97

[PROC. OF JSCE Structural Eng./Earthquake Eng. Vol1, No.2 October 1984}

OPTIMAL DESIGN OF SKELETAL STRUCTURES UNDER
ELASTIC AND PLASTIC DESIGN CRITERIA

By Nobutaka ISHIKAWA*, Tetsuji MIHARA™**,
Satoshi KATSUKI*** and Kohei FURUKA WA ****

This study presents a sequential linear programming approach for the optimal design of
skeletal structures satisfying simultaneously both elastic and plastic design criteria at the
service and ultimate load levels, respectively. The paper also examines the effective range
of the ultimate load constraint by determining the upper and lower bounds of the effective
load factor. The design method develops a minimum weight design focused on the merit of
plastic design by a linear programming. Three examples of truss and frame are designed to
illustrate the features and scope of application of the approach.

1. INTRODUCTION

In the past studies on the optimal design of skeletal structures, two design methods have been developed
separately. That is, one is the optimal elastic design” which considers the constraints on the elastic
stresses and deformations at the service load level, and the other is the optimal plastic design® which
considers the ultimate load constraint ensuring adequate safety against collapse.

Recently from the viewpoint of the earthquake resistant design, it has become important to develop the
design method satisfying simultaneously both elastic and plastic design criteria. As a typical example, the
earthquake resistant design method of buildings in Japan is listed. But there is no study on such an optimal
design method except one.

Grierson and Schmit® has proposed the synthesis under service and ultimate performance constraints.
However, the study is primarily focused on the optimal elastic design and, therefore, the ultimate load
factor has not been well approximated in the effective range of plastic design criterion. In other words, the
merit of plastic design by a linear programming (LP) has not been utilized enough in its formulation.
Furthermore, the effectiveness of the ultimate load constraint has not been pointed out yet in its study.

In order to overcome the problems mentioned above, this study develops the optimal design method
focused on the optimal plastic design under both elastic and plastic design criteria. Then, this study also
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examines the effective range of ultimate load constraint by determining the upper and lower bounds of the
effective load factor.

The design process involves the minimization of total steel weight, subject to satisfactory stress (S) and
deformation (D) constraints at the service load level and the ultimate load factor (UJ) constraint. The
former (S and D) constraints are formulated in the first approximation of Taylor expansion by design
variable, and the latter (U/) constraint is explicitly expressed as a LP formulation based on the static
theorem of plastic design. Therefore, a minimum weight design can be formulated by a LP primal or dual
problem for each design stage and the problem can be solved by using a SLP technique which is easy to
handle.

The 3-bar truss, the 1-story 1-span frame and the 2-story 4-span frame are designed to illustrate the
features and scope of application of the approach.

2. DESIGN FORMULATION AND PROCEDURE

(1) Original Problem
A minimum weight design under service and ultimate performance constraints is formulated by combining
the optimal elastic design with the optimal plastic design as follows?:

Object : V=,0LTX—*min. ................................................................................ (l'a)
Constraint : afiéaéag .......................................................................................... (1.b)
uL§u§ug ......................................................................................... (1 C)

L LR T (ld)
XLSXéXU ....................................................................................... (1e)

where Eq.(1-a) defines the minimum total steel weight of the structure; Eqs.(1-b) and (1-¢) represent the
stress (S) and deformation (D) constraints at the service load level, respectively; Eq. (1-d) expresses the
ultimate load factor constraint (IJ) ; Eq. (1.e) means the minimum element size constraint.
o, u=the stress and deformation vectors at the service load level, respectively ; g=the plastic collapse
load factor ; ¢g, gi=the upper and lower bounds of the allowable stress vector; uY, ui=the upper and
lower bounds of the allowable deformation vector; a,=the ultimate design load factor ensuring adequate
safety against plastic collapse; X", X"=the upper and lower bounds of the design variable (element size)
vector; p=the weight per unit volume (p=1 is used in this study).

(2) Formulation of SLP Primal Problem

Noting the characteristics of LP formulation in the plastic design, the ultimate load constraint of Eaq.
(1-d) can be expressed as the LP problem based on the static theorem of the plastic design. On the other
hand, the service performance constraints of Egs. (1-b) and (1 - ¢) can be formulated by a first-order Taylor
series in the design variable X,. Therefore, the optimal design under elastic and plastic design criteria can
be expressed as the following LP primal problem for each design stage.

Given : o, L, o5, o5, ul, us, X°, X', u, o* Vo* u* Vu*, X* C, F, N, R
Find : primal variable @, X, «
dual variable g%, 8i, B3, Bu @, A

Object : T P G 11|+ T PP (Z.a)
Constraint :
S: 0’{.‘§0*+V¢7*(X“‘X*)§O'g .................................................................................. (Zb)
D: uf;su*-i- v u*(X——X*)_S_uZ ..... (2‘0)
Qg o ** " # e v sttt e et a e e et e aanansn (2-4)
U: CTQ*ano .................................................................................................. (Z'e)
NTQ”RX_S_O ................................................................................................ 2-9)
X S XU e (2-g)
(l‘ﬂ)X*§X§(1+ﬂ)X* ................................................................................... (2 h)
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where Egs. (2-b), (2-c) represent the approximation by first-order Taylor series in the design variable X,
of Egs. (1-b), (1-¢), respectively; Egs. (2-¢), (2-f) define the conditions of equilibrium and yield at the
ultimate load level, respectively. Eq. (2-h) means the move limit constraint for the SLP technique. C=the
compatibility matrix in the whole structure; @=the stress resultant vector at ultimate load level; F=the
external applied load vector; N=the exterior unit normal matrix at the yield line; ‘R=rthe plastic capacity
matrix which is independent of the design variable X ; y=the move limit parameter; V g, V u=the
sensitivity coefficient matrix of stress ¢ and deformation u by the design variable X, ; * =the value at the
previous design stage; 8%, 85 =dual variable vectors corresponding to the upper and lower bounds of stress
constraint of Eq.(2-b); 85, Bp=dual variable vectors corresponding to the upper and lower bounds of
‘deformation constraint of Eq. (2-¢); 85, §7=dual variable vectors correspending to the upper and lower
bounds of Eq.2-g); gy=dual variable corresponding to the ultimate load constraint of Eq.(2-d).

(3) Formulation of SLP Dual Problem

In order to enhance the computational efficiency, the primal problem of Eq (2) can be transformed into a
dual problem by applying duality theorem of LP as follows:

Given : p, L, oY, ok ul uk X', X%, p, o% Vo* u* Vu* X* C, F, N, —IE
Find ; primal variable g% g%, B3, Bu i1, A '
dual variable X, @, o

Object: :
V=(—6'"—V ¢*X*+ ¢*)B: +(0k+ V oe* X*— o®) 85+ (—uf— V u* X *+ u*)"B5 +(us+
v u*X*— u*)TﬂB +(_.1 _ﬂ)(X*)Tﬁ;+(1 -*,u)(X*)Tﬁ}*f- ao/S’U SIQAX, creerreeeeeereseeeaceciinns (3.3)
Constraint :
(— V ®) B+ (V o*)Bs +(— V u*) B +(V u*)8; +Ei--ﬁ}' F B L vvvernereene e (3-b)
o IAES (B -+ e e (3-¢)
ﬂU=FTa .................................................. R A ( 3.(1)

where i=the nodal displacement rate vector which is dual variable
vector corresponding to the equilibrium condition of Eq.(2-e); A=the m

plastic multiplier rate vector which is dual variable vector corre- \EAD rrdls R’NS'C'U'E'u’u . l
sponding to the yield condition of Eq.(2-f). PERFORM: U Desian
Consequently, the primal or dual design problem can be easily ﬁ:: : ;’;s o
solved by using a SLP technique in which the results of optimal Eer T —
plastic design are adopted as the initial values. The steps of the design FRTITRTE :, N F e
procedure are consicely listed in the flow chart as shown in Fig.1. o'=% & , veo'
It is noted that the cross-sectional area is taken as the design rerrom . 50U Design

VU X — min

variables for the truss structures and the plastic section moduls for - . -
: gt g efrve(X-N)sT

the flexural structures, in which the current moment of inertia ; and 0: u s ;"c; fu} X -:25 o
cross-sextional area A4, may be estimated for a given design variable u: NQ - Rx=< 0
X,. For example, for a wide-flange section®, G s X PATRYS
Column : [;=(X./0.78)"/%, A;=0.80 I,/ 2 ---rreeeeereees (4-a)
Girder : [;=(X./0.58)"/%, A;=0.58 L;'/*:+e-oeeee (4-b)
3. EFFECTIVE RANGE OF ULTIMATE LOAD Fig.1 Design flow chart.
CONSTRAINT ’

The proposed design method has the ineffective region depending upon the value of the ultimate design
load factor a,. Therefore, it is necessary to determine the effective range of the ultimate load factor
(et ae=<as), in which oY, ot are the upper and lower bounds of the effective load factor. Herein, the value
of oV means the boundary value between the S+ U design (both S and U constraints are active) or the
D+ U design (D and U constraints are active) and the U design (U constraint is only active, i.e., optimal
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plastic design). This value can be determined by combining the S or D constraint with the results of the [
design as follows: Initially, noting that the [/ design is proportional to the value of @, the design variable ¥
at the arbitrary value ¢, is given by

X= ?o—f ................................................................................................................. (5)
where X is the known design variable found by the U design at the value g,=1.

Therefore, the elastic stress ¢ and the deformation y at the arbitrary value g, are found by using Eq.(5)
as follows:

e
0= 0, U= U (6)

where 7 and @ are the stress and the deformation due to the design variable X, respectively. Substituting
Eq.(6) into Eq.(1:b) or (1-¢), the upper bound of the effective load factor oY is found by the following

equation.
agz?lan T (7-a)
in which
- v =
Qo= T/ e (i) b
" G/eh (@<0) @b
— oy
o= ﬁf/ufu' (ﬁfg()) .............................................................................................. (7-¢)
U/ uly,  (@,<0)

where ; and ; are the elastic stress at member or section i and deformation at node j for the design
variable X which is found by performing the optimal plastic design at load level a,=1.

On the other hand, the lower bound o} means the boundary value between the elastic design (S, D, S+D
design) and the design satisfying both elastic and plastic constraints (S+ U, D+ U, S+D+ U design).
Therefore, the value of of is found when the design ultimate load factor q, coincides with the analytical
collapse load factor o at the optimal elastic design field.

Initially, the plastic capacity is determined by the optimal elastic design as follows:

R.= Xeay ................................................................................................................. ( 8 )
where X,=the known design variable found by the optimal elastic design; R,=the plastic capacity vector,
e.g., the plastic moment vector; g,=the yield stress.

Then, the value of ¢f can be found by performing the following LP collapse load analysis® based on the
kinematic theorem.

Object & abm= RIA—PIIN. -+ ++rverrerrerrrrrrmenn ettt et et e ee ettt e e et e srbaie e (9-a)
CONSLTAINE | Cp—NATS () -++cvcvrrrerrrrrarrimmtnetae ettt e e et eeteerae e et s eiaaanansnas 9-b)
R TR T N (9 c)

D D 1 TR P PSP SO USPURI PRI (9-d)

where Eq.(9-a) defines the minimum internal work due to the plastic capacity; Eq.(9-b) expresses the
mechanism condition; Eq.(9-c) means that the external work due to the loads F is unity and Eq.(9-d)
specifies that plastic flow must always involve dissipation of mechanical energy; A=the vector of the plastic
multiplier rates; g=the vector of the nodal displacement vector.

4. EXAMPLES

(1) Example 1

The 3-bar truss shown in Fig. 2 is to be designed to resist service and ultimate loads.

a) Comparison with the Envelope Design

The proposed method is initially compared with the envelope design as shown in Table 1. The envelope
design is defined that each design variable adopts the maximum value among the S design (stress constraint
is only active) or D design (deformation constraint is only active) and the [/ design.

For instance, in the case of Table 1(a), the optimum values of X, obtained by the S design and the I/
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Table 1 Comparison with envelope design.
(@) =20 , Uiz

P=20 kips ) oo | Xo (in9)| X (i) | V (in)
L L=100in
L £ 30410e31 : s |0.789 | 0.409 |263.9
92520 kips/id u |o672 ] 0713 |261.4
P =15 wipspd
%34 kipsid Envelope 0.789 | 0.713 | 294.4
3y=-255kipsid

Va2 X Le X L— min S« U | 0721 | 0644 %6987.3./.)

ot O s OF } (b) . o6=20 , u.=0075in
S

ariat

Design X (ie)| Xe (i) V (in)
D 0889 | 00 |2514

g Oug 0o
Gl g Oug O.
uls u g ul } b
u: S u2 S ut

de s d } u

u 0672 | 0.713 |261.4

Envelopd 0.889 | 0.713 |322.7

Fig.2 3-bar truss. D+ U | 0889 | 0.411 2‘19%;2)

design are 0.789 in” and 0.672 in?, respectively, and, therefore, the envelope design adopts the larger value,
i.e., 0.789 in2 Similarily, as for the value of X,, the optimum of the U design, 0.713 in?, is larger than the one
of the S design, 0.409 in? and, as such, the envelope design takes the larger value, i.e., 0.713 in’
It is found from Table 1 that the volumes of the S+ U design and the D+ U design are about 10% less than
those of the envelope design, respectively. The proposed approach satisfying simultaneously S and U
constraints or D and U constraints are more economical than the envelope design found by performing the
optimal elastic design (S or D design) and the optimal plastic design (U design), separately.

b) Effective Range of Ultimate Load Constraint

Fig. 3 shows the relationships between the total volume V or design variable X, and the ultimate load
factor a, at the allowable deformation u,=oo. It is found from Fig. 3 that the results of this approach
considering both S and U constraints agree with those of the S design and the U design in the region of a,
<1.83 and a,>2.08. In other words, this design method is very effective in the region of ¢,=1.83~2.08
where S and [J constraints are simultaneously active. The value of a;=1.83 is determined by performing
the collapse load analysis of Eq.(9), while the value of a7=2.08 is found by using Egs. (7-a) and (7-b).

It should by noted from Fig. 3 that the optimal values X,, X, found by the S design are quite different
from those obtained by the U design and, as such, these values are turned upside down, in the region of the
S+ U design as the value of ¢, increases. It is also noted from Fig. 3 that the total volume V by this
approach is smaller than that by the envelope design.

In order to examine the validity of the effective range in Fig. 3, the relation of dual variables g, By
vs. ultimate load factor g, is shown in Fig. 4. It is confirmed from Fig. 4 that the maximum value of o, at 8=

0 and g5>>0 agrees with af=1.83 in Fig. 3, and the minimum value of g,at 8,>0 and 8;=0 coincides with a¢

o
Ciri) (i e
1404
kool
10 U design
S design | 100 H
j260] L H
[} t ’U‘
1] ]
i 1
: :
v —_ i T ign—
05 b 2 ?:(S-inactive) S design *""‘“—E S+U design - U design
i i 50 1
' i |
\
' 1 |
T < !
I 208 | ol !
0oner 37 T8 19 20 7 : =0
oolpr Bt L
Fig.3 Total volume V or design variable X, vs. load factor 17 18 183 19 20 208 21 d,
a, (allowable deformation 1,=o0). Fig.4 Dual vairables g5, @y vs. load facter a,.
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=2.08 in Fig. 3. Hence, Egs.(9) and (7) are very useful to determine the effective range of the ultimate load
factor.

Similarly, Fig. 5 shows the relation of total vlulume V vs. ultimate load factor a, at the allowable
deformation 1,=0.075 inch. It should be noted that the effective range of the D+ [ design is ¢,=1.73~
2.64 and the design variable X, changes places with X, in its region.

Then, Fig. 6 represents the relationships between V and u, as the parameter q,. It is noted that the total

X ¥ :
$4 00, v

(i) (i)
v
% y
v, 7 X
v, 7 %
1.0 1350)
. 7 . /‘/
7 / -
D design / /1 Udesign [ =2, T
e :
) N
0.5f300 :? ﬂ :
% 4 o © deslg
S v Q‘ S+D desig LI ca—
ooks i Zizse BN g5 85 70 75 80 85 90 95 w
g 15 20 25 30 (x om0
Fig.5 Total volume V or design variable X, vs. load factor Fig.6 Total volume V vs. allowable deformation y, as
a, (allowable deformation 1,=0.075 inch). the parameter q,.
volume V increases as the value of ¢, becomes 235

larger and the value of g, becomes smaller.

Finally, Fig. 7 points out the effective range of
the S+ U and the D+ U designs depending upon 25
the values of q, and y,. It is found from Figs.6 and

2.0 ;Ud ign
7 that the region of the S+ U and the D+ U ,., f{(_{Q_QWLUm Bt

U design

designs are very wide and the true optimal solu- 18 4
tions in its region can not be obtained by performing o D design S0 gesign S desian
the usual optimal elastic or plastic design method s ais

alone. 85 70 75 80 s 90 9(5 m%‘;:")

(2) Example 2
The 1-story, 1-span frame as shown in Fig. 8 is

Fig.7 Effective region of ultimate load factor constraint.

to be designed to illustrate a simple flexural

) ®
structure. l® * © f:i-g(;m
Fig. 9 represents the relationships between the Ly, % if::i&:nf
total volume V or design variable X, and the load l@ o L5527 %n
factor g, at the constant allowable deformation 1, — L —
=2.5 cm. It is found from Fig. 9 that the four types Fig.8 1-story l-span frame.

of design region are classified within the range of
,=1.7~1.9 at 4,=2.5 cm whose values are special case in Fig. 10.

Fig. 10 shows the effective regions of the D+ U and the S+ I/ design where exist in the narrow band in
this structure.

(3) Example 3 ,

The 2-story 4-span frame as shown in Fig. 11 is designed in order to illustrate the application of the
approach to the complex frame. Herein, the [) constraint is taken as the horizontal displacement at the
second story. k

Figs. 12 and 13 show the similar graphs as Figs. 9 and 10 in the case of the 1-story 1-span frame,
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Fig.9 Total volume V or design variable X, vs. load factor

a, (allowable deformation u,=2.5cm).
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Fig. 10 Effective region of ultimate load factor constraint. Fig.
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Fig. 13 Effective region of ultimate load factor constraint.

respectively. It is found from Figs. 12 and 13 that four
types of design region are identified by the value of a,=
2.1~2.9 and 4,=1.6 cm. The existance of the S+ U+ D
design (S, U, D constraints are all active) is quite
different from the case of simple frame.

Fig. 14 shows the location of the active constraints in
each design method. It is recognized from Fig. 14 that the
S+ U+ D design is welll combined with the S, D and U

(e
200

50

12

Fig.11 2-story 4-span frame.
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Total volume V or design variable X; vs. load factor

a, (allowable deformation u,=1.6cm).

bbb

(@ S design’
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4
I b

L E: - Fr
(c) U design e

o 77 b
(d) S.D.U design
doz2.4 , p=16cm
»; fully ultimate stress o ; fully service and ultimate

©; fuily service stress u,; fully deformation
Fig. 14 Location of active constraints

(2p=2.4 and u,=1.6cm).
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designs by using the proposed design method.

5. CONCLUSIONS

The following conclusions are drawn from this study.

(1) The proposed design method makes the best use of the merit of plastic design based on the LP
approach and, as such, the method can be solved as the conventional SLP primal or dual problem.

(2) It is found that the region satisfying simultaneously elastic and plastic design constraints exists in
the optimal design space. Only the proposed design method can obtain the correct solutions and it is very
valid in its region.

(3) Itis confirmed that the upper and lower bounds of effective load factor proposed by Egs. (7) and (9)
agree with the values obtained by using dual variables.

(4) Itis clarified that the solutions obtained in this method is more economical and rational than those of
the envelope design method.

(5) The method adopts the results of optimal plastic design as the initial values, and, therefore, it is not
necessary to be worried about the initial values for SLP approach to the large-scale structure.

(6) With but minor revision, the method may be applied taking plastic deformation constraint at the
ultimate load level into account.
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