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FRONTAL-SKYLINE METHOD FOR UNSYMMETRIC MATRICES

By Yoj SHIMAZAKI

This paper presents a frontal-skyline method for reducing unsymmetric matrices which
frequently arise in applying the finite element method to boundary value problems. The
method makes use of the basic frontal procedure but allows the front to increase in size
using compact skyline storage whenever core storage is available.

1. INTRODUCTION

If the systems of equations have sparse coefficient matrices, the skyline (profile, envelope, or variable
bandwidth) storage scheme is an efficient technique in order to reduce both the computation time and the
storage requirements. Various kinds of skyline methods for both symmetric and unsymmetric matrices can
be found as an in-core solver’~? The backing store (tapes or discs), however, should be utilized when
the systems of equations are very large.

A frontal-skyline method was first developed for a symmetric finite element matrix?. This method never
requires more storage than that needed by the standard frontal method® and requires fewer transfers to and
from disc than either the frontal method or the blocked-skyline method®.

Many problems such as met in fluid mechanics have unsymmetric stiffness matrices when these are
formulated by a finite element method. Hood” has developed a frontal solution technique for unsymmetric
matrices, which was based on the symmetric version of the scheme®. Unfortunately this scheme also
requires that the total number of equations in core storage be kept small, which in turn increases the
number of tape segments necessary for a given problem,

Compact skyline storage can also be used for an unsymmetric matrix. This storage scheme reduces the
total number of tape records for a given problem, and also increases the efficiency of the LDU
decomposition routine,

There are four major subprograms associated with the method, which have many features in common with
the symmetric matrix programs. The first is a prefrontal routine referred to as WAVE. The second is that
part of the finite element program associated with the assembly of the stiffness matrix. The third is a
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102 Y. SHIMAZAKI

subroutine called SLIDE which rearranges the stiffness matrix between tape segments (records or
blocks). And, the fourth is LDU decomposition and back substitution. Each of these will be discussed,
although a listing of WAVE will not be given because of its length.

2. PROGRAM WAVE

This prefrontal program designs each tape segment for the assemblage and decomposition of the stiffness
matrix. It is responsible for three major organization tasks . (1) selection of the order in which the
equations will appear in each tape segment, (2) storage arrangement used in the stiffness matrix for
each tape segment, and (3) how the stiffness matrix will be rearranged between tape segments.
The equations are arranged such that the fully assembled, or completed equations in any tape segment
appear before those that are not yet completed. Furthermore, the incomplete equations are placed in the
same relative sequence that they will have as completed equations. This last condition is very important
because it insures that no two equations will have to exchange locations during the rearrangement of the
stiffness matrix. We will see shortly that it is also a necessary requirement if the equations are to move
“forward” during the rearrangement,

To accomplish this ordering of the incomplete equation, it is first necessary to establish the order in
which the equations will be completed. This is accomplished at the very start of WAVE by simply going
through the specified element order and checking the connectivity of the elements. As each element is
added, the nodal point variables which become completed are added to the list of completed equations.
Once the final order of all equations is established, the order in which these equations appear in any given
tape segment is easily determined.

Once the order in which the equations appear in a given tape segment is established, the volume needed to
store the stiffness matrix by columns is easily calculated. If the maximun volume specified has not been
exceeded, a new element is added. If the maximum volume has not been exceeded, the previously added
element is removed and the tape segment is complete. Because the removal of the last element usually
removes more than one equation, and the equations are usually of different lengths, seldom is the total
specified storage completely taken. Under these conditions it is necessary to right justify the stiffness
coefficients. That is, the unused portion of the stiffness matrix always appears at the beginning of the
array. This requirement, together with the requirement that the incomplete equations be in the same
sequence as they will be when completed, normally guarantees that during the rearrangement of the
stiffness matrix, transfer of coefficients will always be forward in the array,

Fig. 1 illustrates the philosophy of the frontal-skyline method for unsymmetric matrix using a simple
example to be used for other subroutines. In the example the number of variables of each nodes is assumed
one. Fig.1 (Dshows the first step of WAVE where IORDER is the array to specify the order of selecting
the elements, LIST is the array to specify the order in which the equation will be completed, IDIAG is the
array designating the location in the stiffness array of diagonal terms if the tapes are not to be used. NPRC
or NPR is the array designating the location in the current tape segment of equation representing the first
variable associated with each nodal point. If NPR<(, node I does not appear in the current tape segment,
Fig. 12 shows two tape segments required when the available incore storage for stiffness matrix is 14.
Where IDIAG1 is the array designating the location in the stiffness array of diagonal terms from the
previous tape segment. In LDU1, IDIAG1 is used for designating the location of nonzero terms in the
stiffness array, IDIAG 2 is the array designating the location in the stiffness array of diagonal terms for
the current tape segment. MOVE is the array designating how previous stiffness matrix should be
rearranged for storage arrangement of the current tape segment. ICOMP is the number of rows (or
equations) which are fully assembled for the current tape segment. For simplicity, the total specified
storage is completely taken by stiffness coefficients in this example.
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Frontal-Skyline Method for Unsymmetric Matrices 103

@ Determination of the order

ELEMENT NODAL POINT 3 6
1 1 5 2
2 1 4 5 . 3
3 2 6 3 4
4 2 5 6
2 5
IORDER: 2 1 4 3 1
2
LIsT:- 4 1 5 2 3 6
IDIAG: 1 4 9 14 17 24 1 4
NPRC: 2 4 5 1 3 6

Finite element mesh

VOLUME= 24

O D)UY s

Skyline storage arrangement

(:) Determination of the tape segments (MAXVOL=14)

TAPE1 TAPE2
IDIAGZ 4 1 5 2 IDIAGI IDIAG2 5 2 3 6 MOVE
T 5]
3 o]
] [
i
ELEMENT NODAL POINT ELEMENT NODAL POINT
2 1 4 5 4 2 5 6
1 1 5 2 3 2 6 3
LIST: 4 1 5 2 LIST: 5 2 3 6
IDIAG: 1 4 9 14 IDIAG: 1 4 7 14
NPR: 2 4 0 1 3 0 NPR: -1 2 3 -1 1 4
ICOMP: 2 ICOMP: 4

Fig.1 Example problem for subroutine WAVE.

3. ASSEMBLY OF THE STIFFNESS MATRIX

The assembly of the stiffness matrix is straightforward and is shown in Fig, 2 and 3. The (SK), matrix
is the fictitious nonsymmetric element stiffness which was made for illustrative purposes,

4. SUBROUTINE SLIDE

The success of the solution technique presented in this paper relies on the two stipulations already
mentioned ; (1) that all equations in a given tape segment appear in the same relative position that they
will have in any other tape segment (that is, if equation “a” comes before equation “b” in a given tape
segment, it will come before equation “b” in all subsequent tape segments, although they may become more
separated by additional equations), and (2) thatall vacancies in the stiffness matrix due to the assigned
storge not being fully utilized, be at the beginning of the matrix. When both of these stipulations are met,
each column will move forward during the rearrangement of the matrix between tape segments.

Routine SLIDE is a simple code which performs this task. Recall that the array MOVE specifies which
new column each old column must be moved to. It likewise specifies which new row each old row is moved

to. In Fig. 3 the first two entries of MOVE are zero, which indicates that these columns (and rows) were
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(TAPE1)
ELEMENT NODAL POINT 1 4 4
2 1 4 5 (SK)e = |3 1 4
1 1 5 2 1
Place in large SK matrix
LIST 4 1 5 2
1 3 4
4 1+1 4+4 4
3 3+3 1+1 4
3 3 1
Forward elimination
(CALL LDU1)
ICOMP=2
(2,1row) (3,2row)
2row : 4.0 2.0 8.0 4.0 3row H -3.0 -10.0 4.0
lrow x4.0: - 4.0 12.0 16.0 2row x 0.3: - -3.0 -2.4 1.2
0.0 -10.0 -8.0 4.0 0.0 -7.6 2.8
(3,1row) (4,2ro0w)
3row : 3.0 6.0 2.0 4.0 4row : 3.0 3.0 1.0
lrow x3.0: - 3.0 9.0 12.0 2row x-0.3: - 3.0 2.4 -1.2
0.0 -3.0 ~-10.0 4.0 0.0 0.6 2.2
1.0 3.0 [ 4.0 1
4.0 [-10.01-8.0 | 4.0
K = =5 T 0.5 -7.6 2.8
-0.3 0.6 2.2
Tape or Disk
Fig.2 Subroutine POISSON for TAPE 1.
(TAPE2)
ELEMENT NODAL POINT 1 4 4
4 2 5 6 (SK)e =13 1 4
3 2 6 3 3 1
IDIAGI IDIAG2 MOVE
1 [ 1] [ 0]
4] 4] [ 0]
9] -7.6] 2.8
[ 14] 0.6]2.2 [14] [ 2]
(CALL SLIDE)
LIST S 2 K 6
-7.6 2.8
[ 0.6 2.2
[
Place in large SK matrix
[-6.6 | 5.8 4.0
L 4.6 ;:g i:g i:g Add element 4 and 3
[3.0] 6.0 4.0 2.0
Forward elimination
(CALL LDU1)
[-6.6 5.8 4.0
[-0.700 | 8.242] 4.0 10.788 | . Disk
0.364 | -0.456 | -0.926 ape or Lis
[-0.455 1.048 | 0.419] -7.079

Fig.3 Subroutine POISSON for TAPE 2.
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Frontal-Skyline Method for Unsymmetric Matrices 105

completed in tape segment 1 and will not be moved to a new location for the current tape segment,
IDIAG 1 locates the diagonal term of the colum before it has been moved and IDIAG 2 locates the diagonal
term of the column for its new location, Referring to Fig.3, it is seen that column 4 will be moved to
column 2. Hence, this column, whose diagonal term is located at IDIAG 1(4) =14, will be moved to its
new location where its diagonal will be located at IDIAG 2( 2 ) =4. It is also seen that the first two terms
from the top of the column belong to equations which have already been eliminated, i.e., MOVE(1)=
MOVE(2)=0, and therefore, need not be moved. The third term from the top will be moved to the
location representing row 1 and the third term from the left will be moved to the location representing

column 1, i.e., MOVE(3)=1.
5. LDU DECOMPOSITION

It is the LDU decomposition of the stiffness matrix which places the most severe test as to the efficiency
of any particular solution method. Fig. 4 gives the FORTRAN listing of the LDU decomposition. The
outer DO-loop (loop I ) goes from the first row to the last completed row of the tape segment. For each

SUBROUTINE LDU1
1 (SK,F,LU,NEQ,ICOMP,IDIAGT,
2 IDIAG2,IEQS,IDA,IDD,IDH)

DIMENSION
1 SKC(IDH) ,F(IDA),IDIAGICIDD),
2 IDIAG2CIDD),IEQSC(CIDD)

IEND=ICOMP
IF(IEND.EQ.NE@) IEND=NEQ-1
DO 500 I1=1,IEND

JCHK=0

J1=0
DO 350 J=1,NEQ
J2=IDIAG2{(I)-J~-1)
IDIAGT1(J)=0
IF(J2.LE.J1) GO TO 340

row, the addresses of the nonzero terms on that row
are placed in the IDIAG 1 array. The second DO-loop

(loop J), now passes through the IDIAG1 array,
beginning with the first term past the current row of the
outer loop (i.e. IT41). If

encounters a zero element, it moves on to the next

during this search it

location. Once a nonzero term is found, the innermost
loop (loop K) is activated. This loop now proceeds to
subtract row I, multiplied by the appropriate factor,
from row J. The K-loop begins a second search of
IDIAG 1, beginnig at J+1. Once again, when zero

JCHK:}( yesa terms are encountered, the K-loop passes on to the

IDIAGT(J) =4

340 CONTINUE next location, When a nonzero term is encounterd, it is
JP=J+1

IF(JP.GT.NEQ) GO TO 350
JH=((IDIAG2(JP)-IDIAGR2(JI)~-1)/2
J1=IDIAG2(J)+JH

CONTINUE

IF(JCHK.EQ.O0) GO TO 500

SKII=SK(IDIAG2(I))

IP=1+1
DO 400 J=IP,NEQ
J1=IDIAGT(J)
IF(J1.6Q.0) GO TO 400
J2=IDIAG2(J=1)+(IDIAG2(J)~J1)
IF(LU.EG.0) GO TO 390
SK(J2)=SK(J2)/SKII

DO 380 K=IP,NEQ

K3=IDIAG1(K)

IF(K3.EQ.0) GO TO 380
K2=IDIAG2(K)-(K-J)

IF(K.LT.J) K2=IDIAG2(J=1)+(J=-K)
SK(K2)=SK(K2)=SK(K3)*SK(J2)
CONTINUE

CONTINUE

JEQ=IEQS(J)

IEQ=IEQS(I)
FCJEQ)=F(JEQ)-SK(J2)*F (IEQ)

the address of the nonzero term of the stiffness matrix

(I'* row) which must be multiplied by the appropriate
factor and subtracted from the corresponding term on
the J® row, When the FORTRAN variable, LU,
equals 1, an LDU decomposition and forward substitu-
tion will take place in LDU1, When this variable
equals zero, only a forward substitution will be
performed.

After the stiffness matrix for each tape segment has
been decomposed into its LDU components, the entire
matrix is read onto disc including the rows not yet
completed as well as those that are. Unfortunately, it
is not practical to read only the completed rows onto
disc when column storage is used. However, this
procedure does not increase the total central processor
storage needed for the solution, nor the number of

400 CONTINUE . .

¢ records that must be written and read. It does increase

500 ;g%é:ue the amount of auxiliary storage needed and the amount
END

Fig.4 Subroutine LDUI.

of central processor time required to read and write the

larger records.
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106 Y. SHIMAZAKI

After the LDU decomposition, a subroutine for the back substitution, LDU 2, will be called, In LDU 2
routine, each segment will be read in the reversed order to obtain a result.

6. NUMERICAL EXAMPLE

In order to demonstrate the present program, the finite element mesh shown in Fig, 5 is used, In this
example, it is assumed that only one variable is associated with each node and that the maximum available
storage for the stiffness matrix is 800.

. . R . 73 74 75 76 77 78 79 80 81
Fig. 6 shows the final order in which the equa-
tions will be completed. The figure also shows the oid  sso seb  e7e ssb  ese 706 710 4s
total number of elements, the total number of nodal E] @ ©®
points, the number of nodal points per element, and 53 s 57 3859 60 o 6¢ 63
the connectivity of the elements. In this example, 46§ 47° 48y 49° SOy 51° 529  53° 54
the maximum available storage for the stiffness © © &) ©
. . 37 38 39 40 &1 42 43 b4t 45
matrix should be 1713 if tape segments are not to be
N 28 29° 30 310 32 330 34 350 36
used, Three tape segments are required to accom- ® ® @
plish the LDU decomposition, 19 ELEEY FESEEE] YT 3% 27
Fig. 7 shows the complete output from WAVE o are qzd ase g4 1se 1eb aze 8
for tape segment 2. The total number of elements in ® [©) ® ®
this segment is 5. This segment has 24 fully 2 3 4 5 6 E ?
Fig.5 Finite element mesh.
NUMEL NUMNP NNPE
16 81 9
ELEMENT NP ARRAY
1 1 3 21 19 2 12 20 10 11
2 3 5 23 21 4 14 22 12 13
3 5 7 25 23 6 16 24 14 15
4 7 9 27 25 8 18 26 16 17
5 19 21 39 37 20 30 38 28 29
6 21 23 41 39 22 32 40 30 31
7 23 25 43 41 24 34 42 32 33
8 25 27 45 43 26 36 4t 34 35
9 37 39 57 55 38 48 56 46 47
10 39 41 59 57 40 50 58 48 49
11 41 43 61 59 42 52 60 50 51
12 43 45 63 61 Lt 54 62 52 53
13 55 57 75 73 56 66 74 64 65
14 57 59 77 75 58 68 76 66 67
15 59 61 79 77 60 70 78 68 69
16 61 63 81 79 62 72 80 70 71
MAXVOL IRDER NONSYM
800 0 1

IORDER ARRAY
1 2 3 & 5 6 7 8 $ 10 11 12 13 14 15 16
THE FOLLOWING RESULTS APPLY IF TAPES ARE NOT TO BE USED
LISTC-ARRAY, THE ORDER IN WHICH THE NODAL POINTS WILL APPEAR IN THE K-MATRIX
1 2 10 11 3 4 12 13 5 6 14 15
18 16 17 19 20 28 29 21 22 30 31 23 24 32 33
25 27 26 36 34 35 37 38 46 47 39 40 48 49 41
42 50 51 43 45 44 54 52 53 55 73 56 74 64 65
57 75 58 76 66 67 59 77 60 78 68 69 61 63 81
79 62 72 80 70 71
IDIAG FOR SKYLINE STORAGE IS
1 4 9 16 25 28 41 48 57 60 73 80 89 92 97
104 121 132 169 208 213 220 265 304 317 324 369 408 421 428
473 512 553 560 577 588 625 664 669 676 721 760 773 780 825
864 877 884 929 968 1009 1016 1033 1044 1081 1084 1125 1132 1141 1152
1201 1216 1261 1268 1289 1300 1353 1368 1417 1424 1445 1456 1513 1564 1569
1588 1645 1656 1669 1696 1713 -
NPRC-ARRAY
1 2 5 6 9 10 13 15 14 3 4 7 8 11 12
17 18 16 19 20 23 24 27 28 31 33 32 21 22 25
26 29 30 35 36 34 37 38 41 42 45 46 49 51 50
39 40 43 44 47 48 53 54 52 55 57 61 63 67 69
73 77 T4 59 60 65 66 71 72 80 81 78 56 58 62
64 68 70 76 79 75
TAPE STORAGE IS NECESSARY
TO AVOID USE OF TAPES MAXVOL MUST EQUAL 1713

Fig.6 WAVE output.
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Frontal-Skyline Method for Unsymmetric Matrices ‘ 107

ISEG IELEX NEG Icomp MOVEX ISLIDE Lcomp
2 5 33 24 41 0 24
IELE-ARRAY
8 9 10 11 12
NP-ARRAY
ELEM NP1 NP2 NP3 NP& NP5 NP6 NPP
8 25 27 45 43 26 36
44 34 35 9 37 39 57
55 38 48 56 46 47 10
39 41 59 57 40 50 58
48 49 11 41 43 61 59
42 52 60 50 51 12 43
45 63 61 44 54 62 52
53
IEQS-~ARRAY

25 27 26 36 34 35 37 38 46 47 39 40 48 49 41
42 50 51 43 45 44 54 52 53 55 56 57 58 59 60
61 63 62

MOVE-ARRAY

0 0 o] 0 0 0 0 0 0 o] 0 0 0 o] 0
0 0 0 0 0 0 0 0 o] 0 0 0 0 8] 0
1 2 3 5 7 8 11 12 15 16 19

IDIAGT-ARRAY

8 11 16 23 32 35 48 55 64 67 80 87 96 99 104
111 128 139 176 215 220 227 272 311 324 331 376 415 428 435
480 519 560 575 608 643 680 711 744 771 800

IDIAGZ2-ARRAY
120 123 128 135 144 155 168 183 188 195 216 239 252 259 288
319 332 339 376 415 456 463 480 491 528 567 608 643 680 711
744 771 800

NPR-ARRAY
e e e S B I Tt I IR IS IS RS TE BN
I B R e I (R R 1 3.2 -1 -1 -1
I 5 6 4 7 8 11 12 15 16 19 21 20

9 10 13 14 17 18 23 24 22 25 26 27 28 29 30
31 33 32 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 o]

LIST-COMP~ARRAY
25 27 26 36 34 35 37 38 46 47 39 40 48 49 41
42 50 51 43 45 4t 54 52 53

Fig.7 WAVE output for tape 2,

assembled equations out of 33 equations. If we have more than one variable per node, ICOMP, which is
the array designating fully assembled equations, will be larger than L.COMP, which is the array
designating fully assembled nodal points. IEQS-ARRAY is the array of all global equation numbers for the
equations on the current tape segment. MOVE-ARRAY is the array designating how previous stiffness
matrix should be rearranged for storage arrangement of the current segment. Referring to the
MOVE-ARRAY, previously incompleted terms will be rearranged from the position specified by IDIAG 1
to the position specified by IDIAG 2. Minus 1 and O appear in NPR-ARRAY. Minus implies that the node
I has fully assembled and has been eliminated in the previous segments, Zero implies that the node I has
not yet assembled on the current segment and will appear in the subsequent segments,

Fig. 8 shows the profiles of three tape segments,

The program POISSON, which is a finite element program for the solution of Poisson’s equation, is
used to verify the previously produced frontal-skyline algorithm. In order to obtain a nonsymmetric type of
stiffness matrix,

9/0x(®-90/0x)+3/0y(@-29/3y)=0
with the boundary conditions of & (0,y)=0, ®(1,y)=1 and 9&(x,0)/2y=20®(x,1)/dy=0 is solved using
standard Galerkin’s finite element method. The exact solution of this problem is $=4/x. Seven times of
iterations were required to obtain the results when Newton-Raphson method was incorporated.

The CPU time required to solve this example problem with the presented method is 8. 307 seconds. The
time may be shortened if a direct access file is used. On the other hand, when in-core band solver is used
for the same example problem (band width is 41), the CPU time is 8.636 seconds, The subroutine
WAVE, which determines the algorithm of frontal-skyline method for this problem, requires the CPU
time of 1,084 seconds, The computer machine used here is UNIVAC 1100/80 B.
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Tape 1 Tape 2 Tape 3
Fig.8 Skyline storage for all three segments.

7. CONCLUSIONS

The compact skyline storage scheme for unsymmetric stiffness matrix has been incorporated into the
frontal method, The solution process is extremely efficient under a variety of large finite element
equations which can not be solved within an in-core storage area. In the problems involving hybrid
elements, e.g. incompressible viscous flows, skyline storage is particulary efficient. The method is also
valuable for the problems where the front might vary greatly in its width from one position to the next.
Finally, because the subroutine WAVE is a separate program from a main routine, a variety of programs
can easily be incorporated with this method.
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