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A PROBABILISTIC BASIS FOR FRACTILE-BASED
STRUCTURAL DESIGN

By Fumio NISHINO*, Naotsugu SATO*¥,
Akio HASEGA WA *** gnd Junzo INOUE ****

For rational reliability based structural design, it is important to accomplish the tar-
get probability of failure as accurate as possible. From this standpoint, this paper
presents a probabilistic basis for the fractile-based structural design, and demonstrates
the advantage of the method. Numerical examples indicate the superiority of the pro-
posed fractile method to the second moment method. It is also noted that, by the in-
dependent determination of the design points from the linearization procedure, the pro-
posed method has proved much simpler than the improved second moment method pro-
posed by Rackwitz et. al., retaining its accuracy at a similar level.

1. INTRODUCTION

A reliability-based structural design is manipulated practically in a form that specific design values are
determined rationally for their corresponding random design variables such as load effects and strengths of
structures, reflecting their own probabilistic distributions. This idea has recently been incorporated for
practical use in some of the existing design specifications”~", and their specification writing formats appear
to be somewhat different from the conventional format of the allowable stress design.

Since the direct use of the probability of failure as an index to control the safety of structures involves
the difficulty to manipulate the design format of practical purpose®, an alternative method called the second
moment method proposed by Cornell®, Lind”, and others has played an important role as a basis for
reliability-based design formats of practical use.

Some of the existing design specifications mentioned have directly adopted the concept of the safety
index proposed in the second moment method, and others, most of which are implemented in a form of the
partial safety factor format, seem to be influenced strongly by the second moment method for determining
the partial safety factors.

According to the second moment method, the target probability of failure P, is given by the safety index
B as

Py B (— B)r+eereeseereseees e e (1)
in which @ (x)=—J;=—; [ e~"/? dt is the cumulative probability distribution function of standard normal
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distribution. Since the second moment method employs some ristrictions as assumptions in its own
formulations, however, the correspondence of P,, with the realized probability of failure P, may not
always be good.

In the previous paper®, two of the authors have pointed out the fallacy of the second moment method
including poor correspondence with the realized probability of failure and have proposed an alternative
method called the fractile method which utilized the concept of exceeding probabilities to determine the
design values of random design variables. It is roughly said that the proposed fractile method happens
to resemble the implicit concept of the conventional allowable stress design format. It has also been
made clear that the exceeding probability e called the fractile of each variables used as the measure of
safety controls the realized probability of failure much better than the safety index £ and hence can be
preferably replaced instead of @ as the means of determining design values. ~

However, the previous paper lacks to present the relationship, which is corresponding to Eq.(1) for
the second moment method, between the target probability of failure and fractiles. So, it has not been
clear how the fractile e, of each random variable X, can be selected when the target probability of fail-
ure Py is given. This relation is definitely needed to apply the proposed faractile method for practical
design purpose.

This study presents an approximate relation between the target probability of failure P, and the
fractile e, which is derived on a theoretical basis similar to the second moment method. Then, the
correspondence between P,, and P, for the proposed fractile method is examined, using a variety of
probabilistic distributions for each variable with distribution parameters being changed.

An advantage to use e, as a measure of the probability of failure as opposed to the safety index g is
that e, can naturally reflect the information of the tail part of distributions of each variable which seri-
ously affects the the realized probability of failure P, Fot this reason, assuming that sufficient data
are available for random variables concerned and thus the accuracy of parameter estimation is possible,
an extended analysis is also made incorporating higher order moments of distributions to reflect theo-
retically the effects of the tail-shapes of real distributions, and then some numerical examples are
given.

Relating to the higher order moments of distributions, Rackwitz?, and Paloheimo and Hannus', have
improved the second moment method in its own framework in which the effects of the tail-shapes of dis-
tributions are successfully incorporated in order to overcome the drawbacks of the original second
moment method mentioned before. The accuracy and practical simplicity of the proposed fractile method
are compared with this Rackwitz’s method.

2. APPROXIMATED RELATION BETWEEN PROBABILITY OF FAILURE AND
FRACTILES

It is postulated that the limit state of structures such as static collapse and excessive vibration is
expressed mathematically as

Z,=27, (21, 2p, -+ T =0, j=1,2, LTI e e e e e et a et (2)
in which each Z, is a limit state function defined such that Z,>0, Z,<0, and Z;=( represent states of
safe, failure and its critical condition, respectively, X =(X,, - X,) are design variables relating to the

j-th limit state and are regarded as random variables, and m is a number of limit states to be consid-
ered in designing structures. Since the intended discussions are common to each of Z ;, subscript j is
omitted for the simplicity of writing.

The realized probability of failure P, can be obtained by integrating the joint probability density
function fy, ++---- s xn X, e , Xn) Ay, eeeee dx, of design variables X, ------ X, in the failure region of
Z(X)<0. In general, the boundary of Z(X)=0 is a nonlinear function with respect to X,(j=1, -+ . n)
and further X; itself is not always independent each other and, even if independent, is subject to a wide
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variety of distribution shapes. However, an approximated probability of failure can be obtained by
linearizing the limit state function at the point on the boundary and utilizing the well-known assump-
tions that all the X;’s are mutually independent and are normally distributed.”

Expanding the function Z into Taylor series at a point X° which satisfies Z (X°)=0 and preserving
the only linear terms, the linearized function Z° is given as

0

Utilizing the assumptions mentioned before, Z° is also normally distributed and its mean Z° and vari-
g

< T PP PP R TRRRES (3)

ance gk are given respectively as
=522
oX;

3%

in which X, 0% are the mean and variance of each variable X, respectively.
The probability that Z° is not positive is given as
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Pr[Zoé()]:@(*‘}Z;) .......................................................... PPN (6)

which can be regarded as an approximate probability of failure, and hence is called the target
(prescribed), probability of failure, P,,, that is

AV T SOOI Ut SO
SO < (720) ( 7 )
Meanwhile by selecting a point X *=(X* X ...... , X%*) which satisfies Z°(X**)=0 and may not
necessarily be equal to X°, the linearized limit state can be rewritten as
e OZ |y
VA (X)——;} Eyé Xo(X» KO e (8)
and 7° as
Zo— B L T R O PP
7=55% | o ®xi) (9)
The fractile e, is defined for corresponding X3* as
4
o%
B P [X=X¥*] owheniy 3% | x>0
e;= D7 | T (10)
Ok el
Pr[XigX;, ] Q)hen aXi X §0

Eq. (10) indicates that ¢; is a lower fractile for variables such as strength of structures and an upper
fractile for variables such as load effect. For this context, e; is tacitly: presumed very small. The
assumption that each X is normally distributed leads to

— &' (e))oy, when S)Z< >0

— XPE=1 an
@"‘(ei)ax,- when aX ‘X"

in which ¢~'( ) is the inverse of ¢ (¢ ) defined for Eq. (1).
Substituting Eq. (11) into Eq. (9) leads to

e & | 0Z
2’==2 | 5x,

Then, the target probability of failure of Eq. (7) is expressed using Eqgs. (5) and (12) as
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n

AP
2y1/2
N ]
which finally relates P,, with fractiles e, in the same level of approximation as the second moment
method.

Incidentally, the relation given as

m):____]_f_!___ Kk

2;:/2(“;?_)! c Fmm0, 4, oo reeeeee e e (14)

holds between the even-order central moment y* (k=2 4, -+ ) and the standard deviation ¢ for nor-
mally distributed variables."” Thus, Eq. (13) can alternatively be rewritten

Pop=@| — (15)
VA
2(3%

3. DETERMINATION OF DESIGN VALUES

The condition for a set of fractiles e= (e,,+++++ , en) to satisfy the given target probability of failure

P,, can be obtained by Eq. (13) when linearizing point is designated for a nonlinear limit state function.
An appropriate selection®) for respective e,’s from acceptable ¢ which satisfies Eq. (13) makes it pos-
sible to determine each design values X} reflecting the actual distributions of variables, as

X?=F}¢’ (P, e e e e (16)

in which

Z
1—e; when'a—Xi Xﬁéo

and Fy; (e ) is an actual cumulative distribution function of X, and F3!( ¢ ) is its inverse.

Discussed hitherto is a rather general method to determine the design values using fractiles for arbi-
trary nonlinear limit state functions. For practical application, however, it is common that design vari-
ables can be separated explicitly into 2 groups, that is, strength (9Z/2X,>0) and load effect
(8Z]0X,;<0) represented as R and S respectively, and then it is regarded as safe, failure and its criti-
cal condition when R>S, R< S and R=S, respectively. Although studies'®'® have been made so far
for the treatment of the nonlinear function with respect to R and S such as Z=1nR—1nS, it is
rather essential for most of the actual designs that the boundary between safe region and failure region
on the R— S plane is linear, in other words, Z =0 is the linear relation between R and S. Partly for
this reason, a linear limit state function with two design variables Z==R— S is used for a numerical
exmaple to demonstrate the effectiveness of the proposed fractile method.

Linearization is not needed for Z=R— S, and Eq. (13) leads to

[(D“‘(ek)aﬁ di"(es)os}
Vortak

A set of e, and e, which satisfies Eq. (18) is selected appropriately and then design values R* and S*

PfD=¢

* Since there is only one equation (13) for n-variables of e to satisfy, selection for the respective value of e, is rather arbitrary.
Although the unique selection for e, is made possible from the optimality consideration reflecting the difference of the number
of data available, it may be preferably left to individual judgment for practical implementation.
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defined as
P, [R<R¥*]=ex
P,[S=S%]=e;
are determined using the actual distributions as given by Eq.(16). Although actual design is said satis-
factory when the following inequality condition as )
S*§ R et e (20)
is satisfied, the realized probability of failure P, is evaluated, assuming that S*=R* is accomplished
in design, by

P,«R:[:fs(t)FR(t)dt ............................................................................................ ©1)

When the difference between P, evaluated by Eq. (21) and the prescribed P,, in Eq. (18) is found to be
smaller, the proposed fractile method is recognized as better method to control the probability of fail-
ure.

The realized probability of failure of Eq.(21) naturally differs depending on a selection of (e;, eg)-
For numerical demonstration in this study ez=e,=e is assumed for a variety of mathematical
probabilistic distributions on R and S. The results are shown in Fig.1 in which N/N et.al. represent the
combinations of distributions of R/S and among them N, LN, EX1, EX2 and EX3 indicate normal,
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Fig.1 Correspondence between Target and Realized Probabilities of Failure: Fractile Method.
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Fig.2 Correspondence betwen Target and Realized Probabilities of Failure: Second Moment Method.
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logarithmic normal, extreme-I type (Gumbel), extreme-II type (Frechet) and extreme-III type (Weibul)
distributions, respectively. Symbols V; and V are the coefficients of variation of R and S respectively.
In a similar way, computations are also made in comparison for the second moment method and the
results are shown in Fig. 2 plotting P,, of Eq.(1) as abscissa. Comparison of the results indicates that
the superiority of the proposed fractile method is obvious from the view of the correspondence between
P,y and P, As has been pointed out in the previous paper, the difference between P,, and P, becomes
greater when the actual distributions of each variables deviate more from the normal distribution, par-
ticularly influenced by the tail-shapes of distributions. The reason why the accuracy of the proposed
fractile method is superior to the second moment method results from the fact that the very tail-shapes
of actual distributions are effectively incorporated in the determinations of design values, as evident
from Eq. (16). Incidentally, the second moment method can be understood to determine the design values
for a particular combination of e, and ¢, of Eq. (18) by

R*=R+ & Y(ex)on

S*=S— 07" es)os
instead of Eq.(19) combined with Eq.(16) in the proposed fractile method.

................................................................................................ (22-a,b)

4. INCLUSION OF HIGHER ORDER MOMENTS OF DISTRIBUTIONS

Eq.(18) itself is nothing but a different expression of the second moment method and thus exact only
for the case that all the variables are normally distributed. As mentioned before, the accuracy of the
target probability of failure P,, is expected to be improved when the information of the tail-shapes of
distributions can be further incorporated into the approximate equation (18). Higher order central
moments of each variable can successfully be used for this purpose, reflecting the shapes of distribu-
tions far from the center of the distributions more effectively than the second moment. For this reason,
Eq.(14) is substituted into the standard deviations g and g5 in Eq.(18), and thus P,, is expressed as

2k/2 21:/2
-1 eR (k)+¢
\/ k!
k 2)1/2
/ L] i
(k 2(5)! W) +( 2 <2) m)
k! MR k/' Ms

incorporating the higher order central moments 4§’ and 4/, It should be noted that * does not coincide

Pp=

1
with —-1—t—k—~ oF for arbitrary distributions, in general.
k/2f
2(3)!

Remembering that only one side of the tails of distribution which is lower side for strength and upper
side for load effect substantially influences the probability of failure, information of the other side
should be excluded for the evaluation of x® . Thus, here in this study, a convenient method is used to
evaluate higher order moments, in which only the substantial half side from the median of the distribu-
tion is considered as expressed by
2[ (x— X" folx)dx when X*>X"
) —

2[ x— X" flx)dx when X*<X"

in which X" is the median of variable X. In other words, Eq.(24) is understood such that 4% is evalu-
ated for the fictitious symmetric distribution composed of the substantial half side of the actual distri-
bution. It is for this reason that & and %’ in Eq.(23) (also Eq.(15)) are counted only by even numbers.
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Fig.3 Correspondence between Target and Realized Probabilities of Failure: Fractile Method with Higher Order Moment.

Numerical computation is made and the results with k= %"=6 are shown in Fig.3 for the same combi-
nations of distributions and parameters as the previous examples. An improvement of the accuracy can
be observed in comparison with Fig.1.

5. COMPARISON WITH RACKWITZ'S METHOD

A comparison between the second moment method and the proposed fractile method has been made
and then an improvement of the accuracy for the fractile method has been tried, taking more precise
information of tail-shapes of distributions into account. Since Rackwitz® and Paloheimo, et.al.'’” also
have reflected the tail-shape sensitivity of distributions within the framework of the second moment
method, as mentioned in Introduction, a further investigation is needed to make clear of the effective-
ness and simplicity of the proposed method. .

As Rackwitz has pointed out,” Paloheimo’s method is interpreted such that the actual distribution of
each variable is replaced to the normal distribution which has the same mean of variable and the same
fractile integrated probability at a specified design value as those for the actual distribution, not to the
normal distribution of the same mean and variance as used for the original second moment method.
Denoting the mean and the variance of the replaced normal distribution as X}, ¢ respectively, the
statement above is expressed mathematically as

X;v:‘ Xl,
Y (25-a,b)
Fuxt)=P=o(£-55) |
in which P, is defined by Eq.(17) and thus ¢ is given by
X:"__X-‘;
N (A 3. ) et eetnneenninetaeeeieaneeeesassassosasosasosssasasoasossosssossssassssasvnssssnsonassononscssassssns
g; Q—I(Pi) (:\:O'i) (26)

Therefore, it is understood that Paloheimo’s method adopts ¢ of Eq.(26) for the evaluation of the tar-
get probability of failure of Eq.(13).

Rackwitz has further improved the inclusion of the influences of the tail-shapes in a similar idea as
Paloheimo, but with the difference that the replaced normal distribution has the same values of the
fractile integrated probability and the probability density function at a specified design value as the
actual distribution. This is expressed in place of Eq. (25) as

X=XV )
o

FulXH=P,= qs(
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B TTINN g TRt (27. a,b
fuxt=o (X250 !
in which ¢( ¢ ) denotes a standard normal probability density function. Thus, ¢¥ of Rackwitz’s method is
given by

@@ (P z)l’

Ué"z__—_q..f& (X’;) ......................................................................................................... (28)
and the target probability of failure of Eq. (13) is evaluated using Eq. (28)

Both of the improved methods cited above have incorporated the fractile information of the actual
distributions at the design values and therefore are similar to the proposed fractile method in the sense
that the actual fractile probability is considered for the evaluation of Eq. (13).

For comparison with the proposed fractile method of Fig.3 which reflects higher order moments of
distributions, numerical examples are shown for Paloheimo’s method of Eq. (26) and Rackwitz’s method
of Eq. (28) in Fig.4 and Fig.5 respectively. Higher accuracy of the target probability of failure with the
realized value is observed, to a certain extent, in Rackwitz's method in this limited computation. How-
ever, since Paloheimo and Rackwitz’s methods take the design value at the same point as the
linearization point of Eq.(3), simply according to the original second moment method, which gives the
shortest distance between the origin and the failure domain in the normalized space'?, an iterative pro-
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Fig.4 Correspondence between Target and Realized Probabilities of Failure: Improved Second Moment Method by Paloheimo et.al.
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Fig.5 Correspondence between Target and Realized Probabilities of Failure: Improved Second Moment Method by Rackwitz.
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cedure is necessary to evaluate the design values X7* as clear by the interaction between Eq. (13) and
Eq. (26) or (28). On the other hand, the proposed fractile method has separated the evaluation of
fractile e, including the linearization with the determination of the design values X¥, as evident from
Eq. (16) which is free from Eq. (13). Then, iteration is not required, and calculation turns to be much
simpler.

6. DISCUSSION

All the results presented in this paper have been given in the form of the relations between the target
and the realized probabilities of failure as shown in Fig.1~5. A reliability-based structural design may
effectively be attained by better agreement between them, using a rather simpler method for the deter-
mination of design values for practical implementation. For this context, the proposed fractile method is
superior in terms of accuracy to the original second moment method which only reflects the mean and
variance of distributions, and also is superior to Paloheimo’s and Rackwitz’s methods in terms of simplicity.

In the proposed method, the linearization of the limit state function which indicates the boundary
between the safe and failure domains is separated from the selection of the design point. The main
interest of this study is given to the latter subject which is related to the mathematical representation
after Eq. (8), characterized by the non-interactive treatment between Egs. (13) and (16).

Eq. (13) itself is the result of linearization for the limit state function, and is essentially within the
framework of the second moment method. However, the point X? of linearization is arbitrary in the pro-
posed method, and secondly an intended design point X!* can be assigned only with the consideration of
the target probability of failure on the linearized surface, irrespective of X} and finally the design
point X* is determined directly from Eq. (16), which is naturally different both from X} and X?*. On
the other hand, the present idea of the second moment method is that the linearization point is located
at the shortest distance between the failure boundary and the origin in the normalized space. As Cho
has pointed out™, this premise tends to overestimate the probability of failure, resulting in the oversafe
design of structures, under certain conditions such as that the true boundary is highly nonlinear and so
on.

The second moment method adopts this particular point of linearization also for the design points
which are identical to the design values specified in design codes. This has been explained by the reason
that failure is most likely to occur at this point. However, once the boundary is linearized, the design
point need not be located at a point where failure is most likely to occur. For example, in the safe-
guard against the earthquake in Japanese specifications for steel highway bridges'® or steel railway
bridges'™, the lower bound values of static ultimate strength are adopted as resistance and the static
earthquake intensity as low as 0.2g is taken for load effect with the factor of safety of only 1.0. It is
not plausible to consider that this combination of values is most likely at the instant of failure, but both
of the design variables seem to take larger values than specified ones in most cases of failure.
Nevertheless, the proponents of the second moment method do not seem to argue that the currently
specified design values should be increased by the same scale both for the resistance and the load.

Although the proposed fractile method places its' emphasis on Eq. (16) combined with Eq. (13) which
only reflects the mean and variance of the normal distribution for the evaluation of the intended fractile
e, its own improved method is also presented by Eq. (23) and (24). For practical circumstances, how-
ever, it is not likely to find sufficient data enough to estimate the higher order moments accurately for
all the design variables. The accuracy of estimating higher order moments with limited number of data is of
great concern to be investigated as well as the influence of the excessive large (or small) values of data
due to errors on higher order moments.

The both methods of Paloheimo and Rackwitz have been found similar to the proposed fractile method
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in the sense of utilization of the fractile probabilities at the very design values. While the present study
has recommended the separate use of Eq. (13) for the evaluation of the intended fractile e; and Eq. (16)
for the determination of the design values X¥, Paloheimo and Rackwitz have related substantially Eq.
(13) with Eq. (16), possibly contributing the higher accuracy of the realized probability of failure P
However, the idea itself remains to be within the framework of the second moment method, and the
computations involve much complicated procedures. As seen by the difference between Fig.1 and Fig.5
compared with Fig.2, the proposed fractile method does not lose the accuracy and significantly relieve
the computations, and moreover the method can directly be applied for the practical determinations of
the design values, just similar to the way used for the conventional specification writing.

7. CONCLUDING REMARKS

For rational reliability based structural design, it is most important to preserve the consistent safety
against failure. This can be attained firstly by establishing appropriately the target probability of fail-
ure for a design incident of concern, and next by evaluating properly the corresponding design values so
as to minimize the error between the realized and the target probabilities of failure.

For this purpose, this paper has presented the fractile method which incorporates the tail-shapes of
distributions of design variables into the evaluation of design values in a rational and simple fashion.
The idea of the method is rather similar to the implicit concept of the conventional allowable stress
design,”, but contradict the prevailing notion of the original second moment method which utilizes essen-
tially the information on the mean and the variance of distributions of design variables.

Although the second moment method has been improved by Paloheimo and Rackwitz, also reflecting
the tail-shape information, the proposed method has been proved much simpler in the evaluation of
design values, and has shown practically the same accuracy as the rather complicated improved second
moment method. It should also be noted for the proposed fractile method that the design point (or the
design values) can be selected, with some degrees of freedom, mainly from the consideration of the char-
acteristics of each random design variables, free both from the linearization point and the most prob-
able point of failure. It is further noted that higher order moments can be incorporated into the deter-
mination of design values, if desired, for further improvement of accuracy.
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