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OVERALL LATERAL BUCKLING OF THROUGH
PLATE GIRDER BRIDGES

By Fumihito ITOH* and Kuniei NOGAMIP**

This paper developes the strict theory on the lateral buckling of a through plate
girder bridge, and simple approximate formulae for critical loads have been proposed.
The validity of this theory has been examined by comparing with some experimental
results, and the elastic lateral buckling loads and the load carrying capacities for the
illustrative practical bridge models have been calculated.

The results have shown that the approximate formulae for critical values of symmetric
and asymmetric elastic buckling under uniformly distributed load have to be useful, and
that the load carrying capacity for long spans would depend on asymmetric overall
lateral buckling. The symmetric buckling will be not so significant.

i. . INTRODUCTION

Dealing with lateral buckling in a through plate girder bridge, we shall encounter three problems. The first
problem is old one against lateral buckling as a main girder iteslf, which occurs between adjacent points connected
with floor beam, and may be considered as local one in this context.

The second problem is simultaneous lateral buckling of both main girders due to insufficient bending rigidity and
strength of floor beams or knee bracings and to the absence of upper lateral bracings, as in a pony truss. Japanese
specifications for railway bridge design” include regulations against such buckling, and some experimental studies to
certify those regulations have been done by Tajima et al. ?.

The third problem is lateral buckling of a bridge as a whole. To treat such buckling, the lateral bracings have
been usually replaced by their equivalent thin plate and the whole bridge has been regarded as a solid beam” ¥ .
However, the lateral bracings must be subjected to very large shearing deformation compared with any plate. This
submits some questions how to determine the moment of inertia around the vertical axis. A two girder system tied
by floor beams without lateral bracing has been analysed rather strictly by Komatsu et al. % However, the result
will be not applicable to the one with trussed lateral bracing, as it is.

On the other hand, it has been proposed by Nishino et al. to correct conventional formula for buckling moment of
a beam, taking deformation appeares before buckling into consideration”, The proposed expression clarifies a fact
that no lateral buckling will occurs under exteral moment around the weak axis, and yet holds practical simplicity.
It must be desirable, if possible, such a simplified expression to estimate buckling limit of through plate girder

bridge having similar nature of above proposal can be made,
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56 ‘ F. Itou and K, Nocami

This paper aims at obtaining strict solutions of above second and third problem and get practically simplified

expressions for critical loads, excluding intuitive replacement.
2. ASSUMPTIONS

Principal assumptions which are adopted in this study have been summarized as follows :

A 1. Through plate girder bridge is straight and is composed of two main girders, floor beams and lower lateral
bracings,

A 2. Cross sectional dimensions of two main girders are similar to each other and have doubly symmetrical open
section. .

A 3. Floor beams are arranged with a certain intervals, and have only bending rigidity about holizontal axis.

A 4. Lateral bracings are assembled crosswise, forming so-called doubly Warren truss. The bracing themselves
have only the axikal rigidity.

A 5. Distance between two main girders remaines unchanged at the level of lateral bracings.

A 6. All members of the bridge system are perfectly elastic and obey to the elementaly theory of beams.
3. NOTATION

X,Y,Z : Local right-handed Cartesian coordinates,
u,v,w : Displacements in x,y and z direction.
Us, Vs * Displacements of the shear center in x and y direction,
w, . Axial displacement of the neutral axis of a girder,
0,0, : Torsion angle and warping function,
Vi, Vi, Vi © Strain energy of the bridge system (main girders, lateral bracings and floor beams)
W . Potential loss of the external loads.
L : Total span,
B ! Central distance between main girders.
A : Panel length between the floor beams.
A Cross sectional area of a main girder, \
I:,I, . Moment-of-inertia of the main girder, around x and y axis,
I, . Sectorial moment-of-inertia of the main girder,

t,b : Thickness and width of the flange of the main girder.

twshw - Thickness and depth of web of the main girder, TM g T@
Aw,Ly, : Cross sectional area and length of lateral bracing member, Hvﬁ w%‘;:_’i
H, : Vertical distance to lateral bracing from main girder centroid.
Ir . Moment-of-inerita of floor beam. ly
Hy [ Vertical distance to floor beam from main girder, L
E,G : Modulus of elasticity and elastic shear modulus, 0)(1) y ) 4 ll
K : St. Venant’s torsion constant, = s e
acr . Lateral buckling strength. @ ><
o, - Elastic lateral buckling stress, if?) BT i
oy . Yield stress, A
(Y : Differentiation with respect to z. Fig.1 Coordinate system and model of

the through plate girder bridge.
4. DISPLACEMENTS AND STRAINS

A right-handed coordinates having origin at the centroid of an end cross section of main girder as shown in Fig. 1
have been used. The shear center coincides with the origin due to the assumption (A 2) So, displacements of the

main girder can be given by
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u=us—y9—x8°/2

v=vs+x~¢9—y'92/2 R S O O S R R SR L R R R AR E LA (1)

w=we—x (Ust vs 0)—y (0s—us O+ w 6

We distinct these displacements with left-hand subscript for each of two main girder as \u, ,u, --- according to
necessity. Now, it must be more convenient that these are transformed into another global denotations which may be
simplified for the total bridge system. Then the followings are newly introduced :

w=u'tu¥, . u=—u'tu*

=0+, o=0'— 0¥

w=wtwt, w=uw—w

0=0"+0% 6=—0+06*
in which the superscript (°) refers to symmetric with respect to the vertical central plane of the bridge
perpendicular to the x axis. Similarly the superseript (*) implies the asymmetric displacement.

The axial strain of the main girder is give by

=w+u*+ v )/2 ..................................................................................................................... (3)

as well known. This equation contains the 2nd order terms of the derivative of displacement. Therefore the 3rd
order terms in the potential energy equation and the 2nd order terms in the derived equilibrium equations must be

significant. Further, the shear strain by St. Venant’s torsion has to normally taken into account.

5. TOTAL POTENTIAL ENERGY

Total potential energy IT of the bridge can be expressed as the sum of the strain energies of individual member
and the potential loss of external loads. That is

TTm Vgt Vi Ve T coreeee e (4)

On the other hand, rewriting Eq. (4) with the global notations of displacement, the total potential energy can be
classified into two groups, one does not contains any ‘component of asymmetric displacement and the other.
Moreover, the two respective groups can be devided also into two, one contains no term of uf, #° and the other.
Then the total potential energy may be expressed as

=102 wh)+ I8 (s, b, wh, 6)+IF (v, we, u¥, wi, 6%) :

+H=Zk (ug’ Ug, w«;, 90’ u:) U:, wt’ 3*) .............................................................................. (5)

If the external loads distribute symmetrically about bridge axis, and if sectional deformation can be ignored in the
range of small deflection, then the Ist term of right side in the above equation may be regarded as the component
corresponding to the deformation before buckling. Another terms correspond to post-buckling deformations. Second
term does to symmetric, and the 3rd does to asymmetric one. The 4th term corresponds to interaction of symmetric
and asymmetric buckling, but this term may be ignored in this study because the influence must be small. Really,
this term contains no first or second order term of any displacement and their derivatives.

(1) Main girders

The strain energy V, of two parallel main girders can be now written as
Vamd & [TEA id+ sl (4 0 I+ ELsts'+ L+ ELoa ™+ GK0”

+2E(I,,—Ix)ku§kv’;k€+E(Iy+Ix)kw’c W72 Y eererre e (6)
with displacements of each girder.

The strain energy can be rewritten with global notations Eq. (2).. But, since the global neutral axis of total
system exists at lower position than the one of individual main girder, it will be desirable that this fact is taken into
considerations in the treatment of the deformational behavior before buckling. We introduce therefore the new
symbol of axial displacement 1w, at a point which is on the symmetrical plane and at a distance H, below the centroid
of main girder. From Eq. (1), this axial displacement w, is defined as

__wc_Hq(v'S_ufsg) ................................................................................................................. (7)

in which
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Ar/(A+Ar), Ar=A, /\E/Lf, ............................................................................................... (8)
~and for the symmetric deformation we shall use w} instead 1 hereafter. Thus the strain energies of both main

girder becomes
VZIZIL[EA ot Hy 08 +2H, wy v¥ +(wy + Hy 0% ) 0¥+ EL v5* Jdz
Vie= [“LEAI=2 Hy ulf (u 0"+ u¥ 0%)=2H3 0¥ (" 0"+ 6% 1+ (ul+ Hy o) u
+EL ui*+ElL, 0+ GK6"* +2E (I,— L) u¥ v¢ 0°+E (L+ L wY + H, v¥ )6 )dz
—f LEAlWE = 2H,wy (ud 0% + u¥ 0%)—2H J0¥" (u¥ 0%+ u¥ 0% )+ (wh + Hyo¥ Y ud* + 0¥

+2uwf o V¥ I+ ELu "’+Elx ¥+ EL, 6%+ GK6**+2E (I,— I,) 6* u
+E L+ L wy + Hy 08 )0%* 1dz
(2) Lateral bracings
The lateral system is assumed that can be regarded as an ideal truss. Consider now the panel (i-j) shown in
Fig.1. If ¢ is the axial strain of a member (1/-2j) determined by the displacements (u,, i w6,
(2U,205,2W;,26;) at the panel points. And similarly z, is that of member (1j-2;), then the respective relations
between the strains and displacement are given by
a=Aw(A L)+ Au(B/L)+Aw (B/L.)}*/2+ Au? (\/ L.)/2+ Av?/2— Aw Au (AB/LY)-+
=AW (A L)~ AT (B/ L)+ AW (B/L.)'/2+ Au* (\/ L)} /2+ AD*/2+ A% AT (AB/ L% )+
where
Aw=(w;~ w;)/ L, AW=(w;—.w:)/L.
Au=(ty— 12 )/ Liy AT 1m0 )/ Ly} veveeeeeemmeme oo (1)
Av=Gv;—v:)/ L, AD=(v;—0:}/ L,
The strain energy V¢;; of this lateral panel is thus written as
Ve AL L (2L ) 1/ 2 e eemmeete e 12)

We may introduce now the approximations

—w?'=.fjw°' dz, wi+uw} ‘=.2fjw* dz/A

2z Zi

u?e__u;k;_.:fa w* dZ, u‘,’-+u?—‘~:2fju° dZ//\ ........................................................................... (13)

2

25 Zi
vi—vi= | 0dz, ¥t} -‘—-:Zf v¥dz/A
Zi

2
and hence the strain energy of the total lateral bracings can be transformed to an integrated type of formula.
Besides, by the assumption (A 5), the relation
uo__.ug__HL B s (J v e e (14)
holds on the plane of lateral system.

Finally we can write
i .
Vi= [ Er 01"+ o +(B/L,F 5% ldz

L
V= f 2EA; H, Hy 0°(6° 6+ 6" )dz

,.-—f [EAs v* (7*+4v% 0¥ /B)+ EA; 68° 2 (H,— H ¥ 6*+u ¢*) (777 (15)
—(1=38B*/Liu¥ — H, 6% +12(B/ L) wk/B—H, v¥/BXu¥ — H, 6%)+(B/\* 2v*/B)
—@B/ N (wE/B—H, v¥/B)u¥ —H, 6% )+12(B*/AL.w¥/B—H, v¥/B){ldz
where
As=A, AB*/ LY, 8°=wl+(H,—H) v, y*=2w*/B—2H, 0¥/ B— ¥+ H, 6% - rerveverereerrrrrannn, (16)

in which §° and y* denote the elongation and the shearing strain respectively in the plane of lateral system but
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containing only the first order term of the displacements.
(3) Floor beams

The bending moment at any point x of a floor beam (17-27) can be written as

__ELr v a2 3 3
M= B [6( B WB )(‘E'x”1>+210i(‘§x'—2>+2z@(‘B’fL‘“lﬂ ..................................................... (17)
Then the strain energy V¢, of a beam may be given by
B
VE:f J R0 00 s R T R LR LA EEEERLLLERRRIERERLE (18)
o B
Let us now transform Eq. (17) with Eq. (2) and substitute it into Eq. (18), then we obtain
2E] X
g = WB; [12 0% (0% BOF )4 BF (B4 30K )]-teneteermeta oot (19)
in which the asymmetric deflection v¥ is
v¥= v¥—Hp 9? g;ﬁ ..................................................................................................................... (20)

from Eq. (1) and Eq. (2). Therefore substituting this relation into Eq. (19) and rewriting it in the integrated
form using approximation similar Eq. (13), we can obtain
F=0
L
[ N 02
L =REL/BA [ 6% dz e e e 1)

5=REL/(BA) [ 12 vF (03+B0*)+3B* 0% ]dz,

as the strain energy of the total floor beams.

(4) External load

It may be assumed that the uniformly distributed external load acts downward through the longitudinal bridge axis
~ and at the ordinate y, as shown in Fig, 1.

Assuming for simplification that the deformation of the floor beam under the load can be neglected, and using Eq.
(1) and Eq. (2), displacement v, of the applied point can be represented as

vpz(‘v+2v)/2=v‘;—yo(&“er"*’)/Z ............................................................................................... 22)

Then we can obtain
wi= —_/O‘qu vsdz
g:[qu Yo 8% Q2 /2 | +or e (23)
W?:_[qu y 6% dz/2
as the potential loss of the external load.

5. DEFORMATION BEFORE BUCKLING

If the load and the total system are both symmetric with respective to the longitudinal bridge axis, all of
asymmetric displacements and their derivatives must not appear. Moreover, from the above mentioned assumption of
no deformation of floor beams under loading, the cross sectional shape of the bridge must holds, that is ug=6"=0.

Then the total potential energy IT} before buckling becomes

L
0= Vit Vit W= [ TE A+ At o)+ ETS 04 EA(B/LUF 6% 1dz oo (24)
where
[;‘)rzlx+ Hg Hy A-eeeemmssesese st (25)

If the small displacement theory can be applicable to the calculation of the deformation before buckling, the third
order terms of displacement in the integrand of Eq. (24) may be neglected. Then in this case the equilibrium
equations derived from the first variation of Eq. (24) becomes

2F (A+A7)w‘,}”=0 R S U U S T L (26)
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ZEI; vg””z Qg™ m " v e (27)

If we may consider that 2(4+ A, and 2 I} denote the cross sectional area and the moment of inertia of total
system respectively, these equations are perfectly coincide with ones of elementary beam theory. The equivalent
component of cross sectional area A, implies the effect of lateral system acts as a part of lower flanges. Second
term in the right side of Eq. (25) denotes similarly the equivalent component of inertia born by the lateral system,

Moreover, in case of a simply supported girder bridge, w{ must vanish. This shows that the neutral axis of the

global system exists below the ceatroid of main girder by distance H,.

6. CALCULATION OF BUCKLING LOADS

(1) Symmetrical buckling ,
In this case, the term I} for the symmetrical deformation appears in Eq. (5 ). Now, summing up V%,, V¢, V&,

and W} and rearranging them, we have

118= [ (Eduy 67+ GKO*+ £ Hy 0¥ 0~ 2EJ, Hy 0 6° 6"+ REL/BAF @y 4u/2) 0% Jdz -+oovsoov (28)
where '

Joy= Lot Hi Ly Jo=Lt = HLA, Jom=Lo— Lyb Hy Hy A -voeeeeeeseeeeeseoie o, (29)
From the first variation of equation (28), the equilibrium equation can be derived as

2EJuy 8" —2GK 6" —2E (J, Ho+2J, H)[vY 0% Y HAEL/(BN—2EJ, Hy 03" 4 Gy Yo l0°=0 «+-ooorovmereeeeines (30)

Thus the solution of Eq. (30) must be determined using % which satisfies Eq. (27). In case of simple supported

bridge, torsion angle §° can be represented in the form of trigonometric series

g“:zl A SIN (L2 /L) oorermerreeee s e eeeaeiaeeeaeiseateaeeieiataits eseeeibeteeiaete et e baraenn (31)

Using Galerkin's method, the equation to obtain eigenvalues g,., can be derived as
(2EJoy (in/ L) +2GK (in/ LY +4EL/(BN—={(J Ho+2J, H)1+ i* z°/6)/@I%+ J H/ I3 = yolq, )d?
—2(J; Hg+2JzH“)/I;EVU(iz_?)jz)/(iz_jzy,dgzo ' (jj:iieven) .................................................. (’32)

for the ith order term of the above series (31)
The eigenvalues must be obtained by solving the above equations, but the minimum one corresponds not
necessarily to the first order. If we neglect the second interaction term and H, in Eq. (32), the equations become
independent each other, and eigenvalue g, for the ith order is approximately
L 2EJy (in/ LY +2GK (in/ L} +4EIL/(BA)
Guere™ o H @+ 8 2 6)/ 18—y,

The quantity of the denominator of this equation divided by (jz)?% if (ix) is large, approaches to the constant value

Jy H,/(61%). In such case, the order of series which results minimum eigenvalue can be approximately given by
i=(L/7m)4 2[},(8,\‘]&”/) ............................................................................................................ (34)

If eigenvalues are estimated with some equations in Eq. (32) corresponding to the orders adjacent i obtained from
Eq. (34), we can find the minimum symmetrical lateral buckling load accurately. For the practical purpose, result
from Eq. (33) using i obtained by Eq. (34) may be sufficient.

(2) Asymmetric overall lateral buckling

In this article, only the asymmetrical energy term II¥ appears in the total potential I7.

Since the equation simply obtained by summing up V¥, V¥, V} and W} becomes too complicated, assumption
that the cross section of total system remains may also be adopted in this case. This means that sufficient rigidity

of floor beams can be assumed, and then the relation

hold. Then V¥ vanishes. Hereafter, we look upon this state as the overall lateral buckling.
Besides, the cross sectional area of lateral bracings are usually sufficiently smaller than that of main girders of a

bridge. Then, assumming that (4,/A4), (A:/A) and (4,/A) have same degree of the quantities with the first order
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term of the displacements, the quantities multiplied these values by the third order terms of displacement can be

neglected. ;
Finally we can express IT¥ in the following form using Eq. (27) :

L
= [ [EAWY*+ EL u¥”+ EJus 0%+ GKO**+ EA, 7**

—EAB w¥ 6% oV +2E (I—L)u*” 0% 0V +2ET% yo 027 0% /2] dz - vrvervreemeseers it (36)
where
wa:Iw_;_BzIx/é; ......................................... (37)
and from Eq. (35) the shearing strain 7« becomes ‘
....................................................................................................... (38)

y*=2w¥/B—u¥+2H, 6%
From the first variation of Eq. (36) the equilibrium equations can be obtained as

~[2EAw¥—EAB v% 0% VY +2EA,(2/B)y*=0 |

[2EL ¥ +2E (I,— L) v¥ 6*1+2EA: y¥'=0 e (39)

o

[2EJur 0¥7 —[2GKO¥ +4EAs y*—EAB v% w¥1+2E (L—L)vY u¥ +2EI% yo v 6%=0
Generally the displacement 7?, can be solved for any loading pattern by Eq. (27) In all cases we can expand this

solution in the Fourier series, If the bridge have been simply supported,

Q8 5 BUSII ({72 /L) -+ et e (40)
and then, u¥*, w¥ and §* can be express in the form
=X a¥sin(irz/L)
............................................................................................................ (41)

wi=Xc¥cos(inz/L)
0*=3 d¥ sin(irz/L)
Substituting them into Eq. (39) multiplying by cos (izz/L) or sin (i7z/L) and integrating with respect to z the

equilibrium equations become

‘" B \L B

B
2 . 2jk (it~ — k% o
“quEAB( iz R =20 2 2K bi=0

“’2’@’5<%) +en () +BA(T) Jar ~2Ea. () ar

[ (_g)z 4EAQ} . 2B s(iﬂ)a?+4EA 1_‘@( )d*
I[

B
“QZE(I”‘I’)G%’) e +k4—2?2jj]isz2—2k2 i =0 )
4E‘;‘;§i<i—f) ct—2EAH, () at+| Bl () '+ 6k ( ) 4 aEA, ui () far ”
+Q3[EAB<‘L{TZ>§ r i‘+j‘+21g‘zf(2j;—jzi2—72]]fI)sz—zkfiz b
—E(Iy“11)<%>§ R T k4—z€;izsjlf:2jz w—ak e O

. 3 L15
) i * 8jk 0 |
Ely L4)§d’ A k2 2 2k I bt =0

in which the summation appeared in the coefficients of ¢ must be carried out only for the combinations that
(i+j+k) equals to odd number. Thus if the load is symmetrical respective to the span center, % of Eq. (40) has

only the odd order terms, and this case it is possible that the odd and even order modes of buckling can be

calculated independently each other.
The critical load may be obtained by the eigen-equation which makes the determinant of the coefficients of Eq.

(42) zero. The result is just the overall lateral buckling load.
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(3) Approximate solution under uniformly distributed loading

When the bridge carries a uniformly distributed load, it is more convenient to integrate % directly rather than to
expand it in sinusoidal series, If the solution using only the first order mode can be regarded as to have sufficient
accuracy, it must be advisable to give an approximate formula of solution,

For the above purpose, by elimination of Eq. (39) and taking end conditions into consideration, we can obtain

first
B 41, 4—L ,, -
w?" 3 [ 312 u:r/ Y = vg 6%+ 7)2 g* :l ............................................................................. (43)

and substituting this relation into Eqs. (38) and (39), we can eliminate w¥. Then the equilibrium equations can be
reduced to
ElLu¥”+ E (L— LXvY 6%)"—EA 1 +41,/(AB?) u¥”
+2EA H, 0¥ + EAs v¥ 6% —WEA, (I,— L)/(ABY v¢ 6*=0 .
EdJoz 0%~ GKO* +2E (I,— L) H. (v¥ 6%+ EI% y, 02 6* ’
+2EL Hy u¥”—EL vy u¥" —EL v¥ u¥' =
if the third order terms can be omitted.
Substituting the solution in case of uniform loading into v% in Eq. (44) and taking only the first term of y¥* §* in
Eq. (41), we obtain the eigen-equation including the terms up to the second order of deflection before buckling,

Solving this equation and expressing the eigenvalue by maximum bending moment M,,, the result can be given by

M.,= 37 EIY .[mﬁ*+\/,9*2+(1 Iy >.EI:+GK* LY/ x* } ....................................... (45)
P ) +

* * *
28+ 2L (1- 1 2z B3

since (I,/I,<1) and (2I,<I%¥). In above expression, J¥ -« K* denote the cross sectional parameters of total

bridge system, and are defined as
I¥=2I, I3=2A(B/2)/[1+AB/2F/|A(L/x} |42, I5=2]u: [
K*=2K, p*=2H,—y,6/(3+ %

7. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Since the method of analysis introduced here have adopted some approximation particularly on overall lateral
buckling, their validity should be examined by comparing the theoretical values with experimental results, This
paper avails itself of experiments on elastic lateral buckling carried out by Japanese National Railways® ”, and
Tokyo Metropolitan University?

The numeric values of the cross sectional properties necessary to the analysis are shown in Table 1, and the used
material had been SS 4] in all cases. A concentrated load P was applied to centre of the span and a loading
appatatus had been put on upper flanges of both main girder as to push them vertically. Floor beams had been
arranged in a certain interval, and lateral bracings had been
welded directly to lower flanges of both main girder. Table 1 Dimensions and cross sectional properties

. f th i i
As the number of deflection modes, allowing for only the symmet- of the experimental bridges.

rical one, theoretical results obtained with only one term in Eq. 3. N. R. .M. UL
(40) and Eq. (41) have been compared with those with three terms ’;?iger T-159x20x2.3x4.5 ]-150x16.8x1.2
- S
(i=1.3.5). Lateral Ty ous L-5x5xL.2
Fig. 2 and Fig. 3 show comparisons of measurements by JNR and =y
. beoor |-40x2.3 [-30x1.2
TMU with the above theoretical results. As shown in these eam
B = 8.0 cm B = 4,88 cm
figures, although the theoretical values allowing for the self- A = 16.0 cm X =7.5 cm
Skeleton Ho= 7.5 cm H o= 7.38 com
weight of tested model are somewhat lower than the measurements. H, = 5.5 cm H, = 5.88 cm
but we can find a very good coincidence of them. . Yo = -12.0 cm Yo = =11.0 cm
As known in Fig, 2 and Fig. 3, there can be found some differ- m
ences in theoretical results between the case with only one term ‘

24s



Owverall Lateral Buckling of Through Plale Girder Bridges ) 63

600r Theoretical 80;
m——— 1 term R !
3 terms}wﬂ:h dead load (A lp
500 X e 1 term .. 50t N\ 4
s terms}lwe load only N\
3400- .o Experimental ® ’5‘40'
= =
a.
& 300t g 30
2 3
S S Experimental .
200} 20t o S
Theoretical
100t 10+ - ; ::i:s}with dead load
T S Mive load only
fo] BYS R R i . s Ol . N
073 4 5 6 7 8 9 : 0 "3 4 5
SPAN L (m) sPANL(m)
Fig.2 Comparison of the experimental values (Japanese Fig.3 Comparison of the experimental values (Tokyo
National Railways) with the theoretical curves Metropolitan University) with the theoretical
for the overall lateral buckling. curves for the overall lateral buckling.

and with three terms of mode, but variations originéting from repetition of experiment are almost the same as the
above differences, Hence, the analysis taking only one term would be said sufficient for the practical requirements

even against the concentrated loading.
8. ILLUSTRATIVE ANALYSIS OF MORE PRACTICAL MODELS

In the experimental models investigated in previous sections, the distance between main girders had been made to
be extremely narrow to make the lateral elastic buckling occur, and they had not to represent practical bridge be-
haviors in such sense. It may be desirable to try to estimate behaviors of more practical models.

There exist few actual through plate girder railway bridges exceeding 40 m span, and it was difficult to gather
and analyse sufficient number of actual bridges. Then a single line through plate girder bridge designed by JNR
having 32 m span had been picked up as standard practical model, and had been modified to another spans as
“practical models” used in this paper. In the modifications, the central distance between main girders, the panel
length between floor beams, and the cross sectional dimension of lateral bracings and floor beams had been not
changed, and only the main girder’s cross section had been determined by optimum design. The used material was
always SM 50. The width-thickness ratio of a web plate had been fixed to 200, assuming the web having one
holizontal stiffener. The width-thickness ratio of flange plates had been supporsed as 6 in all cases, where the
thickness included that of a cover plate. Fig.4 shows the dimensions and properties of the practical models
introduced herein

Fig. 5 shows the relations between span and elastic buckling load determined by applying our method of analysis to
the above mensioned practical models. The black dots for symmetrical buckling in the figure refer to estimated
results by approximate equation (33) with the number of order i given by Eq. (34) . These points are well agreeded
with the curve (two dots chain line) determined by Eq. (32) taking three terms (i—1, i, i+1), without significant
differences. )

The orders of buckling mode appeared in these calculations were 5 to 8 in the raxige of span shown in Fig. 4, The
order becomes lower as the span does shorter, and the half wave length of the mode becomes also shorter. In the
range of considerably small L/B, resulted half wave length had been as short as or shorter than the panel length.
Hence the validity of simplification replacing summation of the effect of lateral system by integration must be
questionable in such special cases,

Concerning asymmetrical buckling, Eq. (40) and Eq. (41) have been used. The buckling loads estimated only one
term of mode in Eq. (41) and that with three ones have been compared with each other. In both cases 9% have been

expressed using three terms, Few practical differences can be found between them, though the latter provides
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Fig. 4 Dimensions and properties of the calculated 0 10 20 30

L/B

Fig.5 Comparison of the symmetrical buckling curve
with the overall lateral buckling ones under

practical models,

uniformly distributed loading.

somewhat safeside solutions. The small white circles refer to an approximate solutions obtained by Eq. (45). The
approximation may be considered as to provide considerably good accuracy. Then the formula may be sufficiently
useful in practical purpose.

In general, the symmetrical buckling load is higher than the asymmetrical buckling load except for short spans,

The buckling curves in Fig.5 appears in the range far exceeding the yield point. Because this means that the
actual bridge will buckles in the inelastic range, the above results for elastic buckling may be not realistic as it is,
Therefore, analysis of actual bridge must be required to review expressions for the total potential increments,
taking into considerations the effects of initial imperfection, residual stress distribution by welding, and nonlinear
property of materials. In this paper however, an approximate load carrying capacities have been roughly estimated
from the above elastic buckling curves,

Many experimental data in the past show the fact that the relation between theoretical elastic buckling curve and
inelastic experimental strength of beams are rather similar to that of columns?. Then as a rough approximation, if
it may be permitted to assume that the relations are perfectly similar, the load carrying capacities of practical
models against lateral buckling can be estimated from elastic results using such relation,

In our study, the relation between elastic and inelastic strength had been adopted from the comments on Japanese
Specifications for Highway Bridges' . Fig. 6 shows illustrative results, in which the load carrying capacity curve
determined by local buckling moment formula

M”=—7L»\/Ely GK <1+ anIw>

LY (1-L/L) L'GK

proposed by Nishino et al.® have been added.

The lowest value among the three curves shown in
Fig. 6 must represents the load carrying capacity of the
system. As is clear in Fig.6, local buckling between

panel point predominates in the shorter span range,

Overall lateral buckling
== Symmetrical buckling

while the overall lateral buckling does in the longer

span, For the practical models used in our study, the 02 - Local buckling
boundary exists about L/B=10.5 (L=46 m).
Although this illustrative calculation tells that sym- 00 m) 6 30
metrical buckling will never occurs in any case, we can L/B
not deny that such buckling could occurs due to want of Fig.6 Buckling strength curves of the practical bridge models.

26s



Owerall Lateral Buckling of Through Plale Girder Bridges 65

floor beam rigidity, possibly in the vicinity of above boundary.
9. CONCLUSIONS

The results can be summerized as follows :

(1) The general method has been derived successfully which may be used to determine the symmetrical and
asymmetrical lateral buckling load of an open floor type through plate girder bridge.

(2) The approximate formulae for critical value and mode of symmetrical buckling under uniformly distributed
load have been obtained.

(3) The approximate formula has been obtained which provides overall asymmetrical lateral buckling load under
the uniformly distributed condition. The cross sectional properties of total system can be defined clearly.

(4) The analytical results have coincided well with measurements on elastic overall lateral buckling.

(5) The application of the above method to the practical bridge models has led to a suggestion that the load
carrying capacity for long spans would depend largely on overall lateral buckling.

(6) Illustrative calculations for the practical models have suggested that symmetrical buckling would rarely be

realized.
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