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HOW MUCH CONTRIBUTION DOES THE SHEAR
DEFORMATION HAVE IN A BEAM THEORY ?

By Tetsuo IWAK UMA * and Shigeru K URANISHI**

A beam theory including the effect of shear deformation is formulated in finite
deformation. The governing equations are organized in terms of two non-dimensional

" parameters, one of which is the slenderness ratio. In order to quantify the contribution
of shear, the elastic and inelastic buckling of a simple beam is analysed, and results are
examined with respect to those two parameters. The significant reduction of critical
stresses is observed for shorter columns, and the range of the slenderness ratio is
obtained, in which the difference between this theory and the Bernoulli-Euler beam
theory becomes prominent. Moreover, judging from the fact that shorter columns buckle
inelastically, this theory becomes more important for the inelastic analyses of such deep
beams,

1. INTRODUCTION

In small deformation; a beam theory including shear deformation is known as the Timoshenko beam theory”. This
theory is derived by the relaxation of the Bernoulli-Euler hypothesis which assumes that the cross—section remains
planar and normal to the axis of a beam all through the deformation. The significance of this shear component
becomes eminent especially for rather deep beams and for the high-frequency or impulsive response of beams? .
These are natural consequences, because the Bernoulli-Euler assumption is the result from the fact that the shear
component turns out negligible in the two-dimensional, elastic analyses of slender bodies. Therefore, the shorter
the slender body is, the more contribution the shear deformation has in its mechanical behavior. This suggests the
existence of some relationship between the effect of shear and the slenderness ratio. And thus, the beam theory
needs to be rearranged in terms of the slenderness ratio and/or other physical parameters. ‘

To this end, a beam theory which corresponds to the Timoshenko beam theory will be formulated in finite
deformation. Such a beam theory was formulated, for example, by Reissner? ¥ Ziegler”, Sheinman® and Taweep
et al. . However it was not intended to clarify the differences between these theories and the Bernoulli-Euler beam
theory. In this report, the main objective is to make these differences clear in terms of non-dimensional
parameters, and, furthermore, some discussion on the constitutive relations and their approximations will be given
as well. The governing equations are derived by the commonly used method with the aid of the principle of virtual
work? | and turn out identical to those by Reissner? except the constitutive law. In terms of stress resultants and
their corresponding “generalized” strains, some discussion on the constitutive law is also found in connection with
the buckling problem in Refs. 4) and 5) .

Non-dimensionalization of the governing equations automatically yields two physical parameters; one of which is
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the slenderness ratio, and another is directly associated with the effects of shear. Since the instability of one beam
member can be examined analytically, the buckling of a simply supported beam will be solved in order to find this

effect, and results will be compared with those presented in Ref. 9).
2. GENERAL FORMULATION

Since the following formulation has been studied in detail elsewhere®. we here enumerate only the necessary
governing equations and other relations,

Consider a spacially fixed, rectangular Cartesian coordinate system with unit base vectors, i, (j=1.2.3), and
write three axes by the x-, y- and z-axis for convenience, Let x-axis coincide with the axis of a straight beam in
the reference configuration, and assume that the deformation occurs in the x— y-plane, Let X and Y denote the x-
and y-component of the position vector in the reference state. As is shown in Fig, 1, if the cross-section remains

planar but its normal, n, and the axis of a beam make an angle,
Reference state

A{X), due to shear deformation, and if the cross-section does not

change its shape and area, then the displacement field can be given by iy a0
u (X, Y)=u(X)— Y sin A(X), us(X, Y)=0, l—" e
U (X, Y)=0 (X)+ Y]cos AX)—1], -orrorrmmmmmmremnnnenns (1) gxY)
tan (A+A)=v"/(1+u),

where 1 (X) and v (X) are the displacement components of a parti-

Current configuration
cle on the beam axis, in the x- and y- direction, and A(X) is the

rotation of the cross-section around z—axis ; and prime indicates

n
the differentiation with respect to X. MX)
n
Let g,(X,Y), (j=1,2), denote the unit convected base vector AX)

parallel to {; in the reference configuration, and G, (X, Y) the cor- GXXY) G(XY?(X'Y)
2 KA

responding base vector in the current state. Since Green's strain
tensor, E;;(X,Y), can be defined by E,,=(G:'G,—g:-9,)/2, and Y

since Gi=(§jt+ Ujy )gj‘ the non-zero components of Eij associated Fig.l Definitions of kinematic quantities cmis
a unit normal to the cross-section ; A(X)
is a rotation of the cross-section ; A(X)

with the displacement field, (1), are obtained as

2E. (X, Y)=g(X, Y)—1, 2E. (X, Y)=y 7, (X)sin A, - (2) and ¢(X,Y) are the measures of shear
deformation,
where
9o (X)=1G (X, 0]’ =0+ u)+{),
g(X, Y)=1G, (X, Y)|2=EJ§;COS A—Yx (X)}z+(\/g—‘fsin B, e (3)
x(X)=X,

In (3), g(X,Y) is square of the stretch of a fiber parallel to x-axis in the reference state.

Since the Green strain is merely a kinematic function, it is necessary to define the corresponding physical
quantities in conjunction with the constitutive relation. The most straightforward definitions of such quantities may
be the extension of a fiber which is parallel to the x-axis in the reference state, and the change of the angle
between two fibers, which are orthogonal to each other in the reference configuration, Let e denote the extension

of such a fiber that initially lies parallel to the x-axis. Then from (3)

e=]G (X, V) —1=vg —1=[1+4 e (X)= Yr (X417 (XFP/2m1, coovrrmmreems (4)
where
8()():@&)5/1_1, 7(X)=2E,z=\/§:sin/1_ ............................................................................. (5)

Physically, ¢(X) is the component of the extension of an axis, normal to the cross-section, and y (X) is its in-plane
component. It must be noted that neither E,, nor e are linear functions of Y because of shear. On the other hand,
in the Bernoulli-Euler beam, E,, has not, but e has the linear distribution with respect to Y.

Since !7[/2¥¢ (X, Y) is the angle between G, and @, in the current state (see Fig.1), ¢ can be a candidate for

the physical measure of shear deformation. As @, remains unit on the cross-section, from (2) and (3), ¢ is
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given by

cos ¢ (X, Y)=(1+e=Yu)/VG, SIN¢(X, Y)my/y/g. +rrrerereemmiessomiiiiii (6)
Note that E;, in (2) or ¥ in(5) is a function of X only ; i.e. E,, is uniform in the cross-section, but that ¢ in
(6)is not,

Using the Kirchhoff stress tensor, S$¥, and the Green strain tensor, we write the internal virtual work for a

beam of the length [, as

z
_/;/;(S” SE 28 BE1)AQ d.X, crorrverereerreerenemn sttt (7)

where fdda denotes the integration over the cross-section, Substitution of (2) into (7) yields

Ilﬁaﬁe+t&7)da X, e (8)

where ¢ is the normal stress in G,~direction and 7 is the shear stress in G,-direction on the cross-section, defined
by ; ;

ozﬁsll’ I G e (9)
Then the principle of virtual work gives the equilibrium equations in 0< X< [, as

IN (X) cos A— V(X) sin A + p(X)=0,

IN(X)sin A+ V(X)cos AF+ q(X)=0, ............................................................................................. (10)

M (X)+4/9: IV(X)cos A—N(X)sin Al+m(X)=0,

and the boundary conditions at X=0 and [ as
u=7 or (NcosA—Vsin)n=N,
DT 0T (INSIN AT V GOS A) Mm T, weeerreeemreesime et im st (11)
A=A or Mn=M,

where N(X) and V(X) are the stress resultants normal to G, and in G,~direction, and M(X) is the bending moment

around z-axis produced by the normal component of ¢ on the cross-section, They are defined by
NX)=[ s cos ¢ da, MX)= [ 5cos ¢(=Vida, V(X)=[(r+osin glda, --woommmessomrssmsson (12)
A A A

where the second term in the integrand of V is the shear component of the normal stress, which will play an
important role in the buckling problem later on. In (10), p(X) and g(X) are the distributed load per unit reference
length in the x-and y-direction, and m(X) is the distributed moment per unit initial length around z-axis. In (11),
i, 7 and A are the corresponding displacement components specified on the boundary, and N, Vand ‘M are the
axial, and shear forces in x- and y-direction, and the moment around z-axis applied on the boundary, respectively.
n denotes the x-component of the outer normal vector of the cross-section on the boundary in the reference
configuration, and thus is given by

R=T At X =0, —1 @t Xm0, crereereeeeri (13)

The remaining portion of the governing equations is the most controversial part ; i.e. constitutive relations.
Since the components of the stress and strain tensors are not usually measured in the experiments, it might be
stringent to use their physical components discussed above. But the form of the internal virtual work, (8), sug-
gests reasonable pairs for the constitutive law, which are ¢ and e, and r and y. Therefore, from the theoretical
viewpoint, it is pertinent that each pair of those is linked by some physically meaningful functionals, even in
plasticity.

In the case of elasticity, we employ the simplest form as

GTE@, TIE Gy, -ormreererr e e s (14)
where E and G are the material coefficients which are not necessarily constant but may depend on state variables.
As is pointed out, although y includes the effect of shear deformation, it is merely the in-plane component of the
axial extension, but ¢ given in (6) purely represents the shear deformation, Therefore it may not be proper to

relate ¥ to 7 directly. But, since there exists ambiguity or arbitrariness to define the shearing part of constitutive
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relations by 7 and ¢, (14)2 can be accepted as an expedient formula from a purely mathematical point of view,
As for linear elasticity, E and G correspond to Young's modulus and shear modulus, which are constant. But,
even in such a case, the stress resultants are not linear functions of ¢, x and y, because of the nonlinearity due to

shear deformation in the definition of e, (4).

3. BERNOULLI-EULER BEAM

Neglect of shear deformation ; i. e, setting ¢ (X, Y) and A (X) zero in the governing equations above, leads to the

Bernoulli-Euler beam theory. If we use the constitutive law (14): in the linear elasticity, with a constant E, then

we have
N=EAE+EBZ, M=EB5+EIK, ............................................................................................. (15)
where A is a cross-sectional area and ’
= [(— 2 7 T SO RPRR
B=[(~Y)da, I=[Y*da, (16)

In this case, the total potential associated with the virtual work can be determined as
0 l J— J— J—
¢o=1/2[ (EAe*+2EBex+ EIX* )dX_/‘; (Put+qu+mAdX —(Nu+ Vot M N oo 17

The inextensible version of the Bernoulli-Euler beam is known as an elastica®, which assumes the inextensibility
of the beam axis. This condition can be expressed in the present theory as ,/g, —1=0. Therefore, the governing

equations with this condition can be derived from the stationary condition of a functional

W0=¢0+[Z T(JgT-I)dX, ........................................................................................................ (18)

where T is introduced as a Lagrange’s multiplier but can be physically interpreted as an axial reaction force due to

the constraint produced by inextensibility.
4. APPROXIMATION OR ALTERNATIVE THEORY

A rigorous nonlinear theory of a beam with shear has been expressed completely by the governing equations from
(1) through (14) in elasticity. They form a nonlinear boundary-value problem, but the constitutive relation is so
highly nonlinear that it will be a formidable task to solve for general boundary conditions. In this section, an
attempt will be made to approximate this theory by some reasonable assumption on the constitutive law. Only the
uniform cross-section will be considered.

(1) Approximation

Since A appears because of shear, A or 7 is in the order of strain. And from the form of (15), ¢ and x are also
in the same order as strain. Therefore if small sirain is assumed, then from (4) and (6), the first-order
approximation can be expressed as

e=¢g— yx’ CcoS ¢—:1’ sin ¢: 2R R P T PP P T PP PR PP PP PRPP PP P PE PR PP (19)

Substituting (14) and (19) into (12) and taking only linear terms for ¢, x and 7y, we arrive at the
approximated constitutive law for the stress resultants as

N=FEAec+EBx, V"—“’GA}’, MITEBe+EIx, «woooreeerimreesee oottt (20)
in linear elasticity, where A, B and I are defined in the previous section,

In order to non-dimensionalize the governing equations, the following notation is introduced ;

§=X/l, (‘)zd/dé-_ ................................................................................................................ (21)
Choose x-axis such that B== 0. Introduction of the “thickness parameter”!®; i e. the inverse of the slenderness

ratio ; #, and of a new parameter, o, defined by

B=1o/l, TE=I/A, @=E /G, oot 22)
results in the following non-dimensional field equations in 0<<¢<1;

él=“ [*67) é2= gz

2z =1+ 01—y ly.— ¢,

24=(1 +/32 y;)cos Zs"aﬁz Ys sin 25— 1’ ......................................................................................... (23)
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2:=(1+8" y,)sin z,+ ef* ¥, COS Zs,

Ze=2s,
where
2, =1*(N cos A\— V sin )/(EI), z,=1*(N sin A+ V cos N/(EI),
2=MINED, zi=u/l, 2s=0/1, Ze=A e (24)

== 2, COS Zst+ 2, Sin 25, ¥,=— 2, Sin 25+ 2, C0S 25,
a=pl/ED, ¢.=ql'/(ED), ¢;=ml/(EI),
and the boundary conditions are, at {=0 and ], as
Zy=Z4 O ZiN:=2Z,,
ZeImTs OT 2y Te™ By  corrrrtossesmsrs e s s doen e (25) ‘

Zs=Zs OF 23 Ns=2Zs,

where
Z,=NP/ED, Z,=VI/(ED), Z,=MI/(EI),
z.=1u/l, 2=/l Ee:—;\, ................................................................................ (26)

ne=1 at {=1, —1 at {=0.
The Bernoulli-Euler theory can be obtained as a limiting case as ¢ —( ; i.e. rigidity in shear, Therefore the
parameter, o, représents the factor of the contribution of shear, together with the thickness parameter, . And
the theory of an elastica is formally resumed as the further limiting case as §—0. The assumption of small strain is
adopted only in the constitutive relations here,

(2) Alternative Theory

Thus far the field equations, (23); have been introduced as an approximation of the complete theory formulated
in the second section. But these can be interpreted as an alternative theory based on another constitutive relation

different from (14). Substituting (4) into (8) and considering (6), we can express the internal virtual work as

[ll30005¢5(8— Yx)+(r+ o sin ¢)é‘7}da X, wrrrrre e (27)

If we specify the constitutive law in elasticity, from (27), as

o COS ¢:E(€—Yk Y, TG SIN Gm= Gy, e (28)
then (23) is no longer an approximation, but a rigorous field equation associated with the constitutive relations
(28), with constant E and G, which is employed by Taweep et al.”. Physically (28): relates the normal component
of the stress vector on the cross-section to the normal component of the extension. And (28) » relates the

G,-components of these two quantities.

5. ELASTIC BUCKLING OF A SIMPLE BEAM

The significance of shear is eévaluated by the analysis of the elastic buckling of a simply supported beam subjected
to the axial load. A fundamental solution before buckling is obtained as

U=— Py X/(EA), =0, AT, trrrerteretnm ittt (29)
for both theories discussed in the second and fourth section,

(1) Alternative Theory

First we examine the alternative theory derived in the previous section. From (23), ak linear boundary-value
problem for the increments of v and A, Av and A), from the fundamental solution, is obtained as

PAX + 2, 1+8% zo (a— 1) AN =0,

P aB? AN —(1— B 2, 1+ 8% 2o (e —IAA+HT1+ B 2, (@1 AD =0, crreereermsssrr (30)

with the boundary conditions at X=0 and [, as Ayp=0 and AX'=0, where the equations for Ay are independent of
those for Ay and AA. and thus are omitted here ; z,= z2P,/P¥, and P¥=rx® EI/I* which is the Euler load. (30)

with the boundary conditions forms an eigenvalue problem, and the minimum eigenvalue gives the lowest critical
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load, (z¢).,, as

(Po)er 1 j /T AR BE{Lm @)}, +vereererereemmemmeo ettt ettt (31)

P¥ T o2ntpl—a
which is identical to Eq. (2.67) at p. 143 in Ref.9), that includes the effects of both shear and extension* before

buckling. From (31), it is clear that the buckling does not occur for columns with the slenderness ratio, g,

smaller than 27, if shear deformation is neglected.
The corresponding load without the effect of extension before buckling can be obtained by setting £ zero with

keeping ¢f* in (31). It then follows that

(Po)er/ PE=(VTH AR @B% —1)/(277 Q8%), «++v-reerrrrreemeams et sttt (32)
which is again the identical result to that in Ref.9) (Eq. (2.59) at p. 135), and is considered by the authors to “be
more accurate” than Eq. (2.57) at p. 133, that is (36) below.

(2) Original Theory

The original theory derived in the second section is now examined. Here the increments of the stress resultants

are obtained directly from their integral forms as

AN= f (Ac)cos ¢ da— f o (Ag)sin ¢ da,
AM :l(AU)COS ¢(_ Y)da-‘j:a(Aqﬁ)Sin (115(w Y)da, ........................................................................ (33)

A Vzﬁmﬂgm)sm $+(4¢) o cos ¢lda,

where the condition that the cross-sectional area does not

20 ¢
change is used. Substituting the incremental form of (14) with
constant E and G, into the incremental field equations, we (Ber
¥
obtain the eigenvalue problem for Ap and AX, as R

PAN +2,(1—8° 21— zo 1+ o) AN =0, )

P oft AX—~(1—f 2 (=g zav=0, | P 15}
with the same boundary condition as before. From (34), the
characteristic equation for (P,),, is

1= 21+ al(Po)er/ P¥=11— 7* B2 (Po)er/ P¥ ¥ (Po)er/ PE,

No shear;a=0
.......................................................... (35) Euler load

Similarly to (32), the critical load without extension effect is
given from (35) by
(Po)cr/Pg‘::(l + 7t a[gz)-l’ ................................... (36)

which is also derived in Ref. 9) (Eq. (2.57) at p.133) and is -
“more on the safe side” than (32) . Fig.2 shows the results
from (31), (32), (35) and (36) for ¢ =0 and 3 (values for q
will be discussed later on), The differences between (31) and slender-beam
(35), or (32) and (36) stem from the third term in the integ- approximation

rand of (33); which is neglected as a small term in the

with effects of
shear and extension

05 4
i

approximated theory, and which cannot be directly taken into

. 0 5 (g™ 10
account in the alternative theory. The second-order

approximation can be developed in order to include the Fig.2 Elastic critical loads of simply supported beam
by general theories, (35) and (36), and by
approximated theories, (31) and (32) ; the
The effect of extension of a beam axis enhances the critical “slender-beam approximation” neglects the

contribution from this term (see Appendix).

load that causes the dangerous estimate. On the other hand, extension before buckling.

* The terminology, “extension” is employed throughout this paper, although the beam axis is shortened in this particular
problem. This is simply because this effect stems from the difference between “extensible” and “inextensible” beam theories,
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the shear effect has the tendency to reduce the buckling load. e i |
(3) Critical Strain (Stress) with effects of
Although the differences from the Euler load in Fig. 2 seem con- shear and extension
siderable for beams with smaller slenderness ratio, it is necessary __ slender-beam
. . 050f - approximation
to know the corresponding critical strain (or stress ) to check '
whether the fundamental state is in the elastic state or not. The

critical strain, e, can be defined by (Py).,/(EA) and therefore

for= 7t 182 (Po)cr/P:. ............................................... (37)
Fig. 3 shows the critical strains from (31), (32)," (35) and (36). 025

The difference between those equations is not perceptible when

approximated theory

the slenderness ratio is larger than 57, while the tremendous re-
duction of the buckling strain is observed for shorter columns. At

any rate, the critical strain level is so high that the inelastic

analyses become necessary for the ordinary structural materials, 0 5 T 10
(g

6. INELASTIC BUCKLING

Fig.3 Corresponding critical ~axial strains of a
simply supported beam by general theories,

. (35) and (36), and by approximated
mate of the critical strain is expected. The governing equations in theories, (31) and (32).

Only the original theory is considered, because the safer esti-

the second section hold except the constitutive equation (14) .
Without the constitutive law, the fundamental solution for this stability problem of a simply supported beam can be
expressed as
u is indeterminate, v=0, A=0,
N=—P,, V=0, M=0,
but at least we can expect the linearity of u with respect to X, only for this kind of simple problem ; in other
words, e=q’ is constant. No matter what relation is employed for the inelastic part of the constitutive law, we can

calculate E,= P,/(A¢), once we know P, and e. This implies a formal relation between stress and strain as

GEEFLg £, +veeeeeenee e (39)
where E, is not constant but can be interpreted as a secant modulus. It must be, however, emphasized that (39) is
not generally a constitutive equation but merely a relation to describe the state. Acceptance of (39) allows the

expression as

e=u'=—P,/(Es A), Q;lzmzl_po/(EsA). ............................................................................ (40)
Similarly to (39), suppose that the incremental relations between stresses and strains are given by
AGT=EL A, AT= Gy, woreterser s st (41)

where E, and G, are the current tangent parameters. (41) may be a special form of the commonly used incremental
constitutive equations,

Then defining

EAzfAEz da, EBz./A‘E;(- Y)da, ElzlEz Y? da’ GA:[:G: A, e (42)
we obtain the incremental equations near the fundamental solution, (38) and (40) as

(EA Aw+EB AXY =0,

Py ANt Qo (1= Po Qo/ GAXEB At +ET AN Y F=0, woovssssssressssssisssitsssiessss oo (43)

AA= Q140"+ Q. (EB Au'+EI AXY/GAl,
with the same boundary condition as before,

If we accept the Shanley theory, then the minimum buckling load can be obtained by the tangent modulus theory in

which no unloading zone in the cross-section is assumed!V Since the stress state in the beam is uniform all over the

body, the integration in (42) can be carried out to obtain
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EA=E.A, EB=0, EI=E,I, GA=G: A,

when the x-axis is defined such that B= (. Similarly to the elastic case, (43) forms an eigenvalue problem and,
therefore, the buckling load is obtained from the following characteristic equation ;

1= 7" B* (u+ nal(Po)er/ P¥=E 11 — 2 B* 1t (Po)er/ P (Po)er/ PE,

where

sz/En U:G/G:, u=E/E,.

(46)

Once some explicit forms for & 5 and 4 are known, (45) gives the critical load, although &, 7, and y are
functions of stress or P, itself, in general. Therefore (45) is an implicit equation for the critical load. The
corresponding equation for elastic buckling, (35), can be retrieved by setting &, 7 and g unity in (45) .

For beams with the slenderness ratio larger than 27, the axis of a beam can be almost inextensible. Therefore,
neglecting 4 in (45), we obtain the approximate equation for the critical load in lieu of (45) as
(Po)cr/P:)":(f'F nt 7]‘7/?2)71-

47
The corresponding critical compressive stress, 0cr=(Py)er/ A, is then expressed by
Oer/ Oy=(Po)er/(PE XT), < et (48)
where g,=E¢, and ¢, are the tensile yield stress and strain, and
RSy J(TB). ettt (49)

Many phenomenological models are proposed to describe the material properties, but most of them are based on

the experimental observations, and the micromechanical behavior is not taken into account. In three dimensions,

however, Hutchinson has carried out the global estimate of the mechanical behavior of the polycrystalline metals on
the basis of the micromechanical approach'? Recently similar calculation has been done in two dimensions" . And it
has been observed in both reports that the change of G, is more gradual than that of E, in the numerical tensile test.
According to this numerical observation, one phenomenological model with only two parameters has been proposed
for rather ductile materials as

§=expln (o/0— 1], n=mlo/oy=1P+1, oo (50)

. Oy
for ¢/ov=1, and £=y=1 for ¢/0,<1. In (50), no Bauschinger o,
effect is considered. To be rigorous, o in (50) must be replaced

by its absolute value. But, since only compression appears in 1501

with the effect of
- extension

1
4
H
H
]
H
H
i
i
i
1]

this special buckling problem, the compressive stress is taken

. . . . . . | IR p—— slender -beam
positive in this section for convenience. With the aid of the \\ A I approximation

schematic definitions of material parameters in Fig. 4, from (46)
and (50), we can obtain

125
;z=ay[l+2{(8—1/17,)€Xp(7718)+1/7}; }/771]/03 """"""" (51)
for >0, where s=yolov—1.

g
Oy Ve=E /g 100k
10F
1/;1=E5/ E
T N .
° 05 < 10
X I
Fig.5 Inelastic critical stresses for a specific material
model, given by (50), with the yield strain,
0 50 100 &%, 150 ey=2%, with and without shear ; the “slender-

beam  approximation” without shear effect
coincides with the ordinary inelastic buckling
stress,

Fig.4 Schematic concept of material parameters for the
inelastic constitutive relation.
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In Ref. 13), a specific numerical calculation based on a special micromechanical model has determined that 7,=6.5
and that 7,=60. The form of (50) is originally defined as a general deformation-theory-type formula in Ref. 13), but
(50) itself is valid only for this kind of simple problems where the stress state is uniform and uniaxial. Otherwise,
o/ oy in the right-hand side of (50) must be replaced by some function that reflects the yield condition under the
general stress state ; e. g. J;.

As an illustration, using those parameters and relations, (50) and (51), we can calculate oer/ oy from its implicit
equations (45) and (48). Fig.5 shows such results for ¢=0 and 3, with rather large yield strain, &,=0.02.

In pratice, since the slender bodies considered as beams have A larger than 0.2, the precise equation as well as
its approximations predict more or less same critical stresses. While the eritical stresses evaluated with the effect
of shear are bounded for any 2, those without shear are not finite at 72=0" Moreover, no buckling is predicted for X
smaller than approximately 0.1, by the rigorous theory without shear, because of the extension effect before

buckling, as has been also observed in the elastic instability, Fig. 2.

7. DISCUSSIONS

(1) Shear Coefficient

A simple kinematics assumed ; i.e. the displacement field (1), follows from the assumption of the uniform
distribution of shear in the cross-section, (2), which violates the boundary condition on the lateral surfaces of a
beam where no traction exists unless the distributed load is applied on them. In order to compensate this
impropriety, the shear coefficient is introduced in small deformation', With this coefficient, we simply modify the
shearing rigidity, GA by GAK, where K is the shear coefficient that depends on both material properties ; i.e.
Poisson’s ratio, v, and the shape of the cross-section. This change, accordingly, requires the correction of the
definition of a, (22);, as

a=E/(GK). ........................................................................................................................... (52)
Although K is calculated in small deformation of an isotropic body, the same expression can be used here only to
find an approximate range for a. According to results in Ref. 14, for example, the circular cross-section has the
expression as K=6(1+)/(7+6v), and for rectangular cross-section, K=10(1-+)/(12+11v). If we consider E
and G as ordinary elastic constants, then, since E/G=2(1+v) and since 0<v<1/2, the range of ¢ is obtained as
follows ; 7/3<a<10/3, for circular cross—section ; 12/5< a<35/10, for rectangular cross-section, Therefore ¢=
3 is extensively used in the preceding examples.

(2) Constitutive Laws

As has been physically explained, (28) connects the stress vector to the extension. But, since r and (¢ sin ¢) are
completely different quantities on the cross-section in G,-direction, it is not a good idea to relate 7 to y, and
(¢ sin ¢) to y by the same coefficient, G. Note that the stress vector is not generally in G,-direction, while the
extension is in G,-direction. Because of this nori—coaxiality, it is not also recommended to use (28) with E and G
constant, :

In other words, (28) may be theoretically improved by the refinement as

0cos p=Fy(e— Ya), a8ingmEyy, TGy, o (53)
where E, and E, are not necessarily constant and E, corresponds to a normal component of Young’s modulus on the
cross-section, and E, to a tangential component. Then (53) and the second-order approximation of the original
theory, (A.2). are essentially equivalent. (53); and (53), represent a tension-compression law of a fiber which is
parallel to the x-axis in the reference configuration, and (53); expresses a shearing constitutive relation.

In Ref. 4), it has been also revealed that the different constitutive equations lead to the various predictions of the
critical buckling load. The author describes the “stress—strain” relation by that between the stress resultants and
their corresponding “generalized” strains of a beam. However we believe that the constitutive relation must be
discussed at the level of the stress and strain together with the definitions of stress resultants and “generalized

strains” as has been done in the present paper, because the material properties are essentially microscopic.
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As long as the slenderness ratio is very large, however, the discrepancies between those constitutive models are

negligible.
8. CONCLUDING REMARKS

Two theories based on two different constitutive models have been presented, where the second theory is formally
identical to a first-order approximation of the first one. A simple buckling problem is solved, and the effects of
shear as well as extension prior to buckling are examined. In the elastic buckling of a column, the original theory
predicts much smaller critical stresses in the range of small values of the slenderness ratio than the Bernoulli-Euler
beam theory. On the other hand, the alternative theory shows the same asymptotes as the classical buckling stress,
although there exists the definite reduction of the critical stresses. As long as the elastic buckling is concerned, a
beam with the slenderness ratio larger than 10 7 can be treated as a Bernoulli-Euler beam, because the difference
between theories becomes less than about 3% for such relatively longer beams.

The slenderness ratio, where these differences become eminent, are so small that, in practice, the inelastic
analyses are necessary. Using a phenomenological model which is based on the deformation-theory-type plasticity,
we have shown similar differences between those theories as the elastic case. A further approximation on the
extensibility of the axis of beams before buckling has been adopted to find the agreement with the pre-existing
solutions, and to examine them. It then follows that the original theory formulated in the second section yields the
most reasonable results from a theoretical point of view. The most interesting result is that the critical stress,
which used to be considered “more accurate” in Ref 9) ., is not obtained by the rigorous theory, but by its
approximation,

From a practical viewpoint, however, columns have the unavoidable imperfection to some extent, which produces
non-uniaxial stress state before the instability, and therefore the numerical calculation is required. But, in order
to utilize this theory with shear more effectively, it will be necessary to develop a more reasonable constitutive

mode] in such a general stress state,
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APPENDIX. SECOND-ORDER APPROXIMATION

As is clear from the results for elastic buckling, Fig 3, the second term in the integrand of the definition of
shear, (12)3, plays an important role for shorter beams, The alternative theory, discussed in section 4, absorbs
this term within the constitutive law, (28), and thus its contribution can not emerge explicitly. In the approximated
theory, however, this term can be taken into account within the assumption of small strain as follows,

Substitution of (19)z and (19)3 into (12)1 and (12): yields
N(X)T—'[a da, V(X):[rda+7£ada_ ....................................................................................................... (A. 1)

If the constitutive relation, (14), together with the approximation, (19)1, is substituted into (A.1), then the second term in (A.1)2
drops because it becomes the higher order term with respect to strain. But, before such manipulation, the direct substitution of
(A.1)1into (A.1)2 with (14) results in the following nonlinear expression for shear ;

W (GA+F Ny, coereeemse ettt e (A.2)
Apparently, (GA+ N) acts like an “effective” shearing rigidity which can be reduced by compression, and this is the reason for the
considerable difference in predicting buckling loads. Then the field equations for this approximation are expressed by the following
system of § nonlinear ordinary differential equations :

‘é‘: - qlv ‘é2=- q2,

Z=—18" yi {1+ a8 y) Ny — a5,

2= (187 1) COS Ze— B s (14 @B 4) 7 SIN Zg— 1, +reermsesmmmese ot (A.3)

2=+ y,)sin 25+ af’ 1, (1 +aB* 41)' COS 26,

2,=25,
in linear elasticity, where the uniform cross-section and B= () are assumed. The first-order approximation or the
alternative theory, (23), is obtained by the Taylor expansion of (1+ ¢8” )" and neglect of the higher order terms
with respect to q8?, provided B’ is very small.

(Recieved November 26, 1983)

113s



