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FATIGUE STRENGTH OF PLATE GIRDER IN BENDING
CONSIDERING OUT-OF-PLANE DEFORMATION OF WEB

By Yukio MAEDA* and Ichiro OKURA™**

When a thin-walled plate girder is subjected to repeated bending, it is possible that fa-
tigue cracks may be initiated at the toe on the web side of fillet welds connecting the
compression flange to the web. They are caused by the secondary bending stress produced
by out-of-plane movement of the web under repeated in-plane bending, due to its
unavoidable initial deflection. In this paper, first, the relation between in-plane bending
stress and secondary bending stress is formulated. Secondly, substituting the fatigue
strength of fillet welds subjected to secondary bending stress into the relation, the fa-
tigue strength for the above fatigue cracks is expressed in in-plane bending stress. It is
given as a function of the web slenderness ratio, and the influence of various factors on the
fatigue strength is discussed.

1. INTRODUCTION

As pointed out in Refs. 1)~5), when a thin-walled plate girder is subjected to repeated loading, it is
possible that fatigue cracks may be initiated at the toe on the web side of fillet welds around the web panel.
They are caused by the secondary bending stress at the toe on the web side of fillet welds, which is
produced under an in-plane load by the out-of-plane deformation of the web with initial deflections.

In AASHTO Specification®, the limits of the web slenderness ratio of transversely stiffened plate
girders are 163 in the allowable stress design and 192 in the load factor design for a steel with the yielding
stress of 248.2 MPa. The use of considerably slender web plates is approved in the latter design. The limits
of the web slenderness ratio in the load factor design are shown in a provision to prevent the initiation of
the above-mentioned fatigue cracks. They were proposed by taking into consideration the results of fatigue
tests of plate girders with transverse stiffeners”. But, they are not directly based on the fatigue strength of
fillet welds subjected to secondary bending stress. On the other hand, in the case of BS5400%, fatigue is
dealt with in its Part 10. Judging from the answer to the authors’ paper” contributed to the conference held
at University College, Cardiff in 1980, the fatigue cracks due to out-of-plane deformation of the web seems
not to be considered there.

As for thin-walled plate girders in repeated bending, as pointed out in Ref.10), it is possible that the
following three types of fatigile cracks may be initiated.

a) Type 1 fatigue cracks at the toe on the web side of fillet welds connecting the compression flange to
the web, which are due to out-of-plane deformation of the web.
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36 Y. MAEDA and I. OKURA

b) Type 2 fatigue cracks at the toe on the web side of fillet welds connecting the vertical stiffener to the
web.

¢) Type 3 fatigue cracks at fillet welds connecting the tension flange to the web.

In the case of type 2 and 3 fatigue cracks, their fatigue strengths are given™?, and it is possible to
estimate the initiation of them by comparing the flange stress calculated by the beam theory with the fatigue
strength. On the other hand, in the case of type 1 fatigue cracks, the fatigue strength of fillet welds
subjected to secondary bending stress is clarified'®. But, it is impossible to estimate the initiation of them
based on this fatigue strength, because the relation between in-plane bending stress and secondary bending
stress is not formulated. The authors have already made it clear by the finite out-of-plane deformation
analysis of rectangular plates in in-plane bending by the finite element method that not only the magnitudes
of the initial deflections but also their shapes will influence greatly an increase in secondary bending stress,
resulting in the initiation of the type 1 fatigue cracks®!.

In this paper, first, the relation between load and secondary bending stress of rectangular plates in
in-plane bending is formulated. Secondly, substituting the fatigue strength of fillet welds subjected to
secondary bending stress into the relation, the fatigue strength of type 1 fatigue cracks is exprssed in
in-plane bending stress. It is given as a function of the web slenderness ratio, and the influence of various
factors on the fatigue strength is discussed.

2. FORMULATION OF FINITE OUT-OF-PLANE DEFORMATION OF RECTANGULAR
PLATES IN IN-PLANE BENDING

(1) Relation between Load and Out-of-plane Deflection in the
Case of Simple Supports at All Edges

As shown in Fig.1, a rectangular plate of gX b under in-plane o (a, bj O

bending is simply supported in the out-of-plane direction at all the
edges. The initial deflection ), and the additional deflection 7y are
respectively assumed as follows :
=sin(zx/ a)eqn sin(zy/ b)+ ee sin(2 zy/ b)), -+ (1)
w=sin(zx/ ale, sin(zy/b)+ e, sin(2 zy/b)l, - (2)
where e, and e¢,,=the mode components of the initial delfection,

and e; and e,=the mode components of the additional deflection. Fig.1 Re“;a“g“lar plate in in-plane
bending.

0, O X 0o

Substituting Eqs.(1) and (2) into the Marguerre’s plate differen-
tial equations', and applying the Galerkin method to them, the
'relation between load and out-of-plane deflection can be obtained as follows™ .

9o _ e 9, 3,0 ente % ente o)
O'e 32 03 ent e, 32 <1 v )<4 05 t eoz+ez+367 t eoz+eg+3 68 t ) (3)
Go_9n" e: 9. 9 exte ., ¢ ente Q=N

v 32 Pente oz v)(3 057 1 emte (301 ente, T30 ti)’ (4)

where g,=the in-plane bending stress, g.= z* E /{1201~ v*)8?}, f=b/1tw, E=the Young's modulus, y=
the Poisson’s ratio, {,=the thickness of the web plate, §,~ §,=the coefficients depending on the aspect
ratio a/b, gi=(en+e)—el, @:=(eo+ e,)*~ ed, and g;=(en+e)en+e,)— €01€03.

(2) Relation between Load and Out-of-Plane Deflection Considering Rotational Restraint at

Unloaded Edges

When a rectangular plate is subjected to in-plane bending, the out-of-plane deflection on the compressive
side becomes larger than that on the tensile side. Accordingly, the relation between the load and the out-of
plane deflection at the location of y=§/4 from the compressive edge will be formulated. Here, letting e
denote the additional out-of-plane deflection at this location, e is given by

@@y /D @y, crrrereeeetteree et e et (5)
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Investigating each term on the right side of Eqs(3) and (4), it is revealed that when the additional
deflection is small, the respective first terms are dominative, and that as it increases, they converge into a
buckling coefficient, and on the contrary, an increase in the respective second terms becomes remarkable.
Considering such behavior, Eqs.( 3 ) and (4 ) can be approximated by the following equation, when either of
@o OT ey, exists for the initial deflection :

o __ B g L B e et e e e e
ae’kcr770+4(1 V)Hfoy (6)

where ,
e ltuteoltwe [tut riles tw) — 11 e tw £ e eo\? e, \?
= ° °ow ° 0 -+ 1_ —— )
o= eltuteo/ty ’ <tw tw> [ <Tze+ea> }
es=en/V2 or ew, ker=(9 7°/32)/8 6, =the buckling coefficient, 7 =46 /(2 8 for e,=eqn/v2 or
VO, /R 6) for e;=ey, and 6 and r,=the coefficients,
7o can be obtained by combining Eq.(5 ) and the respective first terms on the right side of Eqs.(3) and

(4). On the other hand, ¢, is assumed as above, referring to the form'™® of an equation of the relation
between load and out-of-plane deflection of rectangular plates in compression. When r,=1, ¢, takes the
same form as the one of rectangular plates in compression. Determining the values of § and 7, in the same
manner as mentioned in the subsequent Section 2. (5) for the relation between load and out-of-plane
deflection given by Egs.(3) and (4 ), substituting these values into Eq.(6 ), and comparing Eq.(6) with
Eqgs.(3) and (4), Eq.(6) approximates Egs.(3) and (4) very well.

If the values of k.,, 8, 7, and r,, which are determined by taking into account the rotational restraint at
the unloaded edges, are used, Eq.(6) will give the relation between load and out-of-plane deflection
considering the rotational restraint at the unloaded edges. A method to determine the values of these
coefficients is stated in the subsequent sections.

(3) Determination of k.,

The differential equation for the buckling analysis of plates in in-plane bending is as follows :

2
%V‘\w%—ao(l—il%)t%i—g:
where D,=E t3,/{12(1— %} and V *=2*/0x*+2 3*/ox* oy’ + a*/ay*. The following equation is assumed
for the additional deflection :

W= Y(Y) SIN(L/ @),  -wovreeeeesesemsssememesesisie s e i e reeien et euaeasaseeeresanie (8)
where Y(y)=the function of y. Substituting Eq.(8) into Eq.(7 ), and eliminating sin(zx/a), an ordinary

(3, rreeeeee e (7)

differential equation about the function Y(y) is obtained. Transforming this equation into finite-difference
equations, and solving numerically the eigenvalue problem defined by the equations, k., is determined.
(4) Determination of 7,
The first term on the right side of Eq.(6 ) can also be obtained by substituting Eqs.(1) and (2) into the
following equation’ and by applying the Galerkin method to it :

. ;
Btfvawz_ao(l__z%)?,(_’;’gj_w_). ........................................................................... (9)
Substituting Eqs.(1) and (8 ) into Eq.(9), and eliminating sin(zx/a), an ordinary differential equation
about the function Y(y)is obtained. Transforming this equation into finite-difference equations, and solving
the simultaneous linear equations made by the equations, the relation between load and out-of-plane

deflection is obtained.
On the other hand, solving ¢,/0.=kcr 70 about 7,, the following equation is obtained :
e 1 6\?( e
ﬂ___'é;—< ker 79) (Z+1) ...................................................................................... 10)
2 0o :
ker oo
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Substituting the above-mentioned relation between load and out-of-plane deflection into Eq.(10), 7, is
almost constant, and the value at e/e,=1 may be used for r,,

(5) Determination of 4 and 7,

To determine the values of § and 7,, the results of the finite element method analysis'®* will be used. A
mesh division of a rectangular plate is shown in Fig.2. Considering symmetry of the plate, its half is divided
into 144 elements. The unloaded edges are free to move in the in-plane direction, and for boundary
conditions in the out-of-plane direction at these edges, the following cases are treated :

(I) both edges simply supported, and

(M) both edges fixed.

The loaded edges are simply supported in the out-of-plane direction, and the in-plane bending is applied
so that the membrane stress varies linearly at these edges. Substituting the values of g,/0, and e/,
obtained by the finite element method analysis into the terms of o,/ g,— k¢, 7, and &, the relation between
the two terms is obtained. It becomes almost linear at a certain value of 7, in &, regardless of the'
magnitudes of the initial deflections, and the values of g are determined by applying the least squares
method to it.

The values of k.., 7, 7,and @ are shown in Table 1. The curves of load versus out-of-plane deflection
given by Eq.(6 ) and the results of the finite element method analysis are shown in Fig.3. It is seen that Eq.
(6) is very close to the values of the finite element method analysis.

(6) Relation between Secondary Bendidng Stress and Out-of-Plane Deflection

The relation between secondary bending stress ¢,/0, at the point (¢/2, 0) in Fig.1 and out-of-plane
deflection is assumed as follows, and the acceptability of this equation will be explained :

oo/ 0e= S+ A* £+ B? B, e (11)
where
_(1+2 7'1)770+ T3 (1"‘770) e _f{e € €, 2
= No+2 1y tw fb_(t—w—ftw) [1 < T4 e+e,,) ]’

and S, 735, 7, A and B=the coefficients. ‘
The first term on the right side of Eq.(11) is obtained as follows. The relation between secondary bending
stress and out-of-plane deflection is given by
A O T o PSR OTOP 12)
where C,; and C,= the coefficients. Eliminating e,and e, in Eq.(12) by Eq.(5) and the respective first
terms on the right side of Eqs.(3) and (4 ), the following equation is obtained when eo; only exists :
o_BCoat2Cine o
Oe Not+2 1 tw
Here, let S denote the coefficient in front of e/%, in Eq.(13) in the case of e, /#,=0, and let
73=2 11 C,/ S. Eliminating C, and C, in Eq.(13) with these coefficients, the first term on the right side-of

Table1 Values of coefficients.

(1) (1r)
a/b 1/3 0.5 1.0 1/3 0.5
b) € |€01/V2 eqp | e01/V2 en; | €01/V2 €52 | €01/72 €42 €01/72 €02
Ker 33.78 25.63 27.13 43,72 39.46
r 0.44 0.50 0.41 0.61 0.28 0.90 0.52 057 0.46 0.64
I, 0.35 0.60 0.65 1.0 1.0 0.35 0.35 0.50 0.65 0.64
0 5.07 5.25 6.52 6.51 8.01
S 86.69 62,31
X3 1.03 1.28 1.08 1.36
ry 0.7 0.6 1.3 0.7
A 11.70 6.14
0 B - 5.29 1.65
x (I) Both edges simply supported
Fig.2 Mesh division. (I) Both edges fixed
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Gb/ge
200
a/b 90/
150 L a/b = 5
50
F.E.M.
100 —Eq. (11) o0 1/t
F.E.M. | 0.1
o] 0.5
€01 /ty 2 1.0
50 0.1
0.5
1.0 Eq. (6)&(11)
0 . 0 I o J S0 YT A W T T I S
0 1.0 2.0 3.0 0 1.0 2.0 0 50 100 150 200
(eo+ e)/ty e/ty SIYAH
Fig.3 o,/ce versus (e,+e)/t,[Case (D). Fig.4 v/ 0 versus e/t,[Case(lD)]. Fig.5 /0. versus g,/c.[Case(I)].

Eq.(11) is obtained. On the other hand, when e, only exists, such a term is obtained in the same manner. The
coefficient S is, from the definition, an increase in secondary bending stress per a unit out-of-plane
deflection at y=b/4 of the buckled form, and its values are determined by the buckling analysis in Section
2. (3) |

The coefficient r; is determined by solving o,/ o.=Sn, about 7, as follows :

(1/SNosloe) no+2 1 o

" =leTeNe, 1) 1= a+2n) Toiw e b (14)
Substituting the relation between secondary bending stress and out-of-plane deflection obtained in Section
2. (4) into Eq.(14), 7, is almost constant, and the value at e/e,=1 may be used for r;.

The coefficients 7,, A and B are determined as follows. Substituting the values of ¢,/0. and e/ 1,
obtained by the finite element method analysis into the terms of g,/ o.— S7, and &, the relation between the
two terms is obtained. It can be expressed in a curved line at a certain value of 7, in &, regardless of the
magnitudes of the initial deflections, and the values of A and B are determined by applying the least squares
method to it.

The values of the coefficients S, 7,, 7., A and B are also shown in Table 1. The comparison of o,/ ge
versus e/ t, curves given by Eq.(11) with the results of the finite element method analysis is shown in Fig.4.
The relation between ¢,/ g, and ¢,/ . is obtained by Egs.( 6 ) and (11). Its comparison with the results of the
finite element method analysis is shown in Fig.5.

3. RELATION BETWEEN LOAD AND SECONDARY BENDING STRESS CONSIDER-
ING BOTH INITIAL DEFLECTION AND RESIDUAL STRESS

(1) Relation between Load and Out-of-Plane Deflection Considering Both Initial Deflection and
Residual Stress
The fundamental plate differential equations for the finite out-of-plane deformation of thin plataes which
have the initial deflection and the residual stress together, are given as follows™

1 [ wetwyr ' (wotw) O (wotw) [ wo\: Bwo Fwo) ‘
EV F —{ ox oY ] ox* oy’ {<ax ay) ox® oy’ } 15)
Dw - O*(Fot+ F) az(wo+w)_2 2" (Fot+F) 8“(wo+w)+a’(Fo+F) o' (wotw) 16)
tw oy® ox? oxdy  oxay ox? oyt

where F' = the stress function and F,=the stress function for residual stress. Egs.(15) and (16) show that
the initial deflection and residual stress interact each other. Generally, the initial deflections specified in a
specification for bridges or measured in fatigue tests are considered to be the ones at the time when the
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40 Y. MAEDA and I. OKURA

equilibrium condition is reached after the initial deflection and residual stress have interacted each other.
The fundamental plate differential equations defined by such initial deflections for the finite out-of-plane
deformation of thin plates will be derived in the next place.

Let w, and F, respectively denote the out-of-plane deflection and stress function at the time when the
equilibrium condition is reached after the initial deflectioin has been varied by the residual stress.
Furthermore, let w, and F, respectively denote the additional out-of-plane deflectioin and stress function
for a stress produced by loading. Using these parameters, w and F are expressed as follows

WS Wa Wp— Wy  ~##erer memeeemmee e ettt ettt ettt et 17

F=F,+F,— D P (18);
Substituting Eqs.(17) and (18) into Eqs.(15) and (16), and eliminating w, and F, by using the relation that
Egs.(15) and (16) also hold on the unloaded condidtions of w,=0 and F,=0, Egs.(15) and (16) are
respectively transformed as follows :

1oup_[otw) ) O wtw) & wtw) [(SFwy &Fw Fwy
EV F"*[ ox oY ] ox? oy? {<axay> axt oyt }’ (19)
Du_, _(azF, w,  F, 2w, &'F, 82wa>

v YTyt o oxdy 2x 3y ox’ oy

_3F. dwtwd_, O F lwrtw) O Fedlwtw) 20

oy’ ox*  “oxdy oxdy | ox’ 2y’
Seemingly, Egs.(19) and (20) show that the terms on the residudal stress marked with a wave line are
added to the Marguerre’s fundamental plate differential equations defined by the initial deflection 1, and
the additional out-of-plane deflection w,. If the initial deflection of Eq.( 1), the additional deflection of Eq.
(2 ) and the residual stress of rectangular distribution such as shown in Fig.6 are assumed for Wy, W and
F, respectively, 6, in Eq.(3) and §, in Eq.(4 ) have only to be replaced by 6 —{sin(2 zc/b)/(2 nc/ b} ove
/o and 6,—|sin(4 zc/b)/(4 nc/ b} orc/ e, respectively. These coefficients are related only to k., and 7,
in Eq.(6). )
When F, is generally given by a function of only y, k., and 7, are respectively determined as follows.
kcr is determined by the following equation instead of Eq.(7):

Dw 4 o* F Yy o* Weq .
.___w_V wa_{_...a_?.—ao(l—_z b)} axz __O. .......................... (21)
7, is determined by substituting the relation between load and out-of-plane deflection obtained by the

following equation instead of Eq.(9) into Eq.(10) :

Dy, _OFwe  ( ,y\Slwtw)
_w~V wa“”a"y*; o % (1 2 b ) Py (22)
The values of k., and 7, obtained by Eqs. (21) and (22) for the residual stress shown in Fig.6 are listed in

Table 2. It is seen that as the residual stress increases, k., decreases, and that 7, varies depending on the

magnitude of the residual stress.

(2) Relation between Secondary Bending Stress and Out-of-Plane Deflection Considering Both

Initial Deflection and Residual Stress

The values of S considering the residual stress are determined by Eq.(21), and the values of 7, are
determined by substituting the relation between secondary bending stress and out-of-plane deflection
obtained by Eq.(22) into Eq.(14). The values of S and 7, for the residual stress shown in Fig.6 are listed in
Table 2. It is seen that as the residual stress increases, S decreases, and that r, varies depending on the
magnitude of the residual stress.

The influence of the residual stress on the coefficients 4, B and r, will be examined by the results of
the finite element method analysis. In the finite element method analysis program' considering the residual
stress, after the equilibrium condition has been calculated for a given initial deflection and a given residual
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3 : " Table2 Influence of residual stress on ker, S, 77 and

5 |¥ ope , (@b o 74 [Case(ID)].
] ' For a/b = 1/3
= c s
= Orc/Oe 75 =
H o 1/ ker S e9,/V2 €02
5 re (c/b=1/12) (77 = T T o
= c 0 43.72186.69 ] 0.52 1.03]0.57 1.28
i 2 39.06 | 81.02 | 0.51 1.05]0.58 1.30
i 4 34.11 | 75.36 | 0.49 1.06]0.60 1.33
o 0 Ore X G 6 28.76 1 69.59 | 0.46  1.05]0.63 1.36
Ore(b=2¢) = 2cOpt For a/b = 0.5
Fig.6 Rectangular plate in in-plane bending with o 7o o
. re e
residual stress. (c/b=1/12) | Ker s €0 /VZ eor
T I3 E gt r3
0 39.46 | 62.31 | 0.46 1.08 | 0.64 1.36
0/, 2 33.17 | 58.70 | 0.42 1.02|0.68 1.40
A 4 26.07 | 54.66 [ 0.36 0.92 | 0.78 1.53
200 6 17.26 | 49.60 | 0.26 0.72 ] 1.04 1.94
~a/b=0.5
150 - stress, the in-plane bending is applied. In the case of
Eq. (11) ¢/b=1/12 and ¢,/ 5.=4 for the residual stress of rectangu-
100 | lar distribution shown in Fig.6, calculations are carried out
o/t for the initial deflections of e,,/1,=0.1, 0.5 and 1.0. The
r
50k ® 0.0721 aspect ratio g/b is 0.5 in each case. Letting e, denote the
2 8:32;5 out-of-plane deflection at y=05/4 at the time when the
L equilibrium condition is calculated for these residual stress
0 . .
0 1.0 2.0 e /¢, and initial deflections, e,/%, becomes 0.0721, 0.3672 and
Fig.7 ou/0. versus e,/ i,[Case(ID)]. 0.7359 for e,,/1,=0.1, 0.5 and 1.0, respectively. Letting e,

denote the additional out-of-plane deflection at y=5/4
produced by loading of in-plane bending, the relation between ¢,/ g, and e,/ i, is obtained as shown in Fig.7.
Replacing e, and e in Eq.(11) with e, and e, respectively, the relation this equation gives is also shown in
the figure. The values on the column of g/5=0.5 and e,= e,,/+/2 in Case (]I ) in Table 1 are used for the
coefficients S, A, B, 7, 7:and r,. It is seen from Fig.7 that Eq.(11) is very close to the values of the
finite element method analysis. Accordingly, it is concluded that the residual stress does not influence the
coefficients A, B and r,. Also, the term of S7, in Eq.(11) seems not to be much influenced by the residual
stress, though the coefficients § and 7, are influenced by the residual stress.

From the above discussion, to apply Eqs.(6) and (11) to the case the residual stress also exists, the
out-of-plane deflection at the time when the equilibrium condition is reached after the initial deflection has
been varied by the residual stress has only to be used for e, and the coefficients k., and 7, considering the
residual stress have only to be used.

4. FATIGUE STRENGTH CONSIDERING OUT-OF-PLANE DEFORMATION OF WEB

(1) Influence of Initial Deflection Shape

The authors revealed in Refs.10), 14) that not only the magnitudes of the initial deflections but also their
shapes would influence the initiation of type 1 fatigue cracks. In the case of the web panels of aspect ratio
a/b=1, the initial deflection of mede 1 in the x-directioin does not much increase the secondary bending
stress, but the ones of mode 2 and 3 do it greatly. Here, the mode 1,2 and 3 mean the shapes of one, two and
three half-sine-waves, respectively. On the other hand, as for the initial deflection shapes in the
y-directiion, the mode 2 makes the largest secondary bending stress. For web panels which have the initial
deflection of mode 2 or 3 in the x-direction, the relation between in-plane bending stress g, and secondary
bending stress ¢, can be calculated by Egs.(6 ) and (11). The values on columns of ¢/ 5==0.5 and 1/3 in Case
() in Table 1 are used in these equations corresponding to the initial deflections of mode 2 and 3,
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Ity
o /o €01 v eo2/ty = 0.1
omax/ 9y eoa/ty ’ 9'1 1.0 v buckling curve
1.0 . n
o - ----a/b = 0.5
- - a/b =
= 0.5
0.5 =
B 2353 . R=0 oy =2353Mpa
B Oy = 235.3 MPa ; ! I ! L 1 ]
! 1 1 ] ] [ 0 100 200 300 B
° 100(a) R = 0200 3008 Fig.9 omax/0y versus B for a/b=0.5 and 1/3.
Oomax/0Y Z(;%t:: =91 respectively.
1.0p buckling curve The fatigue strength®® for the secondary bending
L ———-eg stress range at 2 X 10° cycles is about 166.7 MPa for
coz steels of JIS-SS41, which have the minimum speci-
0.5k - fied tensile strength of 402 MPa. Letting gypn and
N == opbmax denote the secondary bending stresses corre-
L Oy =235.3 MPa sponding to the minimum and maximum in-plane
r | \ | | : . , bending stresses gomin and oomax, respectively, and
0 100 200 300 B solving Eqs.(6) and (11) under the condition of

(b) R = 0.2

Gomax — Obmin = 166.7, «orrrererrasreemeianin (23)
the relatioin between the maximum in-plane bending
stress gomax for the 2X10° cycles fatigue strength

1.0 _ buckling curve
i h L and the web slenderness ratio £ can be obtained.
" et Zg; The relation between gypax/ oy and g in the case of
o5 [ eoz/ty 1710 a/b=0.5 is shown in Fig.8. Here, oy is the specified
L vielding stress, which is 235.3 MPa for SS41 steels.
i Oy =233.3 M R is the in-plane bending stress ratio defined by the
- following equation :
0 : 160 I 2(’)0 L 3(’)0 BJ R = Gomin/ Gomax *+++++++we+sereesrmmrmsnnsemianeans (24)

(c) R = 0.5
“Fig.8 comax/ oy versus g for q/b=0.5.

From the figure, the followings are pointed out :
1) The difference of gopax/ oy due to the compo-
nents e,, and e,, of the initial deflection mode in the

y-direction becomes smaller with an increase of the web slenderness ratio 8.

2)  Gomax/ 0y becomes larger with an increase of R. In the case of R=0.5, after § has exceeded by about
250, oomax/ oy for a large initial deflection becomes larger than that for a small initial deflection.
Furthermore, gomax/ oy for ey/ t,~1.0 in the case of R=0.5 starts to rise after 8 has exceeded by about
300. As B increases, the web becomes more slender and the out-of-plane deflection increases. With an
increase in the out-of-plane deflection, the relation between g, and ¢, obtained by Eqs.(6) and (11)
converges to the one given by

Oo=(3/ANL — VB A) gy, -++++vesreerrerremrrome ettt (25)
This equation gives gomax/oy=0.63, 0.78 and 1.26 for R=0, 0.2 and 0.5 under the condition of Eq.(23),
respectively. Accordingly, after gomax/ oy has decreased with an increase of # and has reached a minimum
value, it increases and converges to a limitting value given by Eq.(25).

3) The buckling curve given by the following equation is also shown in Fig.8 :

0'omax=39-46 Gg, 7ttt st st (26)
There exists the region of 8 where gomax/ oy for the 2 X 10° eycles fatigue strength is much smaller than the
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buckling strength, depending on the magnitude of the initial deflection and stress ratio. For example, for g
=200, the buckling strength is gomax/ 6v=0.78, but the 2 X 10° cycles fatigue strength at R=0 is gomax/ 0y
=0.69, 0.43 and 0.32 for e,,/#,=0.1, 0.5 and 1.0, respectively.

The relation between gomax/ oy and B in the case of ¢/ bh=1/3 shows the same tendency as that in the case
of a/b=0.5. However, as shown in Fig.9, gsmax/ oy for a/b=1/3 is always smaller than that for q/b=0.5
except for the case of e,,/1,,=0.1. In the case of e,/ t,=0.1, gomax/ oy for a/b=1/3 is slightly larger than
that for g/b=0.51n the region of g less than about 250.

(2) Influence of Residual Stress ; ;

As the web becomes thinner, the rotational restraint of the flanges to the web becomes larger, and the
web can be regarded as fix-supported by the flanges'. On the other hand, in actual plate girders, there
exists the residual stress in their webs due to welding. As mentioned in Chapter 3, the residual stress
makes the buckling coefficient k., in Eq.(6 ) decrease. Accordingly, the influence of the residual stress on
the fatigue strength will be examined by decreasing the value of %, from the value for the fixed support at
the unloaded edges. For the coefficients in Eqs.(6 ) and (11) except k.,, the values of Case (I]) in Table 1
are used.

The relation between gomax/ oy and £ in the case of

Oomax/0y  €oo/ty=0.1" " : ~ a/b=0.5is shown in Fig.10. k.,=39.46 and 25.63 in
t-0 the figure correspond to the values of the buckling
coefficient for the fixed and simple supports at the
unloaded edges, respectively, and %.,=32.545 is the
mean value of the two. It is seen that as k., decreases,
Oomax/ oy 2lso does. The degree of the decrease of

1o S 7'35 - - Oomax/ 0y due to the residudal stress becomes smaller

=4 . Ara
o ] Y | ) U | with the increase of R and 8. Especially, the curves
0 100 200 300 B for ey,/1,=0.5 and 1.0 at R=0.5 approach each

(a) R =0
other and rise with the increase of 8. This is because

Somax/oY o, Ry they fast converge to the values given by Eq.(25)

1.0 which is not related to k.,
i (3) Influence of Yielding Stress
o It is revealed by the results of fatigue tests of
0 51 T-type fillet welds subjected to repeated out-of-
- plane bending that the 2 X 10° cycles fatigue strength
B of SM58 steels, which have the minimum specified
- P | } tensile strength of 569 MPa, is almost the same as the
1 I ] ] . \
0 100 200 300 B one of SS41 steels'™. Accordingly, for steels of the
(b) R = 0.2 yielding stress not exceeding 451.1 MPa which is the
Oomax/0y e92/t,;=0.1 :
1.0r Tomax/ 0¥ €9/t =0.1 buckling curve
L tor N Oy =235.3
L B . -=== 0y =1353.0
o= Oy =451.1
" ™ MPa
0.5p L
- : 0.5 _I___
- 0y=1235.3 MPa === - T el
N N ST
1 L i ] L 1 § L R=0
0 100 200 300 8 1 1 i 1 ! 1 ]
() R = 0.5 0 100 200 300 A
Fig.10 Influence of residual stress |a/b=0.5]. Fig. 11 Influence of yielding stress [a/b=0.5].
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specified yielding stress of SM58, the condition of Eq.(23) will be used.

The relation between gomax/ oy and A in the case of q/b=0.5 and R=0 is shown in Fig.11. Here, 1 is
defined as follows :

)&‘—‘ﬂ /ay 1235.3 ........................................................................................................ (27)
It is seen from the figure that gomax/ oy decreases with the increase of the yielding stress. This can be
explained as follows.

Using Eq.(27), the terms ¢,/ g, and ¢,/ g, on the left side of Eqs.(6 ) and (11) are transformed into 1.264
X 10° )2 (¢,/ oy) and 1.264 X 10° A?(0,/ o), respectively. The range of g,/ oy for the 2 X 10° cycles fatigue
strength is 166.7/4, from Eq.(23). Since 166.7/5, decreases with the increase of gy, Gomax/0y also
decreases.

Generally, using the web slenderness ratio multiplied by the square root of the yielding stress such as
Eq.27), the buckling strength can be expressed independently of the yielding stress. Even if such a
parameter is used, however, the relation between fatigue strength and web slenderness ratio cannot be
expressed independently of the yielding stress.

5. CONCLUSIONS

The relation between load and secondary bending stress of rectangular plates in in-plane bending was
given by Eqgs.(6) and (11). Using these equations, the fatigue strength of type 1 fatigue cracks due to
out-of-plane deformation of the webs of thin-walled plate girders subjected to repeated bending was
expressed in in-plane bending stress. This fatigue strength was given as a function of the web slenderness
ratio, and the following features were pointed out.

(1) The influence of the initial deflection mode in the y-direction on the fatigue strength becomes
smaller with the increase of the web slenderness ratio.

(2) As the stress ratio increases, the fatigue strength also increases. When the stress ratio is small,
the fatigue strength for a large initial deflection is smaller than that for a small initial deflection. When the
stress ratio is large, however, this is reversed in the region where the web slenderness ratio is large.

(3) When the web panel of aspect ratio 1 has the initial deflection of mode 2 or 3 in the x-direction,
there exists the region where the fatigue strength becomes considerably smaller than the buckling strength
depending on the magnitudes of the initial deflection and stress. ratio. '

(4) The residual stress reduces the fatigue strength. The degree of the reduction becomes smaller with
the increases of the stress ratio and web slenderness ratio.

(5) Using the web slenderness ratio multiplied by the square root of the yielding stress, the buckling
strength can be expressed independently of the yielding stress. But, even if such a parameter is used, the
relation between fatigue strength and web slenderness ratio cannot be expressed independently of the
yielding stress, because the fatigue strength of fillet welds subjected to secondary bending stress is almost
constant regardless of an increase of the yielding stress. V
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