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ACCURACY AND CONVERGENCE OF THE SEPARATION
OF RIGID BODY DISPLACEMENTS FOR PLANE
CURVED FRAMES

By Yoshiaki GOTO*, Akio HASEGAWA** and Fumio NISHINO***

The method with the separation of rigid body displacements is a powerful tool for the
finite displacement analysis of structures particularly with curved members, with
variable cross sections, and/or with inelastic behaviors. Nevertheless, its theoretical
equivalence to the solutions of the direct Lagrangian equations has not been examined so
far.

This paper presents the theoretical convergence and accuracy of the method, where
an original curved element of variable cress section is considered as well as an
approximate straight element of constant cross section,

1. INTRODUCTION

The method with the éepearation of rigid body displacements” ™, called here in acronym the SRBD method, isa
practical numerical procedure for the finite displacement analysis of structures, since it seems a very difficult task
directly to solve rather complicated and highly nonlinear governing equations in terms of the coordinate system fixed
in a space called here the direct Lagrangian method? 9. Nevertheless, its theoretical equivalence and convergence
to the solutions of the direct Lagrangian equations have only been examined for plane straight members® | although
numerical techniques are widely available for a variety of structures only to obtain plausible solutions without any
mathematical proof, Rather than for simple straight uniform members, the SRBD method appears to be a more
powerful tool for the analysis of structures with curved members, with variable cross sections, and/or with the
inelastic behaviors, because the member componentks have to be divided into small elements, whatever displacements
of concern are large or not. The separation of rigid body displacements can be applied for each of those divided
elements, effectively incorporating the nonlinearity which results from finite displacements;

Even if a finite element procedure is applied to solve the nonlinear direct Lagrangian differential equations® 7 for
curved members, without any limitation on the magnitude of displacements, it is prohibitively difficult to derive
the accurate stiffness equation® , compared with that for straight members, because of the difficulty to find a
simple adequate interpolation function,  as well as the high nonlinearity involved in the strain and displacement
relation”-® -9,

Therefore the SRBD method is often used effectively for the finite displacement analysis of curved members

particularly when displacement becomes large. In this method, a curved member possibly with variable cross section
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is usually approximated by the assemblage of straight elements with constant cross sections!®-1

For the above reasons, the SRBD method appears most appropriate for the analysis of structures composed of
curved members with variable cross sections, However its theoretical convergence and accuracy to the solutions of
the direct Lagrangian differential equations have not been examined so far, although limited studies are found for
the approximations only by straight elements with small displacements!?-*

This paper presents the theoretical convergence and accuracy of the SRBD method for the finite displacement
analysis of plane curved members, and generalizes the results for straight members® reported before. The direct
Lagrangian differential equations for arbitrarily curved members are presented, including the equation considered
most general and strict within the framework of the Bernoulli-Euler hypothesis and no change of cross sectional
shapes. Next, for the use of the SRBD method, the simplified local differential equations after the separation of
rigid body displacements are given, which consist of the equations not only for the original curved element but also
for the approximated straight element. It should be noted that the straight element has exclusively been used by
others for numerical computations of the SRBD method, but the curved element is also introduced for the first time
in this paper. The curved element seems not only to be more rigorous and general for the analysis of a curved
member, but also to be adequate to examine the theoretical basis for convergence and accuracy in contrast to that
for the straight element. Futhermore, from the view of numerical procedure, the curved element have a possibility
to exhibit more effective computations, so far as an adequate interpolation function is found.

The discrete forms of the governing differential equations in terms of forces and displacements at both ends of a
finite element are derived both for the direct Lagrangian and the SRBD methods by making use of the Taylor
expansions with respect to the element length, After transforming the discrete form obtained for the local equations
into the form in terms of the same coordinates as the direct Lagrangian equations, the convergence and accuracy for

the SRBD method are examined by comparing the coincidence of the coefficients of the derived power series? .

2. COORDINATES AND VARIABLES

Consider a curved member element subject to distributed external forces in addition to nodal forces as shown in
Fig. 1. Two reference coordinate systems are introduced, one is an orthogonal curvilinear coordinate system (n, s)
with the coordinate s along the centroidal axis* of a curved member at the initial configuration, and the other
exclusively used for the SRBD method is a local orthogonal curvilinear coordinate system (4, §) defined for a
curved element with the nodes of ; and -1 which moves with rigid body displacements of node ;.

As an approximation for a curved element, similar two coordinate systems are introduced for a straight element of
Fig. 2, as used in Reference® which are the Cartesian coordinate system (y, z) with the coordinate z along the

element centroidal axis at the initial configuration, and the local Cartesian coordinate system (9, 2) defined after

Original i
State

Deformed
State

d=vo intwois
~ A ~

S
d=vointwois

452834155, i oy
hatl \
d=vSiGWET, , Bl=zy4y
{a) Displacement Components {b) Force Components (a) Displacement Components {b) Force Components
Fig.1 Coordinate Systems of a Curved Beam Element : Fig.2 Coordinate Systems of a Straight Beam Element :
(a) and (b). (a) and (b).

* For a curved member, the centroidal axis taken as the origin of the coordinate 7 is defined as f’r,,/r* ndA==0, in which r, and
A

7 are the radii of curvature of the centroid and an arbitrary point of section respectively.
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the separation of rigid body displacements with the coordinate 2 tangential to the deformed axis at node i.

The displacement components of the centroidal axis of a member are given as shown in Fig. 1 with the positive
directions indicated, where the total displacements and rotation defined for the (n, s) coordinates are denoted by
(s, ‘s, @), and those with the separation of rigid body displacements defined for the (7, §) coordinates by (Do,
W, &).

Similarly shown in Fig. 2 are the displacements and rotation with the separation of rigid body displacements for a
straight element defined for the (§, 2) coordinates designated by (%5, s, &%).

Geometrical observations for displacements and rotations among the (n, s), (@, §) and (¢, %) components lead

to the following relations as

Dy =[T(¢rr— ¢J] Di=[ T3 NI Tl L+ T(a))] Dlpaysoeees e (1)
for a curved element, and :

DH::[T(¢£+1"‘ ¢z)} Dt“‘[ T(¢i+l)] [[I]—[T(ai)]] L+[T(¢i+1)] [T(ai)] btsﬂ """"""""""""""""""""""""" ( 2 )
for a straight element, in which

D=(ps, wo, @), D=(Do, the, @)y DT(DE, AB5, @°)wvereereseir e 3+ a~c)

tL-(O, Al, 0)’ Al= 2“’__.&“ .............................................................................................. (4 a, b)

N EA00) B : cos(),sin() 1. :
ren=[ % '] (5), [} [_Sm(')’cos(_)] (6)

Subscript i indicates values at node i, ¢, and ¢,,, as given in Fig. 1 with the positive directions indicated are angles
between the line connecting the nodes i with ;+1 and the tangents of the centroidal axis at node ; and i+1
respectively at the initial configuration, and [I] is unit matrix.

The (n, s) and (74, §) components of nodal forces with applied distributed loads as shown in Fig, 1, are denoted
by (F, Fs, M) and (F o F, M) with (p, ps m) and (P, Ds, m) respectively. Likewise for a straight
element, the (y, z) and (§, 2) components are denoted by (Fy, F, M) and (If‘y, F. M) with (p, p. m°) and
(Dy, D m°) respectively as given in Fig. 2. All the distributed forces are assumed to be conservative and acting
on the centroidal axis of the member, i

The vector transformation among the components of the nodal and distributed forces and moments defined for the

(n, s), (f, 3) and (§, 2) coordinates are given by

Fo=[T(a)] Fo (7)) Fam[T( @] [T(@u)] Frgeeeseeeemermsssmssssisisisisiieb e (8)

(a=1i, i+1)

plsi+ S‘):[T(ai)] 13(3‘) .................................................................................................................. (9)
in which

tR=(F,, F, M), tp=(F,. Fo M), 'F=(F,, Fra M) weeeeseseomimesss e 10 - a~c)

tizE(pn. Ds, m), tﬁ;(i,ﬂ’ B, TI) - reer et (11 - a,b)

excepting the transformation between the distributed force components defined for the (n, s) and (§, 2)
coordinates. Since the distributed forces are defined per unit length of the member axis, the following assumption is
introduced as

DHZ) = D(Serb Au) we+ v (12)

in which
zps_z_(py' Dz, m°), Aiz(85+1_si)/Al ..................................................................................... (13- a, b)

for the components of the distributed force p° defined for the straight element, considering that the curved
coordinates (n, s) is well approximated by the local straight coordinates (y, z) for each small element.

Similar to Eq. (9), the vector transformation combined with Eq. (12) for the distributed forces between the (n,
s) and (§, 2) Coordinates leads to

DSt M) =T (@] PZ) vrerrereesrs s (14)
in which
tﬁsg(i)y’ f)zy ,ms) ...................................................................................................................... (15)
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3. NONLINEAR DIFFERENTIAL EQUATIONS IN DIRECT LAGRANGIAN EXPRESSIONS

With the assumptions of the Euler-Bernoulli hypothesis and no change of cross sectional shapes, the nonlinear
governing equations for a curved member are derived using the theorem of virtual work in a similar way as reported
in Reference 14) . The direct Lagrangian equations we expressed, using the force and displacement components of
the (n, s) reference coordinates defined for the initial configurations, with the basic unknowns of p, and w, in
terms of the independent variable of s. The results of the derivations for the governing equations are summarized in
Table 1, in which it should be noted that the rotation ¢ is given as

sin a=(v—w/ 7o)/ /90, cOS a=(1+wi+ vo/n)/\/’g‘;..,....‘...., ................................................ (16 - a, b)
using the basic unknowns p, and w,.

As presented in Table 1., the force component vs. stress resultant relations as well as the stress resultant vs,
displacement relations are classified into three levels of nonlinearity, First is called the theory of a) finite strains
with finite displacements, which has no limitations on the magnitude of displacements, only based on the constitutive

equation for axial stress and strain relation as

G @ g v v et e (17)
in which
es=~;i(1/§;-l—na’) ................................................................................................................. (18)

Table 1 Direct Lagrangian Expressions,

Boundary Conditions

Equilibrium Equations
Mechanical Geometrical
Fi--L it pa=0 Fa=rty Ve
7}, F,=F, Wo = Wy
F:’i";o'Fn#‘Px:O M=M a=a
. . Stress Resultants vs.
Theories Fa, F, Displacements
inite Strains wi ‘ _
a) F‘mfte fams with ,,_Nsma+~(——1\Lm) cos a N=EA (a1
Finite Displacements Vo
. (M'—m) . -
Fy=N cos @—————"> sin a M=—Ela’
el
b) Small Strains with Fo=Nsin a+(M ~m) cos a N=EA (V/g—1)
Finite Displacements Fy=Ncos a—(M'—m) sin a M= —Ela’
¢) Inextensional Fo=Nsin a+(M'~m) cos a Vgo=1
Finite Displacements Fy=Ncos a~(M’'~m) sin M= —Ela’

Remarks : The following notations are used throughout Tables.
E=Young's Modulus, A:fﬁdA, i:f-r—on’dA (A=Cross Sectional Area,
4l P

r,=Radius of Curvature of Centroidal Axis, r=7+n), N=Axial Stress Resultant,
Go=(vs—w 7)*+(1+ 0o/ ot w3)*, 's=df ds

Second and third are obtained by introducing restrictions on displacements, respectively called the theory of b)
small strains with finite displacements, which introduces the restrictions of g=g,=~1, and the theory of ¢)

inextensional finite displacements which further restricts the displacements by the condition of go=1.

4. SIMPLIFIED LOCAL DIFFERENTIAL EQUATIONS FOR THE SRBD METHOD

(1) A Curved Element

The local differential equations applied for a finite element after eliminating the rigid body displacements are
expressed by the force and displacement components of the local (A, &) reference coordinates with the basic
unknowns 9,, 0, It is noted, however, that the coordinate of s has been chosen as the independent variable®, The
results of the derivations are summarized in Table 2, These equations are understood as further simplifications of

b) for direct Lagrangian expressions, and called the theories of d) beam-column, and e) small displacements,
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Table 2 Expressions for Curved Element with Separation of Rigid Body Displacements.

Boundary Conditions

Equilibrium Equations

Mechanical Geometrical
P Fu=F. Vo= To
Fl— o F+ pa=0 NS o
nm o F bn =P, o
Bl Pt po=0 M=M EYC
7 "o

>

Theories Stress Resultant vs. Displacements

o8

N 2 -~ ~ ) ~ . 2
Fi=N (;J:,~ Hﬂ)ﬂvﬁ_m N-EA {w.;+ﬂ + i(m"— “’) }
To To 2 T

d) Beam-Column

FeN M= _EI (;,;- i")
Si Di A ala g
e) Small Displacements FomM'—m Ne EA(w.H— E)
To
A IV
F=N M=—E] (v,,'~ w”)
o

The equations of d) are obtained from the conditions not only of small strains as explained for the equations of b)
but also of relatively small displacements. The latter condition is expressed mathematically by
15;_w°/r012<1’ lw;"'f)n/h!<1 ........................................................................................ (Ig.a’b)

which simplify the rigorous axial strain-displacement relation of Eq. (18) as

esz% {05+ Do/ ToF (Do— o/ 1) /2— n(@g_ o] To) b vsmmmmmmmmeee s (20)
It is worthwhile to mention that the equation of d) of the beam-column is obtained by the theorem of virtual work
which directly utilizes Eq. (20) for the virtual strain, but not from the theory of b) with the condition of Egs. (19).

The linear equations €) of small displacements are derived simply by eliminating the nonlinear terms in the
equatinos d) of the beam-column.

The governing equations for inextensional deformations which correspond to d) and e) in Table 2 can be obtained
through replacing the axial stress resultant-displacement relations by

Wyt Do/ To (¥ —Wo/ 70 /2=0 for beam-column, and

Wo+ Do/ 7o=0 for small displacements }

(2) A Straight Element

The local differential equations for a straight element have already given in Reference 6) for the theories both of
f) beam-column and g) small displacements. However, it should be noted that, with the use of the cross sectional
properties for straight members in this element, the solutions do not converge to those for the curved members. But
this difficulty can easily be resolved by replacing the cross sectional properties for straight members denoted by A
and J by those for curved members as denoted in Table 1 by A and I. Assuming uniform cross sectional properties
for each straight element in this study as in the usual analysis, the cross sectional properties at node i for a curved

member denoted by A, and [, are used throughout the element with nodes of { and {+1.
5. DISCRETE EQUATIONS FOR THE NODAL FORCES AND DISPLACEMENTS

(1) Derivations of Discrete Equations

In order to derive the discrete equations for the general solutions of the basic differential equations, the nodal
vector consisting of the (n, s) components of the forces and displacements is introduced as

4Q4={Fn, Fs, M, vy, o, @ (I 1) foreer e (22)
The discrete equations of interest can be obtained by expanding the vector components of Eq. (22) into the power
series with respect to the element length As=s,,,— s;. As has been given in Reference 6), these discrete equations

have the form of transferring the vector components of Eq. (22) from node i to i+1 as
© @)
Qj[i+1=lei+1§1 QfliAS"/Tl!
n)
Q; ' =3 (iQkI z})
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in which 5;[, is the n-th order derivative of Q, at node , and f7 Qx| ) is the function of Q,|, with k=1~6,

The discrete equations for nodel forces (F,, F,) are derived simply from the consideration of force equilibrium,
irrelevant of moment components. Since the equilibrium equations for a curved element in Table 2 is exactly
transformed into the Lagrangian equations in Table 1 as evident from Egs. (7) and (9), it is clear that the
coincidence of the discrete equations is always assured for the nodal forces (F,, Fs), However, the equilibrium
equations transformed from those of the straight element for the SRBD method differ from the corresponding
equations in Table 1, because the assumption of Eq. (12) is used for distributed forces. Although it is easliy proved
that the equilibrium equations transformed even from a straight element coincide with those of the direct Lagrangian
method in the case of uniformly distributed forces along the axis of element, the convergence and accuracy must be
examined for a general case of loading by the comparisons of the discrete equations.

On the other hand, since unknown displacements are necessarily involved in the remaining vector components (M,
v, W, @) of Eq. (22), the basic differential equations need to be used to derive the discrete equations, Thus, the
convergence and accuracy for the SRBD method become a major concern for those components,

(2) The Discrete Equations for the Direct Lagrangian Method

In order to solve the basic differential equations by the Taylor expansions, the direct Lagrangian equations in
Table 1 have to be transformed into the first order differential equations with unknowns of Eq. (22) as

dQ,/ds=f;(Q4) (24)

The results obtained for the respective terms of Eq. (22) are summarized in Table 3. The coefficients for As™/

n}
n ! of the power series of Eq. (23-a) which is the n-th derivatives Q] of the unknown components @, at node ; can

Table 3 First Order Differential Equations in Direct Lagrangian Expressions.

Differential a) Finite Strains with | b) Small Strains with c) Inextensional Finite
Equations Finite Displacements Finite Displacements Displacements
fr Fofr=pn Fol 1o=pa Fl 7o pu
fo | Fur—ps = Ful 1 Py = r— b,
1 Q) I vGo( Fucos a—F, sina)+m (Fucosa—Fosina)y+m | (F, cos a—F, sin a)+m
G=1~6) | 1 | Vgysina+w/ Vgosin atw,/r, SN w7,
fs | Vgocosa—(1+ /1) Vo cos a— (L4 v,/ 7,) cos a—(1+v,/7,)
fo | —M/E] ~M/E] ~M/E]

Remarks - dQ,/ ds= f, ({ &} ) and Vgo=(F, cos a+Fy,sina)/ EA+1

Table 4 First Order Differential Equations for Curved Elements with

Separation of Rigid Body Displacements.

Differential Equations d) Beam -Column ¢) Small Displacements
i Fof 1 P Eofry— p
fz — = Py — By r,,—»‘f),
£ fs Potm— Nat Pt m
(=1~6) i Gt 7, .
3 B EA— ) ry— a2 Fo EA— 37,
Ts ~ M/ EI - MET

Remarks © dQf/ ds=f, ({QF)), a*=10L—1v,/ 7,

be expressed as Eq. (23-b) only by 1Qx]J by repeated use of differentiations and substitutions of Eq. (24) . The
derivatives of the vector components of Eq. (22) are summarized for the general case and the particular case of the
inextensional deformation of axis, respectively in Table 5, 6 in comparison with those derived from the SRBD
method. Discussions for the results are presented later.

(3) The Discrete Equations for the SRBD Method

The discrete equations for the SRBD method are obtained in a similar way as those for the direct Lagrangian

method.  The first order differential equations with unknowns of Eq. (22) expressed as the local components are
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Table5 Derivatives of Physical Quantities : (a) ~ (d)

73

Theories Fi, Fi Fir, Fy F, FY
Direct a) Fj-”: —(fatplrd)] 73
: —] F, 1 V= —(fok pardd] 7
Lagrangians | b) | Fy= % = pu, | Fim = 5 (Fa b Frgb purt piad) | mmmwm o mmmmmmomerooosmmom oo oo
To o
R § fom oy (14 rortt =2 75— 3 Forgm parat pAri~2purers
Element | ¢) 7 1 fi=Fa Qb 17 =2 7543 Foriot poto— pil78—2pateTs
SRBD Fim e "0 —py | P ==y (B Farg— pavort D178
Straight | f) o Fit=—(fat3pir3/ 2 73
Element 2 F'=—(f+3 pard/ 2/ 73

Remarks : The following notations are used throughout Tables 5 and 6.
EA=a EIl=b, k=M| b, p=x+1 7, p=x—17, 2= Vo, s=sina, c=cos a, d;;n:p:\c—ﬂs, d§,=p1c+p{.s

Theories M M” M
Direct o |t B | apnt 2B (ot P 2/ Ful @ | 0/~ Addpam APy Ap (pFurt b+ (2Fnt m— s¥)F,| b—F,ryf ri~Du
Lagrangians b) R N Cy L Cy= = dpn— por—p CoFnt P+ (Fatm—sb) Ef b
m'=pnt+Fip " fn
Curved | D CytetFa ! ST TS
Blement | &) | meFy | m/=pat Bl o il Ay (Fal 7ok b 1o Furt] 7
SRBD - = — = P = =
Straight | O = patFop 1~ dpu— pu k= o+ &/ 2) Fuf 7o+ (Fut- m— s &) Fi] b= Forif r3—m/ 47}
Element | g) m—patFif 7 = dpy— Fof 73— ot 13— mf 4 73

D=2 GoFo b (pFut ot Fodt] ) a— Fou (2@ Fat b am p(oFsm b+ Fo (73] 7o (AFamm)] b b] b= F, (aa”~2 a®)/a’— dps+ xpn) @

Theories v4, wh vl Wi
Direct a) C,
Lagrangians b) _c;_
Curved | D Co+(2—1) we+ Fors/ a
b = A5+ w,f To, wi=Ac—1— 0,7, S e mo——e oo
Element | ¢) Co— (A1) g5+ Fyxcf a
SRBD = ry
Straight | ) Co+(2—1) ket {Funt+Foa’ a) sl a
Element 2) Cp—(A—1) xs+ {I:;',,K-I-ﬁ',a’/ al cfa

Cyp= — Ipe—(pot Fop+Fea'] @) s/ a— (14 ] 7ot Thw0f 7Y 1o
Co=ags—(bot Fupt Foa' @) of a= (wo— 7505/ 73

Theories a’ a” a”
Direct a) ZCmt dFuk s b | (= /4 A (pam Frp) + 2(Fud b m) b] bt (b7 =2 b2 bt Fo (Fupt by~ Fua’] [ al[ b
Lagrangians b) R !
~(mtFotxbfb | G | L R
Curved | D | Coz= (= 1 P Fop+2 (Futm) b bt a(bb"—2 b2 b}/ b
— b
Element | ¢) C.+Ff b v
SRBD 5 - }
Straight N é i I
— —(m+F)/ b b Cl={ =+ pa—Fe (p+ 1 )} bte/ 473
Element | oy CitFu b s
.
Table 6 Derivatives of v, w, with Inextensional Deformations.
Theories vl wh v, wl g’ wi’
Direct
Lagrangians 2 (.:3_ -
d) Co
Curved  }——
Co+ 2
Element | ¢) vl = — e~ {1+ v,/ To)] To= Towal T4 - _1—__‘3_ -
vh= sk wal 7o Wh= 0 10/ To ., , Cotw'o
e o (et o
SRED . s (el Cotasf2rosbielb_
Straight ’ Cptrc) 27,+5b's/ b
Element C‘L't'ﬁslzr":”,b,/c/ b+#?s
8 Cotrcl2r,rbls| bosc

Cyz=— (Ftm—xb’) ¢/ b—r?s+ys] 1o—275¢] 75+ 30,73/ 3= w, (14 7ory — 2r3) ra+270] 73

Cp= (Fut m—ub’) sl bercpc] 142708 T3+ 3 worl] 18+ va(Lb 17 = 200/ m3+1/ 75
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derived from the local differential equations given in Table 2 for a curved element. The results are summarized in

Table 4, in which the unknowns are expressed for the (7, &) components as

YQH=IF. F. M. b, Wo, @F] rere et (25)
with
&*:i);~u30/ 2 T T (26)

The corresponding first order differential equations for a straight element are already given in Reference 6),

with the unknowns in this paper expressed for the (9, 2) components as

HQTM=AF g, Fa M, B8, 105, @5 eeeereemeeeetaee et et 27)
with
F o DS 2+ v rr et e (28)

As described for the direct Lagrangian method, the local first order differential equations are expanded into the
Taylor series with respect to As for a curved element, and A/ for a straight element respectively with the boundary
conditions at node j as

(Do, o, 6*)=0 for Eq. (25)

(93, W3, @*)=0 for Eq. (27)
resulting finally in the local discrete equations for the SRBD method,

In order to compare the results with those for the direct Lagrangian method, the local components derived for the
SRBD method need to be transformed into the (n, s) components, with the use of Eqs. (1), (7) and (9) for a
curved element, while Eqgs. (2), (8) and (14) for a straight element. It should be remarked for the above procedure
that the angles ¢ and 4° after eliminating the rigid body rotation for an element are considered so small that the
linear approximations as

BB, BT G e e (30 - a, b)
do not lose the accuracy as proved for a straight element in Reference 6).

The discrete equations for the SRBD method expressed in the (n, s) components still include functions of As
which are sin (¢,,,—¢,), cos(g,,,—¢), sin g, cosg,,, and Al as evident from Egs. (1) and (2). Those have
further to be expanded into the power series of As to make it possible to compare with the direct Lagrangian
discrete equations which have already been expanded completely with respect to As as in Tables5 and 6. With
somewhat complexed calculations, the Taylor expansion at node ; leads to the expressions of the power series as

Sin(gii—@)=1/ 1o As— 14/ 13- A /2 1—(1ori—2 7+ 1)/ 13- AS*/3 ! )

(6 706 r*+6 rorore— i)/ ri- As'/4 1+ O0(As®)

Cos(bini—@)=1—1/715- AS* /2143 73/ 13- As*/31+(1—11 7+4 ro7?)/ 74 As*/4 1+ 0(As)

sin(gi)=1/2 10- As—2 14/3 13- As* /21— (6 rors—2 T2 +1)/8 r3-As*/31 S (31 - a~e)

+(29 ri—144 77+ 144 1orori~2 7ird)/30 T4 Ast/4 1+ O(As®)

CoS(Bun)=1—1/4 75+ AS 21+ 70/ 73 AS*/31+(B3+72 7,7¢—208 73)/48 18- As*/4 1+ 0(As®)

Al=As—1/4 ri-As*/3 1+ 15/ 13- As'/4 1+ 0(As?)

in which 7, indicates the radius of centroidal axis curvature at node i, and the maximum order in the expressions is

determined from the necessity of comparison.

As for a straight element, the derivatives of the distrubuted forces (py, D2 m®) with respect to z are used in
the local discrete equations, Thus, these derivatives have also to be transformed into those of the (n, s)
components with respect to s. By making use of Eq. (12) combined with the differentiation for compound functions,

the following relations are obtained as

dp./dz=prAs/Al, dp./dz=piAs/Al, dm®/dz=m As/Al

............................ 39 . a~f
d’p./dz*=pj(As/Al}, d*p./dz'=pi(As/AlY, d*m°/dz*=m"(As/Al) ( a~h)
in which
— 2, 2(9¢ 3
T (33-a, b)

(88/AP=1+1/678 As?/21+ 0 (As?)
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Use and rearrangement of Eq. (31) for a curved element with additional use of Eqs. (32) and (33) for a straight
element finally lead to the discrete equations for the SRBD method in the form of power series with respect to As
which correspond to those for the direct Lagrangian method. The n-th order coefficients for As®/n ! of the power
series obtained correspond to the n-th order derivatives for the unknowns of Eq. (22) at node ; in the direct
Lagrangian expressions. Thus, those coefficients are tabulated in the same columns as the derivatives for the direct
Lagrangian method in Table 5 and 6, classified respectively into the extensional and hnextensional deformation of
member axis, in which all the values are those at node i, although subscript i is omitted here for simplicity. The
maximum order of the derivatives in the Tables is determined such that the coincidence among the orders of the
derivatives can completely be examined for each method. Since the derivatives for the unknowns of F,, F,, M and
« do not depend on whether the extensional or inextensional deformations of axis is considered, the expressions for

those derivatives are only given in Table 5.
6. DISCUSSIONS

(1) Convergence of the SRBD Methed

When convergence is produced for the results by the SRBD method, the solutions must satisfy the simultaneous
first order differential equations for physical quantities as Eq. (24) which can be obtained by reducing the element
length of the discrete equations of Eq. (23) infinitesimally close to zero®, The forms of differential equations can be
determined from the first order coefficients of the Taylor expansion of Eq. (23) with respect to As.

Tables 5 and 6 indicate that all the first order coefficients for the SRBD method perfectly coincide with those
derived from the direct Lagrangian equations b) and c) classified in Table 1 respectively for the extensional and
inextensional deformations of axis whichever the curved or straight element is applied, and also whichever the beam-
column or small displacement theory is used for the SRBD method. Hence, it is concluded that the converged
solutions for the SRBD method become identical to the analytical solutions of the direct Lagrangian differential
equations for b) small strains with finite displacements. As for straight elements, it should be noted that, unless
the cross sectional properties are replaced by those for curved members, solutions do not converge to those of the
direct Lagrangian differential equations, only producing the approximate solutions for the conditions of 7,/r=1.

In order to obtain the more precise converged solutions identical to those of the direct Lagrangian equation for a)
finite strains with finite displacements, the local equilibrium equations for the SRBD method have to reflect the
extension of axis, because it cannot be separated by the rigid body displacement introduced in this paper.
Introducing this extensional deformation even for the most simplified local equations brings nonlinear terms, Thus,
F, in equations e) of Table 2 needs be replaced by

Fram (M7 ) /(L Q) e e e e (34)
as has been discussed for a straight member?.

(2) Accuracy of the SRBD method

It is important from the view of numerical computations to examine the accuracy of the SRBD method where the
magnitude of element length can not be infinitesimally small, but is finite. This can be examined by comparing the
coefficients of higher orders in the Taylor expansions of Eq. (23) between the SRBD method and the direct
Lagrangian method, From the results of Table5 and 6, the coincidence of the maximum order of derivatives is
summarized in Table 7.

For a general case of the extensional deformation of axis, the most accurate local differential equation for the
SRBD method is found that of d) beam-column for a curved element, where all the physical quantities but
displacements p, and 1, are proved at least the second order approximation. When a straight element is used, the
approximation for nodal forces F, and F turns worse abruptly compared with a curved element. Under the condition
of uniformly distributed forces, however, it is remarked that the maximum order of coincidence for a straight
element becomes infinite, that is, the same as for a curved element. It is further noted that the order of coincidence
of rotation ¢ for a straight element has increased by one from the result of Table 7, as indicated in parenthesis,

when the actual EI of a concerned member is constant along the axis. On the whole, for the extensional deformation
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Table 7 Coincidence of the Order of Derivatives for Small Strains with Finite Displacements.

Theories F, F. M Ug We a
Curved d) =S o 2 1[3] 1(3] 3
Element | ¢) o I 1 1(2] 1(2) 2

SRBD
Straight | £ 2 2 2 1{2] 1{2) 1(2
Element ) 2 2 1 1 {2} 1[2] 1(2)

1) oo: All the derivatives coincide

2) [-] and (-) indicate only those which are different from the general case entitled in the
caption, where
[+]: For inextensional deformation of member axis
(+) : For constant EI along the member axis

of axis the minimum order of coincidence for all the physical quantities is only one, whichever local equations
presented in Table 2 is used. It is concluded from a mathematical standpoint that the SRBD method can only be said
a method of the first order approximation,

As for the case of the inextensional deformation of axis, the coincidence of the derivatives for F,, F,, M and o
is exactly the same as those for the extensional deformation of axis stated above, and hence the coincidence is
discussed only for displacement p, and w, as indicated in the bracket of Table7. It shows that the order of
approximation is improved on the whole so that the order of coincidence increases up to three for a curved element
with the theory of d) beam-column, and up to two for the other elements. Thus, the SRBD method with the theory
of beam-column for a curved element is found at least the method of the second order approximation. It should be
remarked for a straight element that the SRBD method with the theory of f) beam-column has been found the method
of the second order approximation under the conditions of constant EI along the member axis in the case of
inextensional deformation of axis. :

Last but not least, it is noted that the accuracy of the SRBD method for a curved member has been proved
exactly coincident with that for a straight member® when a curved element is used. Hence, the results obtained here

for a curved member with a curved element is found an extension from the results for a straight member,
7. CONCLUDING REMARKS

The convergence and accuracy of the SRBD method for the finite displacement analysis of a curved member with
variable cross section are examined theoretically, in which a curved element of variable section is considered as well
as a straight element of constant EA and EI.

The converged solutions of the SRBD method for infinitesimally small length of element have been found identical
to the analytical solutions of the direct Lagrangian differential equations for the theory of small strains with finite
displacements or inextensional finite displacements in the case of the extensional or the inextensional deformation of
axis respectively.

Regarding the accuracy in the case of the element length being finite, it can only be said for members with the
extensional deformation of axis that the SRBD method is of the first order approximation whichever a curved or a
straight element with local differential equations either of beam-column or small displacements is used, When the
elongation of the member axis is negligibly small, however, the order of approximation increases so that the SRBD
method with the theory of beam-column for a curved element assures at least the second order approximation, and
that for a straight element also assures the second order approximation under the condition of the constant EI along

the member axis.
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