross Section,

u ™ @
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the ratio of Egs. (6) as

I _ Afe__Afe‘o'y_ Puf_ Out

I P T R R (7)
with g,, P,, P.,and g, indicating the yield stress of material, the yield strength and the ultimate
strength and stress of the flange portion respectively, Eq. (5) consequently leads to

By dividing the both sides of Eq. (8) by the original cross sectional area A of the whole section, the
ultimate strength in terms of stresses interacting with the local buckling of component plates can finally be
expressed as
auz%z P;;C;:“’:auc% ........................................................................................... (9)
in which ¢, denotes the ultimate stress of the column disregarding the occurrence of the local buckling.
The mutually independent overall and local ultimate strengths of the column as introduced by ¢, and gy,
in Egs. (7) and (9) are expressed, in general, as

Cuc= 0y S (Ae)y Gua™ GyG(Ag) - erreemrmmmm e -+ (10-a, b)
in which
=1 fole 1 foo 120—=vD) b
/\c—”, E r’ A’_n E k t (11-a, b)

called the normalized slenderness and width thickness ratios respectively with the effective length of the
column and the radius of gyration of the original section denoted respectively by [, and 7 for A,, and the
width and thickness of component plate, the buckling coefficient of plate, and the Poisson’s ratio
respectively designated by b, #, k and y=0.3 for A,

The JRA specification adopts Eq. (9) now denoted by ¢, for the design of steel compression members,
which can be transformed into

Ous= ayf(/\c)g(/\;) ........................................................................................................ (12)
using Eqgs. (10). The interactive formula adopted by the AISC specification denoted here by ¢,, has been
derived simply by replacing the yield stress of material in the overall strength formula by the local strength
as

Cus={ Tuclopmony *++ "+ 13)
which, for the convenience of comparison, can be transformed into

Oun= 0. f (A GA)= 03 f (/G A) G(A) v wereemveeesemiins e (14)
in which

S Ly e S

/\c Pa E r - g(/\l) AC (15)

Noting that the values of f(A.) and g(A,) are not greater than unity, and decrease with the increase of A,
and A, respectively as typically shown in Fig.3, the following inequality as

GM/O‘WZ d e e (16)

is always satisfied. g (A1) £(c)
Meanwhile, if the overall and local failures of compression -0 0

members be assumed non-interactive, the ultimate strength would o 50 -

be given as Fig.3 Local and Overall Strengths,
ouw=Min { O'uc( Ac)s O'uz( /\1)} ............................................ (17)

which may not indicate the actual behavior but shall be used for reference in this paper.
4. OPTIMALITY FOR COMPRESSION MEMBERS
Optimization for steel compression members were performed, focusing mainly on whether allowing the
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local buckling of component plates will bring the benefits for efficient design or not. The box, H shaped and
stiffened box columns are considered in this paper. The load maximization procedure as expressed by Eq.
(4) is used to obtain the optimal configurations. The compression members of concern are assumed simply
supported at both ends. The yeild stress of material is taken as 235 MPa corresponding to SS 41 Steel.
The results are given for JRA and AISC interaction formulae as well as non-interactive formula of Eq.
(17) for comparision. The design formula used for the optimization of compression members is taken from
the design provisions of the JRA specification as

1.0 0<2=<0.2)
‘;uc =FA)=1 1.0—0.545(Ac—0.2) (0.2 ATT.0) erevrvrmmemmmuemaieiaiieii e (18)
’ 1/(0.773+ 12) (A>1.0)

for the part of overall ultimate strength of Eq. (10-a) throughout this paper,

(1) Box shaped columns

Consider a box shaped square column with width b and thickness ¢ as shown in Fig. 1. The buckling
coefficient k for the plate component in Eq. (11-b) is taken as 4.(0. The design formula for the local
ultimate strength of Eq. (10-b) is given also from the design provisions of JRA specification as

fi‘i:g()\l)z 1.0 O AS0.T) (19)

Ty 0-49//\% ()tz>0.7)

The adoption of Eq. (19) to reflect the influence of local buckling on the interactive strength is considered
a considerably safer estimate of the true strength for design purpose, because Eq. (19) is simply the
buckling strength of plate components, and thus may account for a decrease of the flexural stiffness, but
not for the possible reserved post-buckling strength.

Defining the geometrical and material properties nondimensionalized as

x=b/t, R=I/A=1/4 bt

9.=VE/o,, P=P/o,*
the load carrying capacity in Eq. (4) is expressed as

szf’_,-(x, Jw, R) (Jmm1) oeeem e 21)
Note that the number of the incident of concern is only one, thatis, n=1 for j. Assuming that the length of
column be prescribed for design, the constraint of the constant volume becomes identical to the value of R
being constant. Thus, noting that g, is constant due to the material being given, the only one variable x is
subject to optimization, namely X={x| in Eq. (4).

Fig. 4 shows the result of optimization, depicting the relation between the maximum load P,y and the
parameter R combined with Fig. 5 indicating the optimal width thickness ratio which maximizes the load.
The respective ultimate strengths f (A.) and g(A,) at optimum are shown in Fig, 6. It should be noted that
Fig. 6 indicates neither g,; of Eq. (12) nor g, of Eq. (14), but only implies notional ultimate strength
determined from the optimal configurations,

As a matter of fact, it is seen from Figs, 4—~6 that the use of the non-interactive formula produces the
highest maximum load at the concurrent overall and local failures with varying optimum width thickness
ratios. On the other hand, the use of the interactive formulae of the JRA and AISC specifications does not
give the optimum at the concurrent failures as clear in Fig. 6. It is interesting to note for the JRA formula
from Figs. 5 and 6 that the optimum width thickness ratios are found at the maximum ratios which do not
allow the occurrence of local buckling before yielding, as given by the equality of A,=(.7 in Eq. (19).
Although the AISC formula may give the optimum in the region reflecting the reduction due to the local
buckling for larger R which corresponds to a slender column, the maximum load shows a very little
difference from the case of the JRA formula, and it is also worth while to mention that the ultimate column
strength seems only to exist in the range of f(A;) <0.45, when allowing local buckling may give the
different consequence compared with restricting it from the view of optimum design.
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(2) H shaped columns
As the second example of practical sections, consider a symmetrical H shaped column with flange width
and thickness denoted respectively by § and #,, and web depth and thickness denoted respectively by 4 and
t,, as shown in Fig. 7. Two independent states of local ultimate strength with the same design formula as
Eq. (19) denoted now by ¢, and ¢y, can be introduced for a flange and a web of the H shaped column as
given respectively by
Ourr=0yFA)y  Ouiw™=0yG(Ay) +rerrrrrreerrrr (22-a, b) P
in which A, and A, are defined in Eq. (11-b) by replacing the width thickness .
ratio b/t to b/2 ¢, and h/1, with the buckling coefficient % substituted 1
by (.43 and 4.0 respectively. The local ultimate strength in contrast to [
the overall strength for H shaped columns now is defined by 1 tf
sw=Min {O'uu(/\f), O’uzw(/\w)} ................................................. (23)
Similar as for box columns, the nondimensionalized geometrical proper-
ties are introduced for H shaped columns as
xlzb/t,, xgzh/tw, x3EAw/Acf=htw/btj ......................................................... (24.a~c)
with the same definitions for R, g, and P as in Eqs. (20-b~d). A,and A.,in Eq. (24-¢) denote the areas
of web and single flange respectively. Using Eqgs. (24), the load carrying capacity in Eq. (4 ) is expressed
by
—131=Fj(.1‘1, X2, Xs, Gy, R) (Fom1)teeresisbrmniimnenininn R (25)
in which the three variables are subject to optimization, namely X=lx,, X, x.
The results of optimization are presented similar as for box columns. Fig, 8 shows the maximum load
Prax VS. R relations with Fig, 9(a) ~ (c) indicating the optimal
width thickness ratios for flanges and web, and the optimal area 10.0
ratio A,/A., which maximize the load. The respective ultimate
strengths f (A, and g(};)) at optimum are shown in Fig. 10, in

|

Fig.7 A H Shaped Column,

which it is remembered that the optimal configurations have given T; -0

the same local ultimate strength for flanges and webs, irrespec- e

tive of the design formulae of Egs. (12), (14) and (17) applied. g

The optimal characteristics for H shaped columns are found ot Zi?;c ggﬁ:j;

similar as the results for box shaped columns, only exhibiting for O Non-Interactive Eq.(17)

the case of the AISC formula a little shift which expands the

region where allowing the local buckling gives different optimum 0 1 2 3
configurations from those obtained by restricting it. However, it 1/ (x10%)
should also be reminded that, even for this case, the maximum Fig.8 Prax for a H Column,
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Fig.9 Optimal Shapes for a H Column,

load does not increase much from that obtained by the use of the JRA formula, and moreover for the region
of concern the independent ultimate column strength of f ().) reaches only up to 0. 45, which is almost the
same magnitude as for box columns,

(3) Stiffened box shaped columns

As the third example of practical sections, consider a stiffned box column as shown in Fig. 11. Two
independent states of local ultimate strengths of component plate denoted by ¢, and ¢,, can be introduced
for stiffened panel and stiffner respectively. The design formula used for the stiffened panel is given from
the JRA specification as

1.0 0<X5=0.5)
O'uls:g(kls)z 1.5"’Als (0-5</\ls£1-0) .................................................................... (26.3)

Oy
0.5/As  (As>1.0)
in which
)
Azs:l Oy 12007 0%) B, (26+b)

z\ E ks t
The buckling coefficient %k, appeared in Eq. (26-b) is given by
kszMin{kp, kn} ........................................................................................................ (27)

representing a possible local failure mode of the stiffened panel, in which

2\2
WraVrny  cyi¥ms)

a*(1+ no)
k}-‘= ........................................................................ (28.3)
20+v/1+ny) .
Titne (@>¥1+n0o)
and
Rl M+ v e e e e (28-b)

in which @, & and y are aspect ratio of the plate component, area ratio and rigidity ratio of single sided
rectangular stiffener respectively given by
a bsts 4(1_V2)b?sts
Ty TTer 7T
using the geometries shown in Fig. 11, and n is the number of panels divided by stiffeners. The design
formula applicable for the stiffener itself is the same as Eq. (19) with b/t and k substituted by b/t and
0. 43 respectively, k

................................................. (29-a~c)

With the adoption of the design formulae presented above, the local ultimate strength of the column is
given by
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Cur=Min Guss, Gu +-veeseeeees ebrens Ceiheiveedereess ereererierenereriinetaitnsensneienientoaraserse ceereeneeens (30)
Introducing the following nondimentionalized parameters as

= b/t, L= bs/tsy L=0= bsts/bt ..................................................................... Vs (31)
the load carrying capacity in Eq. (4) can be expressed as

Po=P,(xs, o, Tz, Guy B, M, @) (Jo1)reereemmmeeirmmmeinie i (32)

in a similar way as for box and H shaped columns, in which the three variables x,, x, and x; are subject to
optimization with n, o, g, and R as parameters.

The results of optimization with a particular case of n=2 and oa=1 are presented in the same manner as
for the previous two examples. Fig.12 shows the maximum load Puax Vs. R relations while Fig, 13
indicates the changes of optimal geometries of respective width thickness ratios /%, b,/ 1, and area ratio
& with respect to R. Shown in Fig. 14 are the respective ultimate strengths f (1), g(As) and g(A,) at
optimum, in which it is remembered that the optimal geometries have given the same local ultimate strength
for stiffened panels and stiffeners with kidentical to k;in Eq. (28). Although the general characteristics
of optimum configurations are similar to the previous examples, the range to exhibit the advantage of
allowing the occurrence of local buckling tends to be enlarged, particularly for the case of the JRA
interactive formula. It is noted from Fig, 14, however, that the maximum of the independent ultimate
column strength of f(A.) in this range is only 0. 57 and 0. 64 for the JRA and AISC interactive formulae
respectively. The column slenderness corresponding to those values may not be said impractical, different
from the results of box and H shaped columns, but can be regarded to constitute only a fraction of practical
members. ’

(4) Comparative studies
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Fig. 14 o4/ 0y and o,,/0, at Optimum for
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The results of optimization presented above are considered only true for the interactive formulae and the
respective overall and local ultimate strengths employed and the yield stress of material used. In order to
examine the effects and sensitivity of the premise cited above, two additional cases are considered to obtain
the consequences of optimization. The one is to employ another evaluation of the design formula for local
ultimate strength as given by

Tut _ L P T Nt Y A TR RPN e .
Z“g(/\z)-‘ A (A>0.7) (33 a)
instead of Eq. (19), and
U;us:g( Azs)=9/f§ (e 1L0) oo evmemmerme et (33+b)
Y s

instead of Eq. (26-a), both of which are employed here by the reason that a possible reserved
post-buckling strength of component plates may be incorporated effectively in the evaluation of the
interactive formulae used. The other is the use of different grades of steel, in which the yeild stress of
352 MPa corresponding to SM 53 steel is employed here for comparison,

Computation is made in a similar way as before. The most concerned for the results is a possible shift of
the critical point of column slenderness beyond which the advantage of allowing the occurrence of local
buckling is expected for the design of steel columns. As has been discussed in the previous cases, the
critical points of concern are given in Table ] in terms of the independent ultimate column strength of
ouc/ 0v=f (A.), not in terms of the direct expressions of column slenderness A;. This means that if a column
is proportioned with its characteristic strength more than the value given in the Table, the optimum shape
is found only in the range without local buckling. Table 1 includes the summary of the previous cases of Eq.
(19) or (26-a) with g,=235 MPa for the convenience of comparision, in which asterisk (*) indicates that
the optimum solutions are found to exist in the range where the occurrence of local buckling is not expected
up to the column slenderness [*/A equal to 30 000.

From the Table, it is observed that an alternate use of Eq. (33-a) incorporating post-buckling strength
for box and H shaped columns tends to enlarge the range where the advantage to allow local buckling is
expected for the case of the AISC interactive formula, but the use of higher yeild strength steel does not so
remarkably, As for stiffened box columns it is noted that those alternative uses do not change the
consequence so much compared with the previous results for Eq. (26-a) with 4,=235 MPa, since the
optimum solutions have been obtained in the range of 0<CA,,<1. 0, where alternative use of Eq. (33-b) does
not cause any effect.

In most civil engineering structures, steel columns tend to be designed in stocky and intermediate ranges
of slenderness, where the independent ultimate column strength f (A.) rarely falls below the value of (). 6.
Considering this practical situations combined with the summerized results of Table 1, it is said to be
exception rather than a general rule that allowing the occurrence of local buckling gives the advantages for
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practical design. It should be noted, however, that the above advantages tend to be experienced more for
higher evaluation of the interactive formula and local ultimate strength, for higher grades of steel, and for
stiffened box columns, although the consequence is not so remarkable within the content examined in this

paper.
5. CONCLUDING REMARKS

Conceptual rationale is explained for the interactive design formula between the overall and local
buckling of steel compression members adopted by the JRA specification, although the design formula
itself was originally given by intuitive basis as a safer approximation, With this JRA interactive formula
compared for reference with the AISC interactive formula, the optimization using the load maximization
technique is performed in order to make clear of the optimal configurations of steel compression members;
when the occurrence of local buckling is allowed with the use of the interactive formulae.

When the interaction is ignored, although it is theoretically meaningless, the optimal configurations are
obtained when the concurrent failures occur, On the other hand, when the interactive formulae are
applied, whichever from the JRA and the AISC specifications, the optimal configurations are found at the
geometry in which the respective overall and local ultimate strengths differ from each other. It is
interesting to note from the results of optimization that optimal and efficient design is basically obtained in
the region where the local buckling does not occur before yielding of component plates, even if the
occurrence of local buckling is allowed for design. This implies that restricting the local buckling by
specifying the maximum width thickness ratios may be worth while again to consider to accommodate in
design specifications, particularly for ordinary civil engineering structures,

It is noted, however, that the advantage to allow local buckling tends to be observed more for higher
evaluation both of the interactive formula and local ultimate strength, for higher grades of steel, and for
stiffened box columns, although the consequence is not so remarkable within the contents examined in this
paper. It is said henceforth that the practical importance of allowing the occurrence of local buckling may
only appear in the designs of large scale and/or specialty-oriented steel structures and components,
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