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LAGRANGIAN NONLINEAR THEORY OF THIN ELASTIC
SHELLS WITH FINITE ROTATIONS

By Masashi IURA* and Masaharu HIRASHIMA**

Accurate equilibrium equations and appropriate static and geometric boundary
conditions are derived for the geometrically nonlinear theory of shells undergoing finite
rotations without restriction to small strains., The principle of virtual work is used to
obtain the shell equations in which a nonrational tensor of change of curvature is
employed. The introduction of variations of displacement vectors instead of those of
displacement components makes it possible to reduce computational efforts for deriving
the shell equations. The effects of finite rotations at the shell boundary are strictly

taken into account utilizing the total finite rotation vector for the boundary.

1. INTRODUCTION

In the nonlinear theory of thin elastic shells, it is often desirable to employ the Lagrangian formulation rather
than the Eulerian formulation. The Lagrangian equilibrium equations and appropriate geometric and static boundary
conditions are, in general, written with reference to the undeformed shell midsurface, the geometry of which is
known. In the Eulerian approach, on the other hand, all quantities are usually reffered to the unknown deformed
shell configuration. When we obtain the numerical solutions of the boundary value problems of nonlinear theory of
shells, it is preferable to use the boundary values reffered to the known geometrical quantities. In this way the
Lagrangian nonlinear shell equations have been widely utilized. However, to the best of our knowledge, nobody has
succeeded as yet in deriving the consistent fully Lagrangian nonlinear theory of ~shells undergoing finite
(unrestricted) rotations without using small strain assumptions.

A consistent Eulerian nonlinear theory of shells with finite rotations has been developed under the Kirchhoff-Love
hypotheses” =¥ In these investigations, the parameter §,, which is defined with respect to the deformed boundary,
has been used as the geometric boundary condition for the couple. On the basis of the Eulerian shell theory, the
appropriate transformation rules, in which the Lagrangian quantities are related to the Eulerian ones, have been
applied to derive the Lagrangian nonlinear theory of shells. This procedure? -®  however, may not lead to the
consistent Lagrangian shell theory, since the proper formulation of the fourth boundary condition for the resultant
boundary couple can not be made” . With the aid of the principle of virtual work, Pietraszkiewicz”-? has obtained

the Lagrangian nonlinear theory of shells, in which the parameter 3, defined with respect to the deformed boundary
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154 M. IURA and M. HIRASHIMA

has been used as the fourth boundary condition, while the displacement components defined with respect to the
undeformed boundary has been used as displacement conditions on the shell boundary. Such a form of the boundary
conditions is incompatible with other fully Lagrangian shell equations,

The appearance of finite rotations is one of the important features of any nonlinear theory of shells” ~'V. Most of
the existing litareture” ~ 1" however, have dealt with the nonlinear theory of shells with small or moderate
rotations. The resulting boundary conditions for the couple have been expressed by the linear terms with respect to
displacements and their surface derivatives, since some approximations are made on the nonlinear terms of the
tensor of change of curvature, Within the theory of shells undergoing finite rotations, the tensor of change of
curvature, defined as a difference between the curvature tensor of the deformed and undeformed shell midsurface,
is essentially a nonrational function of displacements and their surface derivatives. Pietraszkiewicz® has derived the
two-dimensionally exact nonlinear equilibrium equations under the Kirchhoff-Love hypotheses by using the exact
tensor of change of curvature defined above, however he failed to obtain the associated geometric and static
boundary conditions. No one has developed as yet the consistent nonlinear theory of shells with finite rotations by
utilizing the nonrational tensor of change of curvature. Using the modified tensor of change of curvature,
Pietraszkiewicz and Szwabowicz® have obtained the entirely Lagrangian nonlinear theory of thin shells.

In the present paper, a consistent fully Lagrangian nonlinear theory of thin elastic shells with finite rotations is
developed under the Kichhoff-Love hypotheses. When we obtain the equilibrium equations and the associated
geometric and static boundary conditions of the shell with the use of the principle of virtual work, we do not use the
small strain assumptions, nor restrict the magnitude of rotations of the shell. It appears that a cumbersome
caluculation is hard to be avoided if we take the variations of the surface strain tensor and the tensor of change of
curvature with respect to the displacement components. In this paper. however, the variations of displacement
vectors instead of those of displacement components are introduced in the principle of virtual work, so that it is a
straight forward matter to caluculate the internal and external virtual work. Thus the present tensor of change of
curvature remains to be a nonrational function. The small strain assumptions are introduced only at the constitutive
equations. In the published papers, the small strain assumptions have been introduced at a too early stage of
derivation of shell equations, It is widely accepted that neglecting the higher terms in the nonlinear equations at a
early stage leads to the inconsistent or inaccurate results. In order to avoid inconsistencies of this kind., we derive
the two-dimensionally exact nonlinear shell equations without restriction to small strains. On the basis of the
resulting exact shell equations, the various variants of consistent approximate theories may be obtained.

The rotations have been conventionally described by a proper orthogonal tensor or a finite rotation vector,
Simmonds and Danielson” have formulated a general nonlinear theory of thin shells in terms of a finite rotation
vector, Pietraszkiewicz"? has obtained the general formulae for the finite rotation tensor and the finite rotation
vector in terms of displacements. In this paper the external virtual work for the couple on the shell boundary is
expressed by the inner product of the total finite rotation vector and the boundary couple vector, Consequently the
effects of finite rotations at the shell boundary are exactly taken into account.

The boundary line integrals in the internal and external virtual work are expressed in terms of the variations of
the displacement vector and the fourth parameter defined with respect to the undeformed boundary. The resulting
equilibrium equations are found accurate within the range of the two-dimensionally consistent theory. The
associated boundary conditions, which consist of four equations both for static and geometric boundary conditions,
are compatible with the consistent Lagrangian nonlinear shell theory. Throughout this paper, the summation

convention will apply to repeated Greek indexes (in mixed position) with range 2.
2. PRELIMINARIES

In this work, we adopt wherever feasible the notation used by Pietraszkiewicz!". The position vector to a point
on the undeformed midsurface M with surface coordinates 4% is denoted by r (6%. With the reference surface M we
associate covariant surface base vectors a,=r. , and a unit normal vector n=¢% q,X a,/2. These and all other

vector fields considered are assumed sufficiently smooth to justify all differentiation operations that follow. The
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Lagrangian Nonlinear Theory of Thin Elastic Shells With Finite Rotations 155

notation ( ), « denotes partial differentiation with respect to surface coordinates §° while ¢ denotes the
permutation tensor of the undeformed midsurface. As usual we define covariant components of the metric tensor
Gas = aq* as With determinant g=|q.,s|, and of the curvature tensor bys=daq,s°n.

Let u denote the displacement field mapping each point of M into a point on the deformed shell midsurface M.
Likewise, with M we associate a position vector F=r + i, base vectors @,=F,, a unit normal vector 7=5" g, X

T,/2, metric and curvature tensor components Gqs and bgs, respectively. Then we have!V-1

o= ha at+ B TS @ W ove el (1 .a)
TUT= g @O TUR oo e o e s (1-b)
laB:aa8+HaB_waﬁ .............................................................................................................. (I‘C)
gzag_‘_ualﬂ_bgw ................................................................................................................. (].d)
gasz%(ua'a+uﬁ]a)_baa ) R E LR T T PO P PP S PP TE P PP PR P P (1-e)
¢a=w,a+bé Ta “"ree e e e L e (lf)
waﬁ——_%(uﬁla_ualﬁ) .............................................................................................................. 1-g)
a s A ‘
na= /E £ sy By Lh e e (1-h)
1 /ja .
=517 €% gy L Ll e e (1-1)

U= Uq QO QRIS +# v e e e ( 2 )
and §¢ denotes Kronecker’s delta and ( )|, the surface covariant differentiation at M. The displacement vector at

an arbitrary point of the shell with distance ¢ from the midsurface is presented by

V—u+§ﬂ ................................................................................................................................. (3)
where
ﬂzn—n ................................................................................................................................... (4)

The boundary contour C of M is defined by the equations §%= §%(S), in which § is the length parameter along C.
With each point M of C we associate the unit tangent vector f=r, where ( ), denotes d( )/dS, and the
outward unit normal vector y=¢Xn. For the orthonormal triad v, ¢ and n, we have the following systems of

differential formulae :

v 0 nwo T v
t =| —x 0 o B ] e ( 5 )
nis T O 0 n

where g, is a normal curvature, 7, a geodesic torsion and x, a geodesic curvature of the surface boundary contour C.

For the later convienience, we decompose the vector g with respect to the orthonormal triad v, ¢ and n

ﬁzﬂfl/‘*“ﬂ’ft-l"ﬂ*n .................................................................................................................. (6)
Within the nonlinear theory of shells under the Kirchhoff-Love hypotheses, the shell deformation can be

described by the surface strain tensor y,, and the tensor of change of curvature x,, defined by

nH:%(au.Eﬁ_aa.aB) .............................................................................................................. (743)

Kas = — (T TE— e~ JL) *eernrresemeetes ettt h e (7-b)

Substituting Egqs. (1) into Egs. (7) yields
71“3:%.(12 lw+¢a¢5—aaﬁ) ........................................................................................................ (8-a)

an=—[1Baln+ Bro ) F Ta (I3 ] 5= B Ba)— Bapl--reererommemmeeeseiie i (8-b)

In general, y,s are quadratic polynomials in u,, w and their derivatives, while x,, are nonrational functions of

those variables since they contain an invariant v/a/@, where!¥
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E/a=1+27g+2(7g 72_7g 72) .................................................................................................. (9)

In the existing literature, based on the small strain assumptions, various variants of approximate strain-
displacement relations have been introduced. With the use of an approximation v/a;@=1—y2, the tensor of change
of curvature becomes a polynomial of fifth degree in displacements u,, w and their surface derivatives, Because of
complex form of x,,, Pietraszkiewicz and Szwabowicz? have introduced the modified tensor of change of curvature,

which is a third degree polynomial in u,, w and their derivatives, defined as

Zaﬂ=‘<\/‘§:5aa“baﬁ)+ B e r e e e ettt (10)

where the simmilar expression has appeared in 14).

In this work, the variations of displacement vectors are used effectively instead of those of displacement
components. The advantage of the usage of such variations is that the variations of y,, and x5 in terms of the
displacement vector take the more simple form, as shown in Egs. (11), than those in terms of the displacement
components and that computational efforts for deriving the shell equations are significantly reduced. The variation
of the displacement vector has been also introduced in 8), however the variation of derivatives of displacement
vectors in the outward normal direction could not have been eliminated through integration by parts along the
boundary C. As a result appropriate boundary conditions have not been obtained in 8).

The variations of the surface strain tensor and the tensor of change of curvature in terms of the displacement

vector are obtained from Egs. (7) as

& Yan =é(5u,a'6,s+ﬁa-8u,g) ..................................................................................................... (113)

b\kanz”[(&u,a)ls'—au Yaas é‘u,l]'i ............................................................................................ (11b)
where'?

%a/s:)’,\alﬁ+}’mla‘7ms1/\ ........................................................................................................... (12)

These relations are obviously the function of y and are linear in du.
3. DEFORMATION OF SHELL BOUNDARY

During the shell deformation under the Kirchhoff-Loove hypotheses, the orthonormal triad y, ¢ and n is

transformed into an orthogonal triad @,, @, and 7, defined by

Ve = Yas L¢ A T L LT T P (13‘d)

According to the polar decomposition theorem!~ the deformation near a particle can be decomposed into a rigid-
body translation, a pure strain along principal directions of strain and a rigid-body rotation of the principal
directions. The directions defined by vy and # do not coincide, in general, with the principal directions of strain at
M € C. During the pure strain the principal directions are only stretched without rotation, while the vectors y and
t not only change their lengths but, in general, yield rotations, Accordingly the total rotation vector @, of the
orthonormal vectors v, t and n is composed of the finite rigid-body rotation vector Q and the finite rotation vector
@, of the boundary caused by the pure strain. In the Lagrangian description, the transformation of y, ¢ and n into
a,, a, and T consists of extension by the factor @, which causes no extention in n, and the two successive
rotations ; first through @, then through Q. The relationships of the vectors y, ¢ and n, and the vectors @,, @

and 7 are written by" ™%,

EV=EZ[V+Q¢XV+Q;X(QLXV)/ZCOSZwt/2] .................................. R P IERERES ( 14.a)
azzal[t_,_glx t+QlX(QlX t)/2COSz wl/Z} ............................................................................... (14.b)
hﬁ‘:[n+QLXR+QgX(Q5Xn)/ZCOsz a)z/Z] ................................................................................... (14(1)
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where
SII @rm [ ]+ rr e e (15)
From Egs. (14) we have
o T T R T T ST P P (16-a)
Do L YT S L O PO PSR (16-b)
D =T b f o peee e e e e e e (16-¢)
where the unit vectors 7 and ¢ are defined as
BT TN A TR P PN (17 a)
BT Ty v e te et e e e e (17-b)

These relations will be used in evaluating the external virtual work.
4. INTERNAL VIRTUAL WORK

Let the shell be in equilibrium under the external surface and boundary loads, the directions of which are
assumed to remain constant during deformation. For any additional virtual displacement vector Su=¢u®a,+down
subject to geometric constraints, the principle of virtual work states that the internal virtual work IVW, performed
by the internal stress and couple resultant tensors on variations of corresponding strain measures, should be equal
to the external virtual work EVW  performed on variations of appropriate displacemental variables by the external
surface and boundary loads.

Under the Kirchhoff-Love hypotheses, the Lagrangian internal virtual work can be put in the form?- -0

IVW:ffM(N“b‘ha*i”M"‘s&xaﬁ)dA ............................................................................................. (18)

where N® and M® denote components of the symmetric (2nd Piola-Kirchhoff type) internal stress and couple

resultant tensors. The introduction of Eqgs. (11) into Eq. (18) yields

1vW == [ [N @) s+ (M2 o W M B ) b dA+ [N G+ B o M T 2100

'3udS—[M“tﬁ Vaﬁ’&t‘sds—/M‘wuaV,gﬁ'é‘u,,dS ........................................................... (19)

Because of variations of derivatives of the displacement vector with respect to the outward normal direction
corresponding to the underlined term in Eq. (19)., the internal virtual work could not have been expressed in terms
of the variations of four appropriate variables. In this paper, it is shown after some transformation discussed later
that the internal virtual work is represented in terms of the variations of four independent variables,

Consider the derivatives of the position vector after deformation with respect to the outward normal direction.
Using the definition n=¢" g, X @, /2 and observing that”

W™ Vg T B Tog e erer e e s e e b (20)

we can write the normal vector after deformation in the form

where

31: e P (23)

From Eq. (22) we have

_ b 1 [G_
r"’_‘(ﬁ Fot @V F7 TR R E R R P POE TP R P PP P (24)

With the use of Eq. (24) and the condition of orthogonality of the vectors @,, @, and 7, the inner product indicated
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by the underline in Eq. (19) is presented by

T du,=n- 57.1/:'(%% - 3,‘.8_.%:,\/%—.7. ST v vvvner e ar e e a e e e e ettt - (25)

With the aid of the displacement veccor at the boundary
W= Uy Wb Uy B QIR -+ e eee e e e e e L (26)
the tangent vector after deformation is expressed by

D= Co ¥ Co b G e e e e (27)
where

Cv.:um_,_ T U K g " o e et e L e (28'3)

Com 1A Wb H Uy G W v re e e e s e e (28.b)

C:w‘{}_ Gy Uy Ty Wy 1t r et e e L (28'(5)

From the definition 7= ¢ X7 and Eq. (27), we can express the inner product 3+ §7 in the form

7'5ﬁ=dué\ﬂf+dtb\ﬂf+d5\ﬂ* ...................................................................................................... (29)
where

Byl Ce (LA BX)— CREN Ty cveveeeermme e (30-a)

dzZ{Cﬂf"Cu(l‘f'ﬂ*)}/Et ..................................................................................................... (30[,)

B0y BEm CofBE)) Ty woevreereermeeee e et (30-¢)
It should be noted that the variations §8¥ and §8* are dependent variables, which may be experssed in terms of fu
and 68%.

Since

BeBmmmm QI B eeee et 31
we have

(ﬂ:)z_*_(ﬂ;t)z_*‘(ﬂ*)z: _,213* .......................................................................................................... (32)
Forming the variation of Eq. (32) we obtain, after a simple transformation,

BB* == — (B SR A BE SBEN/ (LA B - veermmeemem et (33)
On the other hand, the variation §8} is written by

é\ﬂ?‘:sﬁ.t ........................................................................................................................... (34a)

= 0U s Cy OB —(Cr—1) GBF — COB¥ - omvvermrre L L T T (34-b)

Substituting Eq. (33) into Eq. (34:-b) we obtain for the variation 58} the following relation :

BB i QU Sy O e ere e et (35)
where

fz:"'(l +,8*)/ic,(1+,8*)—cﬂﬂ .................................................................................................. (36‘3)

fu:{cﬂt_Cy(l,*_ﬂ*)}/lcl(l_{,_ﬂ*)_ Cﬂt*[ ................................................................................... (36b)
Introducing Eq. (35) into Eq. (33) leads to

5ﬂ*= geR-Ous+ g, 319’3 ............................................................................................................... (37)
where

g= —fi ;k/(l+ﬂ*) ...............................................

9v=—B5+ £, 88)/(1+5%)
From Egs. (29), (35) and (37) the inner product v+ 87 can be expressed in terms of the variations du ¢ and §4%

as
‘i-é‘izh,i-&u,ﬁhﬁﬂﬁ ............................................................................................................. (39)
where
Bum= e fiob Qe Gy woveeeeeeeeem e et (40-a)
By oyt e fyb Qe Gy e eeeeneeeeoee oot s e (40-b)

Utilizing Eqs. (25) and (39), the internal virtual work can be rewritten in the form
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1vw=— [ [N® G| s +(MPT* yoas D)+ (M) s |- 5w 4

+[’Nmas+(Mwﬁ)|3+Mwam )')u(aih/a'é\u dsS

+f[M Vel + ( ~he t\/—%‘)vﬂﬁls'é\uds-kfcM“"uaug_[hvﬁﬁ*dS+ZR* Sty (41)

where
o f 1 /@ _b _
R*—M"‘sua{ug (hti _(_1___?53)_.“]" ..................................................................................... (42-a)
RE=R* (S, 0)—R* (Sp0) rerreerremmmmsmrmmii B (42-b)

and M,, k=1,2, -, K, are corner points of the boundary contour C and S, denotes the coordinate corresponding to

the corner points M.

It should be emphasized that the internal virtual work can be expressed in terms of the independent variations du

and §@% without using small strain assumptions,
5. EXTERNAL VIRTUAL WORK

When the shell is subject to the surface force p=p®a,+pn. the boundary force F=F,v+F,¢+Fn and the

boundary couple K = —K,v+K, t+Kn. the external virtual work are written in the form" ?-1

EVW:ffMp.b\u dA+[(ﬁ'6u+w)dS ......... BRI (43)

Consider the inner product of v, £ and n, and §Q, in order to express the underlined term in Eq. (43) in terms of
the variations su and §8%. From Eqgs. (16), (35) and (37), and the condition of orthogonality of the vectors v, T

and 77, we obtain the following results :

e OQm b 8 (F o m—Ti £)== Gy Dlg Gy e weermeeermmesom e (44-a)
t-69c=2S(R'V*Fn):qt'b‘u‘s-*-qe 3‘3?; ................................................................................... (44-b)
n-59;=-12~b‘(?'t—?-u)=q-6u,s+q8/9’5 ................................................................................... -+ (44-¢)

where
Qo= Qh b QR B @l Reeeeeeeme e s (45-a)
Qi G vk Q@ B QR e iederee e (45-b)
Q= QF b QF B Qoo 45-¢)
q.:=(@:—c, fuotc )/ DTy v ne e e e e e (45.(1)
Qo€ Gy G2 Ty eerereeemmme e (45-)
G (€ Cof Bam fo T Ug)/2 werereeesss et 45-g)
T O Bl fu T B2+ e (45-h)

B (1T €2/ @l [y M)/ Qv vmvmrerese s oottt (45-1)
qwz{._ cy fin® v /a—p¥/ At culcy BF— CoB¥V Y/ mrvmmeerres e (45-3)
gh=l—c, fin® ta/ T+ Y/t c.(cy BE—c:BY)/ adl/2
gk=i—c, fin/a:+c (CuBE— CoBX) QU2 oo
=[—@2+8%at—{cBE—c,(2+B8%c,—al cv g n® Vel /283 rreree e e (45-m)
q?‘:[—fCﬂf‘Cu(Z-f-/S’*iCc-(l: Cy Ge MO Bl /2@ wvrrrrereressees oot (45-n)
=[g¥ A==y (2HBHNC— Cy Gr M QI 2 @ vererrerer et (45-0)
and the following releations are introduced :
(@X B) =B X €)r @T (X @)e Brerereerermerss oot (46-a)
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(@aXb)(eXd)=(a e) (Bod)—(a-d) (D) L e e (46-b)
Substituting Eqs. (44) into Eq. (43) and intergrating by parts lead to

EVW=ffp-é‘u dA+f(ﬁ’*'~b\u+M*8;9’5)dS+21_2§"5u, ................................................................. (47)

M C1 i

where

F*=F~(K,g)st+(K.q.)s—(Ka)s

BE*= Ky o Ry Gyt K o reeeemeem ettt

R*=K,q—K, Gy K oo et

B R¥(S,40)— RH(S,m0) -+ vvrrereemertoestoms e

and C, is the part of C on which at least one components of F'* or M* is prescribed, while M;, j=1.2 - J. are
those corner points of C where at least one components of i%j“ is prescribed. Thus the external virtual work is
obtained with the help of the total finite rotation vector @, for the boundary, and expressed in terms of the

variations of gy and §8%.

6. LAGRANGIAN SHELL EQUATIONS

Since the internal and external virtual works have been expressed in terms of the variations §y and 55%, the

Lagrangian equilibrium equations are obtained in the form

Q*=M"a+M™ T Yax

The associated static boundary conditions take the form

FR=F% and  MH=[M O () cvrerrvrremmmeemsr oottt (51-a)
RYSRY at @aCh M;E Gy w-vvvererrerenesmetimtet ettt sttt (51-b)
where
be 1 @\
* o s s Ly o4, (28 el L Y 9.
F*=T"y,+| M v taton (5= he a)}n]@ (52-a)
% ppas e .
M*=M* v, vs a2V a hy (52-b)
and the geometric boundary conditions are given by
Um0t AN BEmBE 0N Cyerrvreereeeee e (53-a)
u,=a; at each MG G grvre e e e e e e e (53 b)

those corner points of C, where at least one component of @, is prescribed.

To complete the shell theory, some two-dimensional constitutive equations should be given. For an elastic shell
there exists a strain energy function I per unit area of M. In the case of small strain everywhere and isotropic
material behavior it can be consistently approximated” !9 =2) = For a consistent first-approximation theory of

shells the strain energy function is given by the following quadratic expression :

h 2
x5 =§H0ﬂ/\u <7aﬂ %#.4_%1'2, Xas km) .................................................................................................... (54)
.where
Hmuzé(ili;), (a"" 2P g am_i_,i?,_’i; o a“‘) ............................................................................. (55)

and E denotes Young's modulus, » Poisson's ratio and h the thickness of shells, With the strain energy function

(54), we obtain the constitutive equations as follows :
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Nﬂﬁz,gié O oy e (56'3)
3
M= gf;,, =_1@2_ FI OB g m e (56'1))
a

For a consistent second-approximation theory of shells!®~? it has been shown that the two-dimensional equations
including the effect of bending terms cannot be constructed correctly within the framework of the Kirchhoff-Love
hypotheses. However, comparison of eigenvalues of the cylindrical shell equations® indicates that the difference
between the numerical results of the consistent second-approximation theory including the effects of the normal
stress and strain, and those of the second-approximation theory derived under the Kirchhoff-Love hypotheses is
negligiblly small. Thus the second-approximation theory under the Kirchhoff-Love hypotheses may be applicable to
an analysis of shell structures without significant error. In the case of a second-approximation theory under the

Kirchhoff-Love hypotheses, a strain energy function X* for an isotropic elastic shell takes the form®

h hz 2 . 3 .
Z*:_Z, H e (Yas 7M+T2_ Xas x/\u_% Yoo bE xw>+;"w2 H OO g sy oo (57)
where
E 4y
aBAM A pLeu A o BiL au peR C e R I M as pAu @B AAMYL e s
Hf 2(l_h/)&(a b+ b* a )+2(a} b+ b a )+1_V(a b+ b ™)} (58)
The constitutive equations for a second-approximation theory are obtained by
o OZ e .
" OYas (59-2)
8 BT .
M - ax‘m (59 b)

It is rioted that force and couple stress resultants in a second-approximation theory remain to be symmetric.
7. DISCUSSION AND CONCLUSIONS

It is interesting to compare the present results with the existing ones obtained from the Lagrangian formulation,
When Eq. (49) is expressed by components in the bases a, and n, the following equilibrium equations in the

component form are obtained :
(18 T*+n® Qﬂ)[B — b8 (p T*4 ’ILQ‘S)‘!" DI 4 (60'3)
baa(lg Tzs+naQﬁ)+(¢x T""+nQ")|s+p=0 ................................................................................ (60b)

These equations coincide exactly with those obtained by Pietraszkiewicz?-!?, In 8), the modified tensor of change
of curvature, in which the products of second fundamental tensors and surface strain tensors are contained as
additional terms, has been used. However, it is easily verified that when the additional terms are neglected the
resulting equilibrium equations agree with the present ones. The equilibrium equations in 9), however, differ
significantly from the present equations since the modified tensor of change of curvature has been introduced in 9).
In view of the fact that the present equilibrium equations are derived without using any approximation, they will be
exact in the range of two-dimensional theory under the Kirchhoff-Love hypotheses.

Consider the boundary conditions which consist of four equations both for static and geometric boundary
conditions. The static boundary conditions of forces in the component form with respect to the reference triad of the
vectors y, # and n, and the static boundary condition of moment are represented by

(T 1% va+ Q° n* va+ Tns n*— Tn bl £ :

=1‘:'V+Il,s"%zlz+t:13 ............................................................................................................. (61-a)

(T 1% vs+ Q® 1% va+ Tns n*— T bE 1*)1s

Byt Dogb g i G Iy oeveeeeeeeese e (61-b)
T% 8, u,,+Q"nva+Tn,sn=l<:'+ls.s~—t:11+0:Iz ............................................................................. (61-¢)
My ve a% /% B Ry Qo Ry Qb K Qeeeseesoee e (61-d)
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where
b 1 /3
Tn=M@Va{tﬁ+Vg (.&é_hta\/;;)} ......................................................................................... (623)
L=—K, t+K. g5 —K q’,f ........................ (62-b)
L= Ky @l Ky ql— K Qe o eeremor e oo et (62-¢)
Izz_kyqrn+1€! q;‘n_K’ G e (62-d)

As the geometric boundary conditions, the components of the displacement vector y and the parameter LY are
prescribed on the shell boundary C,. The parameter B3 is the nonlinear one with respect to displacements and their

derivatives represented by

ﬁ;l;z /% e"ﬁe,w Ve b lﬁ ...................................................... R PP P PP T S PP P TR PR P RN ( 63)

In 8 ), the appropriate geometric boundary conditions have not been obtained since the term Su, has not been
expressed in terms of the variations of the displacement vector and the fourth parameter which represents the
rotation at the boundary. And also the effects pertaining to the term du, have not been included in the static
boundary conditions. Pietraszkiewicz and Szwabowicz® have derived the geometric boundary conditions which agree
with the present equations (53). As a fourth boundary condition the parameter £¥ describing the finite rotation of
the shell boundary is prescribed. The static boundary conditions in 9), however, differ significantly from the
present ones. This discrepancy may be caused by the difference of the tensor of change of curvature, The modified
tensor of change of curvature, which is a third-degree polynomial in displacements and their derivatives, has been
introduced in 9), while the present paper employs the exact tensor of change of curvature, which is a nonrational
function of displacements and their derivatives,

The equilibrium equations and the associated boundary conditions obtained in this paper are derived for
unrestricted midsurface strains, displacements or rotations irrespective of the constitutive equations. As discussed
above the validity of the present results is confirmed by comparing them with the existing results, There exists very
little literature which has derived both the equilibrium equations and the boundary conditions consistent with a
Lagrangian nonlinear theory of shells undergoing unrestricted rotations without using small strain assumptions, The
present paper has succeeded first to derive the consistent Lagrangian equilibrium equations and the appropriate

static and geometric boundary conditions of shells without restriction to small strains.
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