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A CONCISE AND EXPLICIT FORMULATION OF OUT-OF-PLANE
INSTABILITY OF THIN-WALLED MEMBERS

By Akio HASEGAWA* Kithsiri LIYANAGE** Toyohito IKEDA¥**
and Fumio NISHINO¥***

The purpose of this study is to present a solution scheme for the problem of out-of-plane
instability of thin-walled members. Based on the second order kinematic field, the
stiffness equation of linearized finite displacements is formulated for thin-walled
members, and given in a concise and explicit form, As a particular case, an important and
practical application is made for the lateral-torsional buckling of in-plane beams and
frames, Numerical examples are given for straight and curved members, and are compared
with existing results. The analysis scheme presented is proved accurate, efficient and
versatile,

1. INTRODUCTION

The out-of-plane instability of thin-walled members has been a research subject of very keen interest
during the past decades., Followed by the earlist comprehensive work by Timoshenko and Gere", a number
of studies have been made in this area by various researchers, Among them are Vlasov?,
Roik-Carl-Linder?, and Sakai?, all of whom presented works on thin-walled members subject to axial
force, biaxial bending and torsional moments, Both Vlasov and Roik-Carl:Linder linearized the stress and
kinematic fields present in members, and hence derived the governing differential equations, making use of
some geometrical observations, whereas Sakai adopted the initial stress concept and made the formulations
based on the energy theorems, in which the initial stress field as well as the kinematic field were linearized
also. Subsequently, Nishino-Kasemset-Lee® and Nishino-Kurakata-Hasegawa: Okumura” ? have derived
the governing equations for the problem, based strictly on the finite displacement theory of elasticity.
Most of those literature have contributed mainly to the closed form presentations of the boundary value
problems in a style of differential equations from a very theoritical standpoint. In contrast, the
corresponding discrete equations and solution procedures for computer applications have been treated to
some extent by Bazant-Nimeiri®, Ram-Osterrieder? and others, However, those available at present for
this sort of discrete procedures may have lacked in the theoretical consistency with rigorous treatment of
the finite displacement theory of thin-walled members®® and/or involve complicated and black-box type
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formulations? which most readers migth feel some difficulty to apply for their own problems,

For the case of curved members, Nishino - Fukasawa”!® formulated the govering equations only of small
displacements for thin-walled circular members with a rigorous but somewhat complexed presentation,
Yoo'V investigated recently the flexural-torsional instability of thin-walled curved beams in which the
governing differential equations were presented to determine the elastic buckling loads of in-plane as well
as out-of-plane buckling modes. However, closed form solutions were obtainable only for circular uniform
members with very limited types of support conditions and loadings. When a discrete method is applied for
the analysis of curved members, it is common and well-known that a curved member can be well
approximated by an assemblage of straight elements, rather than resorting to the direct use of cumbersome
curved elements, although it has been proved only for limited cases™®. For this reason, a discrete equation
for out-of-plane instability of thin-walled straight members can serve not only for its own purpose but also
for that of curved members.

Under the circumstances described above, this paper presents an efficient analysis scheme for the
problem of out-of-plane instability of thin-walled beams and frames. Based on the second order
strain-displacement relationship obtained through the approximation of the rigorous kinematic field of
finite displacements, the theorem of virtual work for linearized finite displacement theory of continua is
used to derive the discrete stiffness equation of interest. This general stiffness equation for thin-walled
straight members of linearized finite displacements is given in a concise and explicit expression, which can
easily be adopted for practical usage in design offices. An application of practical importance is made to
evaluate the lateral-torsional buckling of thin-walled members. Numerical examples are given both for
straigth and curved beams, and are compared with existing results. It is found that the stiffness equation
presented is accurate, reliable and versatile, helped by its simplicity of expressions.

2. KINEMATIC FIELD OF THIN-WALLED MEMBERS

As is well-known, shells of sufficiently longer length compared to the cross-sectional dimensions can be
analysed as thin-walled members. Using the following basic assumptions reduces the problem into that of
one-dimentional continuum.

(1) The cross-section is assumed to be undeformed in its plane while free to warp out of its plane.

(2) Shear deformation in the middle surface resulting from the equilibrium with normal stresses
towards the member axis is neglected and also transverse shear across the thickness is neglected,

(3) The material is assumed to be homogeneous, isotropic and to display the linearly elastic uniaxial
law for normal stresses.

A right hand Cartesian coordinate system (x, y, z) is
being used in this study as shown in Fig. 1, with x along
the member axis, and y and z being the principal axes with
its origin at the centroid of the section. In addition, for
explanation purposes, another orthogonal set of coordi-
nates (x, n, s) is introduced, with s being the length
coordinate measured along the middle surface of the thin-
wall, starting from an arbitrary origin. Variables 4, v, SCug, %)

and  are the displacements in the directions x, y, and
z respectively, while ¢ is the rotation of the cross sec- Fig.1 Coordinate Systems of a Thin-walled Beam.
tion about the shear center S located at point (y,, z)

of the section, Variable ¢ is the normalized unit warping with respect to the shear center defined as

w(S)ZQ(S)_%lQ(S)dA .......................................................................................... (1)

where A is cross-sectional area and
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f * hds (open part)
QSIS 7 L ( 2 )

f hds— fﬁltd (Si S f (1/t)ds (closed part)

in which # is the thickness of thin-wall, and A is the distance from the shear center to the tangent at the
point s with positive value toward the n coordinate,

Subscripts ¢ and s are used to indicate quantities related to the centroid C and shear center S,
respectively, Also it should be noted that the axial forces are applied at the centroid, while the lateral
force components are applied at the shear center.

Assuming that the derivatives of axial displacement are much smaller than those of other displacements
for the Green's strain-displacement relations, use of the first and second assumptions for the kinematic
field cited above gives the rigorous displacements as

U=Ue— U;(y cos ¢_.z sin ¢)_wfs(z CcOoS ¢+y sin ¢)—w¢/ ............................................ (3.3)
v=vs-(y—ys) (I“COS ¢)-—(z——zs)sin ¢ .................................................................... (g.b)
W= Wt (Y ) SIN (2= 25) (1—COS ) -+++errrrmrerrmsmmmmsssss st 3-¢)

where prime ( )’ denotes differentiation with respect to x.
Substituting Eq. (3) into the assumed Green’s strain displacement relations again leads to
exe=1Ue— VoY cOS ¢— 2z Sin ¢)— wi(z cos ¢+y sin ¢)— ws”+1/2[(v5) +(w)]
+ 03¢ (25 COS ¢+ ys Sin ¢)+ wid'(— ys cos ¢+ zs sin ¢)+1/2[(z— 2z,

(g )Pl (e reee b (4-a)
=(1/2) OF, Cos™ @nn™ @pg™= @un==() v-rrrrrsrrrs s (4.}), c)
in which
2n (open part)
= 2n+ fhids (ClOSGd part) .......................................................................... (5)
tf?ds

including the contribution from the relative difference across thickness.
Expanding the trigonometric terms by Taylor series and neglecting third and higher order terms, Eq.
(4-a) can be reduced to
ear=1Ue— V5(y—28)— Wiz + yd)— wp”+1/2 (v + (Wil + (vizs— wisys) 4’
+1/2[(z—zs)2+(y—ys)2](¢’)2 .............................................................................. (6)

3. GENERAL STIFFNESS OF THIN-WALLED MEMBERS

In this chapter, the general stiffness equation of a thin-walled uniform straight beam element in
linearized finite displacements is formulated. In the linearized finite displacement theory of continua, the
loads and displacements of concern, sometimes referred to as the increments, are measured from an
arbitrary reference state of equilibrium where some of the internal forces and stresses, sometimes
referred to as the initial stresses, may exist. For the sake of simplicity and practical importance of the
discrete procedures, loads are considered to be applied only at the member ends for the state of concern as
well as the reference state. All quantities related to the reference state are denoted with superscript o to
distinguish them from the quantities of concern. For a thin-walled beam, the normal stress o}, at the
reference state is expressed in terms of stress resultants which are internal axial force N°, bending
moments MY and M2, and warping moment }?,, all of which are assumed constant along the element length,
by

N° Mg M0 M,
L T T A Tl N LT LR R LR
O™ A+Iyy L. Z+Iw (7)

in which N° is taken positive for tensile forces, A is the cross sectional area, and
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Iyyzlysz, 1225_/;220314’ Iwwfﬁwsz ............................................................. (8-a, b, ¢

Considering that the system is in equilibrium after the application of the set of loads, the virtul work
equation without body forces for general continua with volume V and surface S can be written in the form

as
f(agj_§_ Uij) ae”dv..f(Tg+ Ti) SU ST e (9)
v S

in which g;; and e, are 2nd Piola-Kirchhoff’s stress tensor and Green's strain tensor, respectively, and T,
and y,; refer to the external load components applied at the ends and corresponding displacements,
respectively, all are measured from the reference state, while 42, and T are defined for the reference
state. ‘

For explanation purposes, o,; and e;; are separated into their first and second order quatities denoted
with superscripts (1) and (2) respectively, as

Orijzo';j+0-§j’ e,;= e;j_*_ efj ................................................................................... (10.3’ b)
Making use of Eq. (10), Eq. (9) can be rewritten in the form as
fv(agj+0§j+0’fj)é‘(eéj+efj)dV”l(Tg+ Ti)é‘u,-dS=0 .......................................... RRREETRLRRERY ( 11)

Taking into consideration that the system is in equilibrium in terms of small displacements for the
reference state which is before the application of loads, as expressed by

ﬁa?ﬁede——lTﬁauidS:O ...................................................................................... (12)
and also neglecting the third and higher order quantities, Eq. (11) can be simplified to
£(03j3631+ oiﬁeéj)dV—j;Ti&uids_—.o ........................................................................ (13)

Substituting Egs, (4:b), (6) and (7) into Eq. (13) and making use of linear constitutive equations
both for the normal and shear stresses lead to

N MY MY MY N Ly e s 1,
STE A gz 23 O)o] S0+ = wiwop +5 e — 20

Hy—ys) (@) + vezd— w’éyrﬁ} +E(uec— vy — wiz— wp”)d(ue— viy— wiz— wg”)
+G9¢'3(9¢')}dv_fs Ti(?u;dS=0 ........................................................................... (14)

in which £ and G are Young's modulus and shear modulus of elasticity, respectively,
At this stage, the following set of well-known interpolation functions of Hermite polynomials is

introduced as

Al e 7 A R LT L PP (15 a)
J = R D T PP (15-b)
Na=1 =30 12 8 e (15 C)
e i b vl R e R P P (15-d)
R Bl A e vl A L P P (15 e)
om0 L 0 07 oo et e (15-1)

Using the interpolation functions above, the displacement components at arbitrary cross-section
(0<x <) can be written in terms of the displacements at the ends in the approximate form as

uC:ATU, ’U5=BTV, wszBTW, ¢:BT@ ..................................................... (16'6, })7 c, d)
where, A= N, N2>T, B=<{N,, N,, Ns, g Toeree e (17.3, b)
and, U=<{ue, Uep’y, VECUg, — Ui, Vggy — Vg T rerreesrermmmromieiiiii (18-a, b)

W= we, — s, Wsy, “WQ;)T, D=Ly, — @i, By, — G T (18'(3, d)

in which ¢ > indicates row matrix, and the displacement components with subscripts i and j refer to the
cross-sections at x=(0 and [, respectively as shown in Fig. 2.
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Fig.2 Generalized Forces and Displacements,

“Noting that 1, in the last term of the left hand side of Eq. (14) is the displacement at the member ends
defined by Eq. (18) and T, is the corresponding nodal force integrated over the cross section, substitution
of Eq. (16) into Eq. (14) leads to the general stiffness equation of a thin-walled beam element, as
expressed by

P K U
. F, _ 0 K sSym vV ‘
F=Kd ie. Pl o 0 K - (19)
T 0 K42 K43 K44 Q

where the left hand side of Eq. (19) is the nodal force vector, shown in Fig,2, as given by

P=<(Fy, Fup T’ F,=<Fy, Dy, Fy, Dyj)T ............................................................. (20.3’ b)

F,=<F, Du Fu D.» T, T=<Cr, Cuw:i Cry, ij>T ............................................... (20~c, d)
and, the block stiffnesses appeared in Eq. (19) are given by

Kngfl FEAA ) () Tdag -+ reerrrrmm e st (Zl’a)

Kzz—f LELB) B+ NUB Y (BT (21-b)

K”Ef [ELAB) (BY) 4+ NYB) (B)TJdi: -+ +eeseseseereeseremsciemisss s (21-c)

o= [ ELulB) B+ GI(B) (B +(Nri+ MY+ MiBt MUBS) (B) (B)dag wovove (21-d)

K“.E[ [NOZS Y (B +MYB) (B”)T]d.’t ..................................................................... (21'8)

K43§£l[—N°ys(B’) (B)T— MOUB) (BY)Jd -+ veeveeeeeeseeseseessessiss s @21-5)
in which

— 2 2 — 2 2 = L 2 DYggf A ccveernerneanieenes .a b
J=[ 644, iUt Lot Alyi+20)/4, f=—2y. - [(s'+2yda (22-a, b)
A yy JA

/9 228 Il f(y “+z )sz Bw_I fy +Z (l)dA ............................................ (22.(:, d)

Performing integrations, Eq. (21) can be expressed in a concise and explicit form as
El 0 y - 0
KUEEZA—KO, K,,= l:‘y K.+ 1\; K, Kss_ET K+ A; K oo (23.3’ b, c)
EIww 0 [} 0
K= K+ g+ (N M ﬂy*‘mﬂz M. Bw>K2 ........................................ (23-d)
l l l 1
J° S ¢ N & : 4 : (
K“_—_;]\' lz K.+ )"";Z K, K.,=— ly K,— l’? R S RRRTTLITELIT (23-e, f)
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in which
12
1 -1 —6] 401) sym
= =1 R, ‘a, b
K=l _, ] K=\ _15 61 12 (24-a, b)
-6l 21 6l 4r
" 6/5
| 0 2P s sym
K=l _e5 10 65 (24-¢)
| — 10 — /306 J10 21Y15
r—6/5 11710 6/5 10
Ji0  —2pf15 —1i10 /30
A e e e IO PP PTPPT .d
K 6/5 —Il10 —6/5 —11]10 @24-d)
L J10 330 —410 —21415

Eq. (19) constitutes (14X 14) matrix equation. It is noted for Eq. (24) that K, and K, are found to be
stiffness matrices of small displacements for axial and bending problems of beams, respectively, and K,
turns to be the well-known geometric stiffness matrix of the in-plane beam-column. Stiffness K, appeared
only in the non-diagonal blocks K, and K,; of Eq. (19) proves identical to (—K,) with exceptions of the
elements of (1, 2) and (3, 4).

As is clear from the expressions of Eq. (23), stiffness matrix K in Eq. (19) can be divided into two parts
which are stiffness of small displacements K with terms multiplied by 4, I,,, L., I.e, or J and geometric
stiffness K involving coefficients of N°, M3, MY or M, resulting from the stress at the reference state
as given by Eq. (7). It should be noted that the stiffness matrix obtained in Eq. (19) is identical to the
tangential stiffness matrix in the overall evaluation of the nonlinear behavior of thin-walled members, ‘since
the force and displacements of Eq. (19) can be regarded as increments from the reference state.

4. LATERAL-TORSIONAL BUCKLING OF THIN-WALLED MEMBERS

Of most practical importance for the out-of-plane instability of thin-walled members is the lateral
torsional buckling of the beam-column, Consider a thin-walled beam element with the shear center lying on
the z axis (y,=0) subject to axial compressive force P° and the in-plane bending moment }M°, as shown in
Fig. 3. The stress resultants for the reference state appeared in the stiffness of Eq. (23) are evaluated by
the small displacement theory of beams as

N°=—P°, M!;:O, MOZ:MB, MZF-—"O .......................................................................... (25)
in which P° is defined positive for compression,

For this particular case, the governing stiffness equation of concern can be extracted from the general
expression of Eq. (19), and expressed as

F, K;, sym 14
v 2[ 2 :l ...................................................................................... (26)
T K42 K44 @
which constitutes the (8§X8) matrix equation. Rewriting Eq. (26) as
F:[KE_*—KG}d .......................................................................................................... (27)
stiffness matrix of small displacements K; and geometric stiffness J, are given respectively by
EI
lsyy K 0 (28 ) ( M° Mo‘)
KE: .................. a8 PR (___0__ -_z}
Elow GJ A w5 P
0o (Gt R K |
pl K zK M"[ 0 Ki ] .
S Mo v B b
Ke l [ z:K, 7iK; l K: (K, (28 ) Fig.3 Beam-column,
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in which K,~K, are given by Eq. (24).

Assembling the element stiffness equation given by Eq. (26) over the whole structure of interest, helped
by the coordinate transformation, if necessary, and introducing the kinematic boundary conditions, the
critical buckling loads can be obtained from the singularity of the martix. Even for this particular case of
Eq. (26) for lateral torsional buckling, the method presented in this paper is much more versatile and
comprehensive than the existing ways of analysis, helped by its concise and explicit stiffness expressions,
and can be applicable not only for straigh members but also for curved members.

5. NUMERICAL EXAMPLES

First, out-of-plane instabilty of a straight singly symmetric simply supported I beam (i.e. 2,50, v,=
v;=¢;=¢;=Dy;=Dy;=Cup;=Cyp;=0) under uniform in-plane moment }°, as shown in Tablel, is
examined, The case with constant axial force is also considered. In both cases, critical moment M{, is
computed. The computed results are found to be in good agreement with the existing analytical results
(See, for example, Ref 13), as shown in TableT.

The out-of-plane instability of a circular arch with doubly symmetric I section simply supported at the
sections of both ends under horizontal end-force, as shown in Table 2, is considered next. The curved
member is assumed to be formed by a set of straight members, connecting the nodal points introduced in the
original configuration and appropriate transformation matrices are employed. The critical compressive as
well as tensile forces are obtained and compared with

corresponding results from Ref. 14’ as shown in Table1 Critical Moment of Straight Member, in kN-m.

Table 2. The computed results are seen to deviate 28 om
much from those given in Ref. 14. Remembering that - A Ma P e
the value of zero should result in the case of the # i} 2.5 om
semicircular arch (§=180°) due to its instability of l RN S
rotating about the diameter connecting the two ends, I
irrespective of the load applied, the results in the oot
Ref. 14 are dubious, and the present analysis seems gegb%:r g%érgi%i:l;gzm
to be right. It is also noted that the critical forces
(compressive as well as tensile) of the simply sup- Axdal Force | O nt |Nogarive Homent
po;ted;:i;cula:l‘ arch decrease rapidly with increasing . La1a.7 1873 7% 1032, 0 1032, 09
subtended angles.

Finally, the out-of-plane buckling of a simply sup- ( ‘722'20;2"” 16461 <1645 1> | 830.4 (830.2>

2 =Bk

ported circular arch subject to uniform in-plane

*vatues in brackets are the analytical
results from Ref. 13

Table2 Critical Horizontal End-force of Circular Arch,

in kN, Table 3 Critical Moment of Circular Arch, in kN-m.
18 ¢cm
pe—>{
—
1.3 cm Arch Langth = 10.244 m
E = 1.998x 10, kPa
2,5 cm G = 7.717x 10/ kPa
Arch Length =85 m
E = 2.060x 10  kPa Subtended Critical Critical
G = 7.946x 10" kPa Angle (8) Positive Moment | Negative Moment
10° 343.6 (344.0%) 345.8 (345. 9
Subtended Critical Critical
Angle (8 Compressive Forcel Tensile Force 30° 333.0 (333.6) 339.4 (339.3)
90“ 431.1 (2402.5%) 9387.9 (813. 8> 50° 315.5 (314. 9 324.8 (323.8)
135" 108.1 (2543.7> 4927.5 452. 1> 30° 244.1 (253.2) 261.1 (266. 1>
180 0.0 (2788.0) 0.0 (245 O 180° 0.0 0.0 0.0 0.0
*Values in brackets are from Ref. 14 : ¥Values in brackets are from Ref.11
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moment M° is investigated. For the sake of comparison with Ref 11, critical moments of a doubly
symmetric member with 4=92. 88 cm?, [,,=11 363 cm’, L.=3871 em*, I,,=555869 cm®, J=58.9 em?,
and [=1024. 4 cm are computed for a number of subtended angles. The results are presented in Table 3
and compared with those obtained by Yoo, and found to be in good agreement. This confirms Yoo’s
opinion that the results obtained by Vlasov and Timoshenko have been wrong. It should be noted that all the
numercal results presented in this paper have been obtained using 16 elements which have been proved

sufficient by the convergence study,

6. SUMMARY AND CONCLUSIONS

Based on the second order kinematic field which is consistently approximated from the rigorous
assumptions for beams, the general stiffness equation of linearized finite displacements for a thin-walled
member has been formulated, using the theorem of virtual work. The stiffness matrix obtained is concise
and explicit, suitable for versatile computations. The matrix is found to be identical to the tangential
stiffness which facilitates the overall evaluation of the nonlinear behavior of thin-walled members.

An important and practical application is made for the evaluation of the lateral-torsional buckling load of
in-plane beams and frames. Helped by its simpler stiffness expression which is a particular case of the
above, the method presented in this paper can be easily used by individuals and design offices, which may
render the existing cumbersome and complicated design charts of concern unnecessary. The stiffness
equation obtained can be applicable not only for straight members but for curved members also, utilizing
the idea of the assemblage of straight elements,

Numerical examples are given for three cases which are the out-of-plane instabilities of the straight and
circular members. Compared with existing literature which has been proved unsatisfactory, the results
indicate that the present analysis scheme is accurate, efficient and versatile for wide applications.
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