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A COMBINED UPPER AND LOWER BOUND ANALYSIS
AND ITS APPLICATIONS

By TAN Kiang Hwee*, Akio HASEGAWA** and Fumio NISHINO***

A method of limit analysis which combines the features of the lower and upper bound
approaches is outlined. In this method, the collapse load of a structure is expressed as a
function of a set of kinematic and static variables which are subject to constraints
resulting from an assumed collapse mechanism and yield conditions. The true collapse
load is obtained by minimization with respect to the kinematic variables and
maximization with respect to the static variables. The method is illustrated with simple
examples. Application is made to evaluate the shear strength of reinforced concrete
beams. It is concise as compared to separate upper and lower bound analyses. It also
allows the minimization and maximization processes to be carried out in any order, thus
enabling the collapse load to be calculated by the easier way.

1. INTRODUCTION

In structural analysis, the load carrying capacity of a structure is often of the main concern. This can be

evaluated by using the theorems of limit analysis which can be stated as follows :

Theorem 1 : At limit load, all stresses remain constant and all deformations are plastic.

Theorem 2 : If a distribution of stresses which satisfies equilibrium and the stress boundary conditions
exists in the structure and is everywhere below yield, then the structure will not collapse.

Theorem 3 : The structure will collapse if there is any compatible pattern of plastic deformation for which
the rate of work associated with the external forces equals or exceeds the rate of internal
energy dissipation.

Theorem 1 implies that the theorems of limit analysis can only be applicable for structures made of
ductile materials in an exact sense. Consequently, limit analysis has proved very successful for metal
structures such as steel frames, in which ductility of the material and re-distribution of stresses within the
structure can be expected’®. However, it should be noted that ductility of materials does not play an
important role if the geometry of the structure is such that re-destribution of stresses and a resulting
increase in ultimate strength are not expected. In addition, like any other mathematical tools, the results
obtained by using the theorems of limit analysis have to be substantiated by experimental evidence. Hence,
it is felt that the theorems of limit analysis should also be applicable for structures which consist of
non-ductile materials if the strength of the materials is reduced appropriately in the analysis®. Examples of
such structures are reinforced or prestressed concrete structures and soil structures.

* Student Member of JSCE M. Eng., Graduate Student, Dept. of Civil Eng., Univ. of Tokyo. (Bunkyo-ku, Tokyo)
** Member of JSCE Dr. Eng., Asso. Prof., Dept. of Civil Eng., Univ. of Tokyo. (Bunkyo-ku, Tokyo)
#%k Member of JSCE Ph.D., Vice President for Academic Affairs, Asian Institute of Technology (Bangkok, Thailand), on leave from
Univ. of Tokyo

239s



126 K. H. TaN, A. HASEGAWA and F. NisHiNO

Theorem 2, which corresponds to the lower bound theorem, indicates that the ultimate load derived by
considering a statically admissible sress field is always either smaller or, at the most, equal to the actual
collapse load. In a lower bound analysis, it is therefore usual to evaluate the ultimate strength or collapse
load as a function of static variables (that is, stresses or stress resultants) and, without violating the
yield conditions, maximize the value of the ultimate strength so as to obtain the best lower bound solu-
tion.

On the other hand, the upper bound theorem (Theorem 3) indicates that the ultimate load obtained by
considering a kinematically admissible velocity field or collapse mechanism is always either greater or
equal to the actual collapse load. In an upper bound analysis, the ultimate strength of the structure is
frequently expressed as a function of kinematic variables and is minimized, without violating the com-
patibility conditions, to give the best upper bound solution.

In ordinary limit analysis, it is common to consider an upper bound analysis separately from a lower
bound analysis. In the event that the best lower bound solution coincides with the best upper bound
solution, the exact or true collapse load is said to have been obtained since the conditions of equilib-
rium, yield and compatibility are simultaneously satisfied for such a case. It is noted, however, that both
the upper bound and lower bound approaches involve the consideration of the equilibrium state of the
structure. This leads to a repetition in the derivation of the equilibrium equations (or virtual work
equations) if upper and lower bound analyses are to be performed separately. The aim of this paper is,
therefore, to introduce a method of limit analysis which combines the features of the upper and lower
bound analyses so that such a repetition can be avoided. The method is illustrated with simple examples.
Then, for an example of practical purpose, application is made to evaluate the shear strength of rein-
forced concrete beams. The advantages of the proposed method over separate upper and lower bound
analyses are also being discussed.

2. COMBINED UPPER AND LOWER BOUND ANALYSIS

The proposed method of limit analysis can be explained by considering a structure subject to a system
of external forces which are proportional to one another at any level of loading (Fig.1). From the equi-
librium conditions of the structure, the representative force, P, can be expressed by a function of a set
of kinematic variables k and static variables g as

P':P(k, S) P,

where s 1 gl A
k=lky, ks, -, knl —P—:constant
§={81, 82, ***, Sl G=1,2,...)

The kinematic variables are simply parameters which de- .
P: representative

scribe the kinematically admissible velocity field or collapse force

mechanism of the structure. On the other hand, the static
variables are stresses or stress resultants which define the

P3

statically admissible stress field of the structure. It is obvious Fig. 1 Structure under a System of Forces.

that these variables must be subject to constraints as

C;(k, 8)20, (i:Lg,...) .................................................. et ae et e eeatrarese e seaeneeraane (2)
for the collapse mechanism to be valid and for the yield conditions to be satisfied.

By the upper bound and lower bound theorems of limit analysis, the ultimate strength or true collapse
load, P,, of the structure is then given by the value of P which is minimized with respect to the
kinematic variables k and maximized with respect to the static variables s. For a structure with given
geometrical and material properties and loading condition, the value of P, is uniquely determined and
can thus be expressed as

240s



A Combined Upper and Lower Bound Analysis and its Applications 127

-Mmin
P(s) K P(k,s)

P
P(k)=m:XP(l<,$) TTOTTTIT T I T ILITT T

[
ﬁ [} B
k 1 1 2 h
(a)
$ X X
g T —
N 1 Jay d A
~<_ | 7 Constraints A b é E c
Cifk,s) >0
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Fig.3 Bar under Axial Force P. Fig. 4 Two-span Continuous Beam.
p,=max (I p(j )}
......................................................................................... (3)

i [max p
where k and s are subject to constraints at (2 ).

The concept of the combined upper and lower bound analysis is shown diagrammatically in Fig.2. The

true collapse load, P,, corresponds to the ‘saddle point’ of the surface represented by the function P(k,

s). It can be seen that the combined upper and lower bound analysis is essentially a constrained
optimization problem.

3. SIMPLE EXAMPLES

To illustrate the use of the proposed combined upper and lower bound analysis, the following prob-
lems are considered.

(1) Bar under uniaxial tension

In Fig.3, a round bar of radius, r, is subject to an axial force P. Denoting the stress in the cross
section of the bar by ¢ (which constitutes a static variable), the following equilibrium equation may be
obtained :

Pll, G) (T2 Gk +++eveveeeereeeme e (4)
where k is a kinematic variable defining the collapse mechanism. This kinematic variable is introduced
to accomodate the theoretically possible collapse mechanisms with collapse loads higher than the true
collapse load. It is clear that for collapse to occur, the following condition must hold :

On the other hand, if the yield stress of the material of the bar is denoted by g, then yield condition
stipulates

By the proposed method of limit analysis, the true collapse load, P,.is given by

Puzm;ix [m]én (m"ka)]
_min [max, .
="k [ o (zr ko)}

where % and ¢ are subject to constraints given at (5 ) and ( 6 ) respectively. The required value is
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obtained when k=1 and s=g,. In other words, the true collapse load is

{2) Two-span continuous beam under uniformly distributed load

Fig.4(a) shows a two-span continuous steel beam subject to a uniformly load, p. The beam has a uni-
form cross-section and the only possible collapse mechanism is as shown in Fig.4(b) where plastic
hinges are formed at D, B and E. Denoting the bending moments at D and B by o, M, and ¢,M,, where
o, and @, are introduced for the sake of generality, the free body diagrams of members AD and DB can
be shown as in Figs.4(c) and (d). From these diagrams, the following equilibrium equations are obtained :

Vx+px2/2:01M1

and (9)
V(l".’L‘)“"alMx+02M2_p(l"x)2/2:0
where x=AD.
Eliminating the shear stress resultant V from Egs.(9) leads to
2l M, 1+ a;M.x
o=plar, an, 2, My, Mz)“—"”l—zg;(zi%z—} ....................................................................... 10)

Here, the kinematic variables, a,, a, and x are subject to the following constraints so as to ensure the
validity of the collapse mechanism shown in Fig.4(b) :
=1
;=1
0<x<l!
On the other hand, in order to satisfy yield conditions, the static variables, M, and M,, are subject to

the following constraints :
0=M,=<M,
0=M, <M,
where M, is the full plastic moment of the beam section.

By the proposed combined upper and lower bound analysis, the true collapse load, p,, is given by

max {{ min

pu={Mh M) @y, s, xl play, @z, x, Mi, Mz)}

_ min max
—'{al’ as, x} {iMb sz p(ah 29 xa Mls MZ)}

To obtain the required solution, the value of p is first maximized with respect to static variables, M,
and M,. This gives
max %al l+ azx}
Plas, an T1=qpg ) Plans aa, 2, Moy Mi)=2 My =y
Next, the value of p(a,, a,, ) is to be minimized with respect to the kinematic variables, g, o, and x. It
is clear that p(e,, a,, x) is minimized with respect to ¢, and a, when ¢,=qa,=1. Hence, the following is

obtained :
_min [ min _min (I+x)
Pu= T {{0-'1, sl Dlay, a, 3-’?)}— " [ZMP lx(l—x)]
Defining )
I+
pa)=2 My
then for -dg_;x)_ to be equal to zero, the following must hold :

r=—2.4141 or 0.414 ]
As the kinematic variable x is subject to the constraints at (11) and d?p(x)/dx*>0 for x=0.414 1, it is
concluded that the true collapse load is

242s



A Combined Upper and Lower Bound Analysis and its Applications 129

% a -
) v "2__
wA
t Qa ; a
5 6 A
Eﬂa a 1 1y}
9 8 a,my(1-B)a T
+ 02 mZB a
3 ;
{a) Collapse Mechanism {b) Equilibrium for Segment 2-6-8-4
Fig. 5 A Square Plate Simply Supported on All Four Edges.
pu=p(x)lx=o.mz=11.66 Mp/ Lt e s (14)

(3) Simply Supported Square Piate

Consider a square plate of side dimension @, simply supported on its four edges as shown in Fig.5.
The plate has a yield moment of m, per unit length in both the positive and negative directions. The
corners of the plate are held down and the plate is subject to a uniformly distributed load w. In this
case, the collapse mechanism of the plate can be assumed as shown in Fig.5(a), in which g is a kinematic
variable defining the collapse mechanism.

Considering the segment 2-6-8-4, on which the positive moments acting along the edges 2-6 and 8-4
are a,m, per unit length and that along edge 6-8 is a,m, per unit length as shown in Fig.5(b), where the
kinematic variables @, and a, are introduced for the purpose of generality, the following equilibrium
equation may be obtained :

wAT=a:m.(1—8)a+ a;m.La
where

A=area of segment 2-6-8-4=(1—F2a%/4 | creeeeeeeessseese (15)

T =distance of centroid C of segment 2-6-8-4 from

edge 2-4=[(1—4)* (1+2 B)al/[6(1—B")]
From Eqgs.(15), the value of ¢ can be written as
24 [exm(1—8)+ axm.f]

W= (1 —/9)2 (1 2 lg)az ......................................................................................... (16)
The ultimate uniform load is then given by

= min max e
@y, as, Bl {{m,, ma “’} """ 1

where the kinematic variables a,, e, and 8 and static variables m, and m, are subject to the following
constraints :

a=1

a,=1 ~
R s B B RS reiaiee e (18)
0=m.<m, i

0<m,<m,
It can be seen that ¢ is maximized with respect to {m,, m, when m,=m,=m, and minimized with
respect to |a;, as} when a,=a,=1, regardless of the value of 8. Hence,

i 24 m,

wu:mén {W] ........................................................................................ (19)
Denoting the term in the denominator by f(8)=(1—p8)*(1+2p), it can be easily verified that df B)/dB
=0 for =0 or 1 and that d>f(0)/dg*<0 and d*f(1)/dB*> 0. Hence, f(g) is maximum or, in other
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words, @ is minimum with respect to g when 8==0. Consequently,
24m, _24m,

:(l T )G | oo g T (20
The result given by Eq.(20) has been known to be an exact solution®.

Wy

In the above simple examples, it is clear that the values of some of the kinematic variables (such as k
in example (1) and ¢;, a, in examples (2 ) and (3)) which result in the true collapse load are trivial and
are each equal to unity. These kinematic variables have been introduced for the purpose of consistency
with the general concept of the proposed combined upper and lower bound analysis (surface P in Fig.2).
They are required as the associated static variables (¢ in example (1), M,, M, in example (2 ) and Mis
m, in example ( 3 )) are subject to constraints, which limit their maximum values. For more complex
problems (such as the one in the next section), such kinematic variables can be conveniently taken as

equal to unity for simplicity.
4. APPLICATION FOR REINFORCED CONCRETE BEAMS

In order to demonstrate the advantage of the proposed combined upper and lower bound procedure,
application is made to evaluate the ultimate shear strength of reinforced concrete beams without web
reinforcement. Fig.6(a) shows a simply supported reinforced concrete beam under a symmetrical two-
point load. The beam has a prismatic, rectangular cross-section with both top and bottom longitudinal
reinforcement. Failure of the beam is assumed to occur by the formation of a shear crack in the shape
of a parablola (Fig.6(b)). To simplify the analysis, plane stress condition is considered and the area of
concrete above the shear crack is assumed to be under uniform compression and shear. Dowel actions of
the longitudinal bars are neglected and the force per unit area, f, due to aggregate interlock action
along the crack is taken to be constant. In addition, the concrete and top longitudinal steel are assumed
to carry compression forces only whereas the bottom longitudinal steel is assumed to carry tension only.

Using the co-ordinate system as shown in Fig.6(b), the equation of the parabola (symmetrical about
the x-axis) which represents the shear crack can be written as

zza_zfﬁwl ........................... 1)

Y="a1—7

\% v b

[l

e S s—
il % L

(a) Beam under Symmetrical Two-point Load
h/3+d
, \4 ( /2
Vi, +Vy+V,
t a = o b*Ye
| 1. ~Ka 27'5 1
M=t Ju-amiz % <
( M (1-a)h/2 S ‘b
X c
8 f oh (h-d'|)gy/a vi
—>Fsp « 0 ! lvc L 1 ! i
Y 0 3(1-d/h)/z 06 30 -a/mE 1o
vl ¥Ya a
(b} Free Body Diagram (¢) Relation between (Vb*"t"vc) and «

Fig.6 Shear Strength of Reinforced Concrete Beams.
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from which the slope of the crack at any point (x, y) can be calculated as
dy 1 oh 1
e p L@ L 9
dr— @n =y Vvall—7) vx—ay @)

The equilibrium equations are given as

Fap—Foa—C—b fsf cos 6 ds=0

V=veb [fsinods=0 e ©3)

Via—b f f cos 0 yds+b f fsiné xds—--(1+a)hC Folh—d)+ Falh—d)=

‘where the various terms are as defined in Fig.6(b) and the integration is taken over the whole length of
the crack. Substituting Eqs. (21) and (22) into (23) leads to
Fsb” Fst_ C— abf(l - 7)=0

V— Vc— abhf':()
) L s (24)
- Vea—3 aabhf(1—4 7)~§(1+a)hC—Fs¢(h—d’)+ Fslh—d)=
Eliminating (1— 7)f [i-e., 7 and f] and V. from Eqs.(24) gives
4 h d 4 h d h/l1 5
Vo[ (® a1}t L | (St Lt B (LS i o5)
Introducmg non-dimensional terms
c Fg Fa ;
V=T bhf’ , C= bhf’ , ¢sb bhf' . ¢st“ bhfc .............................................................. (26) ‘
where f, is the compressive strength of concrete, Eq.(25) can be re-written as
v=v(a, Psvs Pst» C)={(% a—1 >h d }¢sb {(4 a— l)h +ii_}¢st+ <§ *2 )C .................. @n

Here, o is a kinematic variable which defines the collapse mechanism and (@, $s, C) from a set of
static variables which must satisfy yield conditions.

By the combined upper and lower bound analysis, the ultimate strength of the beam is given as

p, =m0 {¢::%5§t, o 10(@, bon, ban c)}] ............................................................................ 28)
where a, ¢q @5 and ¢ are subject to the following constraints
0<a<l1
A
0<Ps=—77 7 bsi;j?lb =@,
............................................................................... (29)
As
0= pustilizy,
0=<c SQ_;)’_%%MQ—(I a)n

in which Agp, fus and Ay, fo. are the area, yield stress of the bottom and top reinforcement respectively
and 7 is an effectiveness factor to take into account of the lack of ductility in concrete.

To further simplify the problem, both steel and concrete are assumed to be rigid perfectly plastic
materials. Then, for a given value of a, the static variables ¢y, ¢ and ¢ must take their maximum or
minimum values according to whether their coefficients are positive or negative in order that p is max-
imized. That is, from Eq.(28) and constraints at (29)

o= (3012 D> gt < (G0 1)L gt <B(3-2a)>0-0n)
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Introducing
n=<(3a—1)2+L>y,
’Ut=<—<%‘a“l)%"%>¢z ................................................................................ (31)
V= <%<%—“% a)>(1-—a)77
the following is obtained
vuzmjn R R I R T T PO UP USRS U (32)

The relation between (v,+ v,+ v.) and « is shown in Fig.6(c). It can be seen that the minimum value of
(vy+ v+ vc) occurs at either points 1,2,3 or 4, depending on the values of (¢»— ¢:)/ 1. By comparing the
values of (v,4 v,+ v.) at these possible minimum points, it is found that vy is given as

for (¢b_¢:)/77$0,
vu=(%-9)g, (point 1)
for 0<(g,—¢)/n=<1/4,
—(d__h\, (d __h .
vum( a 5 a>¢b ( a 5 a)¢t (p0]nt 2) > ................... (33)
for 1/4<(¢,—¢)/n<(1+15d/h)/16,
_(_h d\, [ h & _nh 8nh/Po—i\? .
v“m<15a+a)¢b (15(1Jr a)¢’ 30a 15a\ 7 ) (point 3)
for (1+15 d/h)/16<(ds— 1)/ 7,
_hn(ed_ d\,(d_d .
V=39 a<5h ><1+3 h>+<a a>¢’ (point 4)

It is noted that the values of the kinematic and static variables are determined at the same time as
the true collapse load, v,. These values give the shape and position of the shear crack and the state of
steel and concrete (that is, whether yielding of the material occurs or not) at collapse, as summarized in
Tabie 1. The contributions of the aggregate interlock forces, f» and shear force across the compression
zone, V,, towards the ultimate strength of the beam can also be determined from equilibrium equations.

It should be reminded, however, that this problem only serves as an example of the application of the
proposed combined upper and lower bound analysis to concrete structures. In the derivation of the
results at (33), some assumptions, which have been introduced, may not be realistic and the constraints
for the kinematic variable, y, and static variables, f and V,, which have been eliminated in the process
of deriving Eq.(25), have been omitted. No comparison of the solutions with experimental results is
therefore intended in this paper.

Table 1 State of Reinforcement and Concrete at Failure of Beam.

Value of Yielding of |Yielding of | Crushing of

(ﬂ‘b—ét)/n Bottom Top Concrete

Reinft. Reinft.

Below O Yes No No
Between 0 and 1/4 Yes Yes No
Between 1/4 and (1+154/h)/16 Yes Yes Yes
Above (1+15d/n)/16 No Yes Yes
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5. DISCUSSIONS AND CONCLUSIONS

The combined upper and lower analysis has been shown here to be applicable not only for structures
which consist of ductile materials, but also for those with non-ductile materials. The attractiveness of
the proposed method lies in the fact that the problem can be formulated as long as the collapse mecha-
nism, yield conditions and equilibrium conditions are known. The displacement field of the structure
need not be required as in an upper bound approach using the virtual work equation. The method is
therefore more concise as compared to separate upper and lower bound analyses.

The use of the proposed combined upper and lower bound analysis has been illustrated by several
examples. The merits of the proposed method of limit analysis may not be apparent from the examples
in Section 3 of this paper. In contrast, the example given in Section 4 indicates the advantages of the
proposed method when the number of unknown variables increases. In fact, the method is especially use-
ful when the exact mode of the collapse mechanism (such as the position of the plastic hinge within the
beam in Fig.4(b) and the position and shape of the shear crack in Fig.6(b)) is not exactly known in
advance. In addition, since the values of the kinematic and static variables are determined together with
the value of the true collapse load, the method not only allows the exact collapse mode to be determined
but it also enables the various internal forces and hence their contributions to the ultimate strength to
be calculated simultaneously.

A further advantage of the combined analysis is that the order of maximization and minimization is
arbitrary. Hence, if there are multiple kinematic or static variables, the corresponding optimization
processes can be performed in a manner such that the true collapse load can be computed easily. The
maximization and minimization processes in the combined upper and lower bound analysis may be com-
plicated for some cases. In such cases, it is usually true that the formulation is also complicated even
for a separate upper bound or lower bound analyses. The problem then lies in the nature of the model
used and a modification of the model may be needed instead. On the other hand, with the advent of com-
puter softwares, it is believed that a combined upper and lower bound analysis may be more advanta-
geous due to its easier formulation as compared to the separate upper bound and lower bound analyses.
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