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ACCURACY AND CONVERGENCE OF THE SEPARATION OF RIGID
BODY DISPLACEMENTS FOR SPACE FRAMES

By Yoshiaki GOTO¥*, Akio HASEGAWA** Fumio NISHINO¥** Sei MATSUURA***¥*

In the finite displacement analysis of space frames, a formulation by means of the
ordinary direct Lagrangian method makes the governing equations highly nonlinear and
complicated largely due to the finite rotations in the space. For this reason, space frames
are more often analyzed by the method with the separation of rigid body displacements,
compared with plane frames. Nevertheless, its theoretical equivalence to the solutions of
the direct Lagrangian method have not been examined so far except that for plane frames.

This paper examines the theoretical convergence and accuracy of the method applied for
the analysis of space frames.

1. INTRODUCTION

In the finite displacement analysis of three-dimensional space frames, a precise evaluation of large
rotations is of great concern. A formulation by means of the ordinary direct Lagrangian method with the
displacement components defined in terms of the coordinates fixed in space makes the governing equations
highly nonlinear and complicated largely due to the finite rotations in the space. This sort of governing
equations is not only difficult to derive, but also, even if derived, generally requires much complexed and
cumbersome procedures to obtain numerical solutions’~?, For this reason, space frames with large
displacements are often analyzed by the method with the separation of rigid body fiisplacements“’*“’, called
here in acronym the SRBD method? . This method divides a structure of concern into an assemblage of
finite elements, and then a large portion of finite displacements is removed from respective elements. This
portion is regarded as rigid body displacements, and treated as finite rotations without any restriction on
the magnitude of displacements, Helped by the geometrical observation, the remaining portion of the
displacements due to the deformation of each element is considered small, and thus can be well
approximated by the simplified linear®? or nonlinear?~"-® governing differential equations defined for
respective local coordinates. With those simplified local differential equations, the solution procedures
for the SRBD method become easier, compared with those for the direct Lagrangian method,

Considerable works? 79 have been done for the precise evaluations of rigid body rotations, and
reliable numerical solutions are found to be available, to some extent, without proof for the accuracy.
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However, in addition to the evaluations of finite rotations, a way of the simplification of the local
differential equations seems to influence the accuracy of solutions. In other words, an appropriate
simplification of the local differential equations is none the less important to produce accurate solutions,
however adequately rigid body rotations are evaluated. In the present procedures for the SRBD method for
space frames, a simplified linear or nonlinear goverinig equation is introduced only from physical
considerations without mathematical proof and its validity as well as accuracy has not been examined
theoretically so far except that for plane framesV?,

This paper examines theoretically the convergence and accuracy of the SRBD method for the finite
displacement analysis of space frames, in comparison with the solutions of the highly nonlinear differential
equations in direct Lagrangian expressions.

Firstly, the direct Lagrangian governing equations for space frames without any restriction on the
magnitude of displacements are presented, and then typical simplified local differential equations after the
separation of rigid body displacements are given to prepare for the use of the SRBD method. Next, by
making use of the Taylor expansion with respect to the element length, the discrete forms of the governing
equations in terms of nodal forces and displacements of a finite element are derived both for the direct
Lagrangian and the SRBD methods under the same basis of coordinates helped by appropriate coordinate
transformations. The accuracy and convergence of the SRBD method are examined by comparing the
coincidence of the coefficients of the derived power series™ ™ For the ease of mathematical manipulations
in this paper, space frames are assumed to consist of doubly symmetric solid straight members under the
basic beam assumptions of no change of cross sectional shapes and the Bernoulli-Euler hypothesis, where
the warping due to torsion is neglected.

2. DIFFERENTIAL EQUATIONS IN DIRECT LAGRANGIAN EXPRESSION

Consider a space member subject to distributed external forces as shown in Fig.1. Rectangular
Cartesian coordinate system (x, y, z) with base vectors (g, g,, g. is introduced at the initial
configuration of the member. The coordinates (x, y) are chosen as doubly symmetrical axes of the cross
section with their origin at the centroid, and the coordinate z is taken along the centroidal axis of the
member,

As is well known, if the Lagrangian differential equations are expressed by the displacement components
with respect to the coordinate system (x, y, z) fixed in space, the governing equations become much
complicated and the corresponding discrete equations in terms of nodal physical quantities can hardly be
obtained. For this reason, a similar formulation is used as that for an inextensional rod originally
introduced by Love™ in order to simplify the governing equations without introducing any approximation.
Instead of common displacement components, in this formulation, the

deformation of centroidal axis is represented by four unknowns of i, Original State
xy, v and 4/g, —1 which are defined by Jz 92z
0 T —xy 9 - W
9y 95
[DI=| —7 0 kg | oo (1-a) X . 9y
Xy —xzx O ! £ d
such that ‘ AR
Alis, Ty, 127/ d2=[D](iz, Ly Eg) rrrrrrmmerereneminnnes (1-b) gi:igmed
A
and ) o VN,
@z‘): /go iz .............................................................. (1.(:) y 'ay
“ “ “ « . o . AN A A AA
where (i, i,, i, are the unit vectors obtained by normalizing the P = PyiytPyiy P, i,
deformed base vectors (.o, &, 20 Of the centroidal axis which M = Pchtiy otz s
Gxo, Gy, G0 y iy
turn to be orthogonal due to the beam assumptions cited before, Fig.1 Coordinate Systems for Direct

Physically, (x./v/go, x4/4/ o), z'/\/ g, and @“ 1 correspond to the Lagrangian Expressions.
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components of curvature in the directions of the symmetrical axes of cross section, the torsional rate and
the extensional rate, respectively, of the deformed centroidal axis. External distributed force p and
distributed moment m on the centroidal axis as shown in Fig. 1 are expressed by the components of vectors
(i, iy, i) as (Ds, Dy, D) and (g, My, 7). Using the four unknowns and the external force
components defined above, the governing differential equations in direct Lagrangian expressions are
obtained through a similar way as the Love’s formulation. The results are summarized in Table 1, where
M, vs. stress resultant relations as well as the stress resultant vs. (x;, xy, 7, 4/go) relations are
classified into two levels of nonlinearity.

First is called the theory of (@ finite displacements with small strains and has been obtained by the
approximation of small strains as

I@_1!<1, | y] <1, ] €1, oyl €1, [zap] Q1 cooererereremmmm i (2-a~e)
The constitutive equa-

tions have been assumed to Table 1 Direct Lagrangian Expressions,

follow the linear elastic Equilibrium Equations
: A A ~ A AN A A Ay A A A
relations as FiF 40,0, FUFoF e p, =0, Pty 40,20, MMy~ My, +1,=0
. =Ee A A N A IS
2z 22y where  Fo=Mp-MytMoice-my,  FosMytM Mo tmy » Fp=N
0==2 Ger, Theories W Mechanical Stress Resultans_s_
. z Boundary Conditions. VS. Ky Kyy T, VG
02y=2 GEry XY °
.......... (3'&""0) @ Finite @_x _ /F\)c{ N=EA( go—1)+EJ12/Z
H 3 Displacements -
in which (Uzzv Oz, Uzy) and w'itg M, =Ttk /ﬁy = /F\; M=-El ey s M =BTy
Small Strains
(€22, €xx, €z) are 2nd F, = ¢ Te=Gdt, K=EJ(/Go-1)+£d,,1%/2
Piola-Kirchhoff ~ stress ® Loveld o fe AT
. X X [e]
tensor and Green strain no
- M= H Mo=-Elk,, M =EIk
. M=Tg y y X xCyr Ty Ehytx
tensor defined for the (g, oo fe T
) . . =M, s=GJT
y, z) coordinates, Strain

Remarks: The following notations are used throughout Tables and Equations
components are found to

be expressed under the M= [ ozardhs M= L"ZZydA’ T L\wzyx"’zxy Jah, K‘L"ZZ“ZW “)A
Bernoulli-Euler  hypoth- afan e [ee 1s [yrdn, 9= [Loennar, 9= f 032, ()= d()/dz
esis and the condition of

small strains by (xz, %, 7, /Go) as

ézz::x/g_o"l F e Tay H (TP YDTY2, €™ — YT, @ogm=T +-orrerererrrmmrmmmmnieenenes (4-a~c)

With the conditions of small strains, it should be noted that the constitutive equation of (3) with Eq.
(4) is coincident with that defined between physical components of stress and strain.

Second is the same as the governing equations originally given by Love®, excepting additional inclusion
of the N vs. (y/g, —1) relation, and is called the theory of ® Love. In this formulation, the constitutive
equations have been assumed to relate M,, M, M, and N proportional to x, x, 7, and 4/g,—1,
respectively, As clear from Table 1, the difference between the two theories is found only in the
constitutive equations for N and M,. The physical interpretation of this difference is that the theory of @
takes into account the contribution of the axial stress ¢, due to the torsional deformation to the torsional
moment as well as that of torsional rate ¢ to the axial strain e, while both of them are neglected in the
theory of (5. Since the constitutive equation for M, in the theory of (@ is expressed from Table] as

Mz=Ts+Kr=GJr11+E(«/§;—1)/G+EJMTZ/2 G} eeememmie i (5)
and both of E(y/g,—1)/G and /EJ,./GJ * are considered the order of the magnitude of strain, the
second and the third terms of the right hand side of Eq. (5) can be ignored compared with unity by the
reason of Eqgs. (2-a, d, ). In a similar way, the constitutive equation for N in the theory of (@ is
transformed as

N=EA(~/9—0~'1){1—mt'M‘r/2(\/g_g—l)} ............................................................ (6)
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where it is noted that +/J/A4 ¢ and /g, —1 are the same magnitude as shear strain and axial strain,
respectively. If the shear strain is assumed the same order of magnitude as the axial strain in the centroidal
axis, the term Jz2/A(y/g, —1) can also be neglected compared with unity because of the conditions of small
strains, Therefore, with the conditions of small strains and the equivalence of magnitude between the axial
and shear strains, the constitutive equations for the theory of () are nearly equal to those for the theory of
(), and thus, it is concluded that little difference is expected between the solutions of the two theories
classified in Table 1.

3. SIMPLIFIED LOCAL DIFFERENTIAL EQUATIONS FOR THE SRBD METHOD

As shown in Fig, 2, the local coordinate system (%, 7, Z) is introduced and defined for the finite
element 7, ;41 after eliminating rigid body displacements such that the base vectors coincide with the unit
orthogonal vectors (i, i,, i,) at node i, indicating that the local coordinates move with the rigid body
displacement of node j. With the local coordinates defined above, the displacement vector d, of the
centroidal axis after eliminating the rigid body displacements can be expressed by the position vector izo of
the deformed centroidal axis as

’Jozko_k‘n_gfﬁ’ SO (7-a, b)
where subscript ; indicates the quantities at node ;.

The local differential equations of a specific finite element are expressed by the force and displacement
components in terms of the local (T, 7, Z) coordinates as

‘(_in:(ao, Vo, Wo)', P=(Px, Dy, P2y M=(Mz, My, M2)"

................................ (8-a~c)

~

It is noted henceforth that the components of vectors (;x, fy, i)

are distinguished from those of (;‘xi, fy,., fzi) by the notations
respectively as () and (:),

The local simplified differential equations to be examined here are
summarized in Table 2, which are called the theories of (©) Nishino'
and Yuki® (@ Maeda-Hayashi®, (¢) beam-column?-9? and (f) small y
displacements®?. All of them have been used so far for the SRBD
method to analyze space frames, and can be understood as further

AoA A
g3 Vg Tl g T4
/'\Xl ¥O/}yl _O/'\Zl
P = PX1tXi+Py1Iyi+Pz1lzi
A A

d.=

o Yo

m = ﬁxiAiXi’rﬁyilyﬁﬁzixzi
simplifications of the theory of @ or (® in direct Lagrangian Fig.2 Coordinate Systems for the
expression, Separation of Rigid Body

Among those listed in Table 2, the equation of (©) is considered Displacements,
most accurate in the sense that it covers wider range of nonlinearity,
compared with the other equations, although this equation is too complicated to apply for the SRBD
method!”

The equation of @ corresponds to the local displacement field used in the SRBD method of Ref 5),
where the local stiffness equation has been derived directly from the theory of minimum potential energy.
Although this equation includes nonlinear terms similar to the equation of (¢), it seems less accurate in the
consideration on equilibrium,

The equation of (e) is obtained from the equation of (©) or (@) by neglecting the nonlinear terms relating to
torsional displacement. This equation is relatively simple and accurate to apply for the SRBD method and
thus has been used most frequently and conveniently in both for plane and space frames,

The equation of (f) is well known as the small displacement theory, and is the simplest only with linear
terms. Although rarely applied for the analysis of plane frames, this equation of small displacements is
sometimes used for that of space frames for the ease of compiitation,

All the local equations listed in Table 2 have been derived through the considerable approximations by
the condition of relatively small displacements, Because of those approximations, some of the physical
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Table 2 Expressions with Separation of Rigid Body Displacements.

Theories Equilibrium Equation Boundary Conditions Stress Resultants vs.
Mechanical Geometrical | Displacements
— —_— N oy —_ P ~ A
©N1'Shin014) {(Mx'My¢),+Nué‘my}'+px=0 (Mx"My(Ab) +Nué-my=?’§ Uo = ug N=EAW5+EJ¢'2/2
and {(My+MX/¢\,) HVEHTGH +Py=0 (My+Mx$)‘+NVg+ﬁX+F§ Vo = VS Mx=_51x(ﬁg+Vg$)
;10) . - — —_—
Yuki N'+p2=0 N=Fs Wo = WS My=~EIy(v‘<',—ué;‘.$)
MMM 4,0 M, M G=FT o= T | MyeT K
A p—
My+MX¢=M‘y: v = Ve
A A A,
My = Mg b = 9c
@ (-, 640G -, ) '+, = AR T i U o= US| NeEAW'+EJG'2/2
Maeda- My 9" +Nug-m, )" +p, =0 M ¢ U -m=F o T U =EAW'+EJe' %/
e e A — — — [ - — — — —
Hayashi®) (M ¢ +NVS+x ) 4Dy =0 LT G I+ =F Vo = VS Moe=-E L (U-v4")
N'4+p,=0 N = FS o = WS | =Bl (VBRI
(M T UM VS ) ' 411,20 = WS W RS | Mp=TerKe
iy iy W=
M,= ﬁg $ = gc
® (M +Nul-m ) '+, =0 Wy N-m,=F S U = U | N=EAW
Beam ﬂx 20 —“5, BX' MUY= x Uo = Us - Wo _
~Cotumn (MyNvSHm) ' +py=0 MoV G, =F o Vo = VE My=-E1 U
N'+p,=0 N=Fg Wo = WS | My=-ELvY
Migtia=0 W= WS Uy = U§' | M=GJak
My M vb = v§'
M= Mg ;z E%
®SmaH m;(:‘y) ""Ax:0 ﬁ;('vy=f>c( Eo = ug N=EAWO
Displacements | (My#ny)'+py=0 Mym,=Fy Vo = V§ Ma=-EL s
N'+D,=0 N=FS Vo = WS | My=-EIyvj
FiLi =0 W= WS U =S | M=Gdah
W= ¥ RS
4 IR
M= Mz ap = oy

Remarks: w=wyt(UL2HV2)/2, To=60%', K=EJWL+EJ, '%/2

quantities can hardly be identified whether they are defined in terms of the original or the deformed base
vectors. Since the difference of the definitions for those physical quantities is expected to influence on the
accuracy of the SRBD method, however, the physical quantities are so defined in Table 2 that the
accuracy and the convergence of the SRBD method are improved, as discussed later in Section 5.
Specifically, the definitions of the physical quantities appeared in Table 2 are that Qs in the equations of (©)
and @ is relatively small rotation around the deformed centroidal axis, while g, in the equations of (¢) and
(@ is that around Z axis, and (M, —AL, M) are components of internal moment }f which are defined for a
positive cross section with its normal towards the positive direction of Z axis as
M= M oyimi— Mgyt M g gy eeeeeemseme e e (9)

4. DISCRETE EQUATIONS FOR THE NODAL FORCES AND DISPLACEMENTS

(1) Derivation of discrete equations

The discrete equations in terms of the physical quantities at both ends of a finite element j, {+1 are
obtained from the governing differential equations in Tables 1 and 2 by using the Taylor expansion with
respect to the element length Az=1z,,,— 2z,/2?. These discrete equations can be understood to correspond
to the solutions of the differential equations, The discrete equations to be derived here are expressed in
terms of nodal components for the (%, 7, Z) coordinates after eliminating the rigid body rotation at node ;
rather than those for the (x, y, z) coordinates fixed in space in order to facilitate simpler mathematical
expressions, The nodal values of interest consist of mechanical and geometrical quantities.
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As for mechanical quantities, the components of nodal force F}, and nodal moment M are defined at node
7 and {41 of the flmte element as

Fi =—Fadn— Fuyly—Faiz My =~Myuloit Maidyi— Motz

Fi+1”’F.’rl+llxz+ Fyb+1lyz+ szllzu M+1_Myi+lla:i sz+1lw+Mzz+1lz;

Regarding geometrical quantities, the translational and rotational displacements at node ; become zero,
after eliminating the rigid body displacement of node j, and hence, only those at node {+1 are considered.
Atnode j+1, the translation is defined as (To;11, Doss1, Wois1) according to Eq. (8-a), and the rotation is
evaluated by the direction cosines [,,] between the orthogonal unit vectors (i, iy, izen) and (i,
fyi, fzi) which are identical to the base vectors of the (¥, ¥, Z) coordinates, which are mathematically
expressed by

~ ~

ixiﬂ ixa XX lg‘eg, Xz
iy£+l :[lab]i+! iyi , [lab]z l@if lgy 7 R D PPN (ll.a’ b)
i2i+1 izi lﬁi l%?; 2z

For the simplicity of writing, the vector {Q, is introduced as
fQ,} (Fx, an Fz, Mx, My, Mz, To, Do, W) (] 1eQ) reeorerermmemn (12)
The discrete equations for the nodal physical quantities are to be expressed by the power series with the
element length Az and can be derived by the method of the Taylor expansion after tansforming the
governing equations of Tables 1 and 2 into the first order differential equations in terms of the physical
quanities of concern”-'?, Those discrete equations take the form of transferring the physical quanities
from node § to {+1 as

©  (n)
leaﬂ Q;} +Z QJ! Azn/n' lab!iﬂ:gab'*"; labI;Az"/n!, AZ=Zp =2y s (13'3"“0)

where §,, is a Kronecker delta and (8]1 . éjbfi) are the nth order derivatives of (Q;, Il,,) atnode ;. Those
drivatives can be expressed by the physical quantities {Q,} and [],,] at node ; with the successive
differentiation and substitution for the derived first order differential equations as well as the introduction
of the boundary conditions at node ; as

(ﬂo, Do, @o)r={02, [lab}:[E] ................................................................................. (14.3’ b)
where [E] is a unit matrix.

The accuracy and convergence of the SRBD method are examined by the coincidence of the derivatives
with those of the direct Lagrangian method- 19

The discrete equations for the nodal force F, are derived simply from the considration of force
equilibrium, irrelevant of geometrical nonlinearity?  Because of this, if the rigid body rotation is
exactly evaluated at node {, the local equilibrium equations for the SRBD method naturally coincide with
those for the direct Lagrangian equations and thus the coincidence of the discrete equations is always
assured for the nodal force components (F,, F,, F,) . Therefore, the physical quantities whose accuracy
have to be examined by the coincidence of the coefficients of Eq. (13) are

(Ma, My My, T, Do, Do), [lap]+oeerereereesesessensmseineassias st (15-a, b)

(2) The discrete equations for the direct Lagrangian differential equations

The first order differential equations for the physical quantities are obtained as given in Table 3.

Those for the mechanical quantities derived from the differential equations of Table 1 are expressed
using the components of (F,, ﬁ',,, Fo M., My, M.). In order to be compared with the SRBD method
discussed later, however, the derivatives determined from the first order differential equations of Table 3
have to be transformed into those of Eq. (12) by means of the following relations as

(My, =Mz, M)'=[la)(My, —Mz, M), (Fz, Fy, Fo'™=[la)(Fa, Fy F

(Tox, Moy, M) =[lap] (1, My, M2y, Dz Dy, P =[lat) Dz, Dy DT e (16'a~d)
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Table3 First Order Differential Equations in Lagrangian
Expressions.

First Order Differential Equations

F FTFK-px UL =/95l5x%
s N

F;;'"Fxﬁ'Fsz py Vo=>/-9:Z %

/\‘ N A

FoeFky- Fny pz Wi =/g 1051
A

My=F M yT- MZKx+my d[2,5,1/d7=[D1[ 2,1

My F ~My - MZK 'rnx 0, Ty-xy

My =My HM oy (oI | =10 0y kx

Kya=Kys 0

® Finite T ELgs k=M /EL
Displacements 5 3 A
with E(Jpp=d°/R)T°/2+(G+F ,/A)IT-M,=0

Small Strains

A
Go=F 5/ EA+1-JT2/2A

® tLove

kM /EL s iey=-My/ Bl

A
T =M,/GJ, /gy =F,/EA+]

Table4 First Order Differential Equations with Separation of Rigid Body

Displacements,
Theories First Order Differential Equations
© Fo=-pg » Mi=Fy any+my
g;zhi no Fo=-py » My= Fy+anx M
Yuki Fi=-bz » M={( +My¢)ux (71T 6)asd/ (1+42)-,
W, . ol +My¢)<p/l +{,-M5)/1, }E(1+¢7 )
Vo o - (W A8) /1, -m M be/1, 1/E(1482)
W F EA- (2452) /208" 2/ 2
%' is the solution of E(J rr-leA) '3/2+(G+FZ/A)J¢ -M,=0
1 M- v o o /\l
@ Fam-Pyx » Mg=FymFoo, M 6" +m,,
Maeda L = A,
Hayashi Fy=-py » My=Fy#Faon-Myed'-my
Fr=-pz » M=(Mo 40 ) -m
R o
V=T » Oy=-My/E1 +ocx¢
W'=FZ/EA—(0LX+OL )/2- J<1>'2/2A
3 is the solution of E(Jrr-d2/A)%'3/2+(G+F,/A)J¢" -My
? F;("px > 7>'<=_x'_F~zay+my
ean - W =T 4F o _m
-Column Fy:‘Ey o My=Fy*Pane
Fz=-py » Mz=-mz
Ug=0y > =M /BT
Vo=-0x 5 Gy=-Mx/Elx
WL /EA-(63402) /2 5 a=M /G
Fi=3, » W=F T
Small Fros TeFom
Displacements Y Ey > YTy
Fo=-Pz s Mp=-mg
US=ay s =My /ELy
Vom-ox s oy=-Mx/Elx
Wo=FL/EA 5 ah=M,/GJ

As for the geometrical quantities,
the first order differential equations
for displacements are obtained by
differentiating Eq. (7-a) with re-
spect to z helped by Egs. (1) and
(11), and those for the direction
cosines are derived by substituting
Eq. (11) into Eq. (1'b).

Combined use of Table 3 and Eq.
(13) helped by the boundary condi-
tions of Eq. (14) leads to the deriva-
tives for the physical quantities at
node j. The derivatives obtained are
summarized in Table5 to be com-
pared with those derived from the
SRBD method.

the elongation of the member axis

In addition, since

seems very small for common struc-
tures of practical importance, the
derivatives with the condition of
inextensional member axis are given
in Table 6, which corresponds to a
particular case of the derivatives in
Table 5 with the cross sectional area
A tending to infinity. The order of
the derivatives listed in Tables5
and 6 is determined such that the
coincidence of the respective
methods can completely be ex-
amined. Since the derivatives both
for (M, My, M.) and [l,)] do not
depend on whether the member axis
is extensional or inextensional, the
expressions for these derivatives are
given only in Table5. It should be
noted that the physical quantities in
Tables 5 and § are those at node 7,
although subscript ; is omitted for
simplicity.

(3) The discrete equations for
the SRBD method

In a similar way as for the direct
Lagrangian method, the first order
differential equations for the physic-

al quantities are obtainable for the SRBD method from the local governing equations of Table 2 and the
results are summarized in Table 4, where angles (@, @, @, represent components of the member

rotation around the (Z, 7,

Z) coordinate axes after eliminating the rigid body rotation. Those angles are
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regarded as small as angles (a,, @,) can well be approximated using displacements (%, 7,) as

‘a‘,xzﬂg’ ay: _56 ............................................................................................... (17.3, b)
and the direction cosines [[,,] are also approximated®? as
=1, hs=a. Lz=—0a, L= —d =1
biz=0r, lp=ay, lg=—0g =1 e e (18- a~i)

Use of nonlinear equations as in Ref.5) instead of the above linear equations (17) and (18) may not
improve the accuracy of solutions because the local differential equations of Table 2 have already been
approximated considerably by the conditions of relatively small displacements!,

Since the first order differential equations of Table 4 are expressed by the components of Eq. (12),
excepting M., 7 and qu in the theories of (©) and (@ which are defined with respect to the vectors (;x, Eg,
iz) , the derivatives for the physical quantities are mostly derived directly from Table 4 without
transformation procedures. The physical components M,, 7 and é are transformed to those of the (x, 7,

around the vectors (i, ;y)
With Table4 helped by

Z) coordinates using the
direction cosines of Eq (18) Table5 Derivatives of Physical Quantities : (a)~ (c).
as Theories Ul Vi Wo Ugs Vo, Wa
M =M.~ Mya,— Mzax, ® Ug:Yg:o o0y Vom-Tiy
i 5 B s i Wo=A-1 Wo= (Fy -F Ry -p,-Edop' ) /a
=17 ,— mxay_*_ Py, Lagrangians e - _: _x yv b4 x‘ z
A A= . @ Ug=Ve= uo=)n<y, Vo==Aky
a,=¢— apayt a0, Ws=A-1 W= (Futy-FytyPz)/a
(19-a~c) With © | Tu=7y=0 TRy To=-iy
R R Separation of @ | Wi ST )
where (6, @,) are the compo- Rigid Body Wi Wo=(-Pa-Edop' ) /2
Displacements ® | Ty=v2=0 st Y=g
nents of small angles repre- o o Uo™Kys Voi-Ky
. . Wo=A- wg=-pz/a
senting the member rotation - -
Remarks: The following notations are used throughout Tables.

EA=a, Ely=by, Ely=by, A=F/atl, X=h-Jo%/2A, R My/ by s K= ~Moe/bye
Do:ﬁz/ed, p is the solution of E(Jee-02/A)0>/2+(64F,/A)do- M0,

M K. +M Ry -m {G+(F Ky -F K, ~p,)/A}p] Mok +M
Egs and the re- - y<x Pz <y em
as. (17) (19), {35( rr-dz/A)92/2+(G+F /A)3} . PTG
sults for the derivatives of the
physical quantities for the | Theories ) (20"
. ~2,-2 no
SRBD method are summarized @ Bsep?ax], Uy=p' "K(Kg Z?
i Lagrangians i Lgg=-0"+8, %y Igy=-(p242),
in Table 5 and those for the ® U0, Ug By LRy | B Ryid, HgmRyteybs Ly
inextensional deformation of © ) o 1570, Lagmo's Uia=(Fytllyotiny ) /bR ™
the member axis are given in | 6y Bambs 19970s WS | quceot, 180x0, 1p=(F- Mxo-mx>/by-Kyp
. .. . Lig=- 185 1hg *z‘A'— 1850
Table 6, in a similar way as Efgjgagg‘d’; OF L ey, T Iha0 Z
. . Displacements |(@® U5=0, Wg=ro> Lz=(Fx +my)/b
for the direct Lagrangian Pl 5570, 1=(F,-m) /by
® 5==05» = %3 I
method. Ug= 185 zn_:‘zA,, 1%5=0

5. DISCUSSIONS

( Mxp MZ< mx)/Ely, »<y=—(F 'lep Msz+m )/Ely, § and g*differ according to the Theories

p for a) and p=p, for b) and p*=p for c) and p*=-p for d).
(1) Converged  solu- Theories . T, M, W, W
tions for the SRBD method @ MyeBy %,
If converged solutions be Lagrangians m@ Fy =Py~ R
A =Fi H =i F iy~ Fo
produced for the SRBD ey P T
. @ . "px+m ol z‘(y | M‘ ;'Fyzy'rx;x
Method, the solution must iy =F -1 M- i B (51,2, )0
. N = . fr— e}
satisfy the simultaneous first With ®|  _ [T
. . . Separation of ) Mp=-m, P
order differential equations Rigid Body Mi=-D,cH,
. . Displacements ® =y =i
for the physical quantities e
z= "z
obtained by reducing the ele- M Ftllyosiy | Mo BtiigForyt (FyToomiig oy’
ment length of the discrete @ | WooFMpeif, | W= g R - (Fo ot ) ol
. e e . - [y e ey
equation (13) infinitesimally i 27T My Ty
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close to zero. The forms of the Table 6 Derivatives of 7, T, W, with Inextensional Deformations.
differential equations can [ neories T TN

completely be determined from ® T (o i1 ) 452,
the first order coefficients of Lagrangians i Ve == (Fy-My3-Mpe -my ) /by +5icy,
the power series of Eq. (13) ®) uw-=o ug =Ky g == (R2+2)

with respect to Az'"?. The el _ us =-(fx+ﬁyp+ﬁy)/bx+o*£x
results of Tables 5 and 6 indi- | i¢p Y vo =0 R Efgjgi-mwayw’?y

cate that the first order coeffi- gfg?gagggg i _ i" Ty e ——
cients of the SRBD method | Displacements |@| "~ ’ "o ;l:“o ::Eiigg;/bx’ o
coincide completely with those g U: - (?;{,)/bx’ VG oy
derived from the Lagrangian =g

equation of @ for the local Remarks: o* differs according to the theories as p*=p for c) and p*=-p for d)
differential equation of (©,
and those from (§) both for (€ and () irrespective of the extensional or inextensional deformation of axis.
Hence, it is concluded that the converged solution from the SRBD method with the local differential
equation of © is identical to the analytical solution of the Lagrangian differential equation for the theory of
@ finite displacements with small strains, while that with the local differential equation of (©) or (D is
identical to the analytical solution of the differential equation for the theory of (® Love. The difference of
the two Lagrangian differential equations is only that the equation for the theory of (@ includes nonlinear
terms representing the contributions of the axial stress to the torsional moment M, as well as that of the
torsional rate to the axial strain, Since those nonlinear terms resulting from the torsional deformation of
member axis cannot be eliminated by the separation of rigid body displacements, the solution for the
differential equation of (@) is identical only to the converged solution for the SRBD method with the local
equation of (©) which reflects the corresponding nonlinear terms. It is noted, however, as mentioned before
in Section 2., that there appears little difference in the solutions between the theory of @ and that of (b as
far as the conditions of small strains and the equivalence of magnitude between the axial and the shear
strains hold. On the other hand, while most of the first order coefficients for the physical quantities in the
SRBD method with the local differential equation of (@ coincide with those derived from the Lagrangian
differential equation of (@), the coefficients of M and M, differ from those for the theory of @. It is said
for the reason that the solution of the SRBD method with the equation of @ converges neither to the
solution for the equation of @ nor to that for the equation of (5). It is reminded that the solution for the
equation of @ will converge to that for the equation of @, if the following relation as

Moo= My Myd, My= My Mayh--eerveeeereommsmanmsanssssisis ettt (20-a, b)
is used in the same manner as in the equation of (¢) after replacing M, and M, in the equations of @ by M,
and M,. However, there is little reason for the relation of Eq. (20) to hold for the equation of @ as evident
from the expression of the mechanical boundary conditions of Mo=M¢ and My=_§ given in Table 2.

For the SRBD method examined above, the rotational angle 65, the internal moment },, and the external
distributed moment 77, in the local equations of (©) and @ have been defined with respect to the deformed
centroidal axis instead of the Z coordinate axis!®¥  The reason is that the first order derivative of M, at
node j in Table5 becomes

Z—W‘Q‘ z=(_7ﬁz+ﬁx1ﬁx—ﬁykyﬂ R RLRSETITIPPUTCIPPISTERPRTIEE (21)
under the definition with respect to Z axis which would fail to coincide with that for the theory of @.

(2) Accuracy of the SRBD method

In case that the element length is finite for the SRBD method as is the case of practical computations, its
accuracy needs to be examined from the view of computational efficiency. It is possible by comparing the
coefficients of higher order terms in the Taylor expansions of Eq. (13) between the SRBD method and the
direct Lagrangian method”-?, From the results of Tables 5 and 6, the coincidence of the maximum order of
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derivatives is summarized in Table 7 which is classified into the theory of (a) finite displacments with small
strains, and that of () Love, Since the SRBD method with the local differential equation of (@) has failed to
converge to either solution of the direct Lagrangian differential equations, it is omitted in Table 7.

For a general case with the extensional deformation of axis, the maximum order of coincidence is only
one for most of the derivatives of physical quantities, excepting the second order coincidence of M, and My
derived from the local differential equations of (¢) or (¢). Therefore, all the SRBD methods examined here
can only be said a method of the first order approximation to the direct Lagrangian method, resulting in the
same conclusion for plane frames™'? However, the order of coincidence for the derivatives of the
direction cosine [ /,,] representing the rotation of the member has decreased considerably for space frames,
compared with those of the rotational angle for plane frames. It is noted that, if the freedom of space is
restricted two dimensional, the results of Tables5 and 6 coincide with those of plane frames given in-
Ref. 11).

As for a particular case of the inextensional deformation of
axis, as indicated in the parentheses of Table 7, only the Table7 Coincidence of the Order of Derivatives.

o . . B T : a. Finite Displacements b. Love
coincidence of the derivatives for (%, T,, W, differs from Tnte Dispiacenen
that for the extensional deformation of axis discussed above o 10 ® ®
such that the approximation is improved up to the second Uy 1(2) u, 1(2) 1(2)
. Vv 1(2) v 12 (2
order at least, and the third order at most. However, the = =2 () )
, Wo 1(3) Vo 1(3) 1(2)
coincidence for M, and [ [;,] still remains only the first order. Wi 2 i 2 1
Hence, even for the inextensional deformation, the SRBD L My 2 !
e 1 Wz 1 1
method for space frames cannot be the method of the second [ ; ,
Lan] [an] 1 1
order approximation different from the case for plane Remarks: (-) indicates orders for inextensional
deformation of member axis only when it differs
frames“)*m_ from the case of extensional deformation.

6. CONCLUDING REMARKS

The convergence and accuracy of the SRBD method have been examined for the finite displacement
analysis of space frames. The converged solutions of the SRBD method for infinitesimally small length of
element are classified into two levels either for the extensional or inextensional deformation of member
axis. One is the converged solution from the local differential equation presented by Nishino™ and Yuki®
which is identical to the analytical solution for the theory of finite displacements with small strains in the
direct Lagrangian expression, The other is the converged solution from the local differential equation of
beam-column or small displacements which is identical to the solution for the theory of Love,

Regarding the accuracy in the case of the element length being finite, it can only be said for members with
extensional deformation of axis that the SRBD method is of the first order approximation, When the
elongation of member axis is negligibly small, the order of coincidence is improved for the derivatives of
displacements. Since the order of coincidence for the other derivatives such as the torsional moment and
rotations still remain only the first order, however, the SRBD method for space frames with the
inextensional deformation cannot be the method of the second order approximation different from the case

for plane frames.
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