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A TOTAL LAGRANGIAN NONLINEAR ANALYSIS
OF ELASTIC TRUSSES

By Fumio NISHINO*, Kiyohiro IKEDA** Takamasa SAKURA***
and Akio HASEGA WA****

This paper presents a total Lagrangian nonlinear formulation of elastic trusses; in
which the governing stiffness equations are described as the relations between the
overall forces and positions. With this selection of spatial positions as basic unkriowns,
the specification of the initial configuration becomes unnecessary and the separation of
rigid body motion is automatically attained by an- appropriate selection of local
coordinates, A simple two bar truss and a reticulated truss are investigated as
numerical examples, In the former, the characteristic of the present formulation and the
convergence by the successive substitutions have been demonstrated.  The latter example
is chosen to show the effectiveness of the present formulation and simple systematic
procedure to trace the finite displacement equ‘ilibrium paths including the main path and
paths after bifurcations.

1. INTRODUCTION

Finite displacement problems for structural systems can be formulated discretely by the total Lagrangian method
or by the up-dated Lagrangian method with unknown variables of nodal displacements?~'" or nodal positions'”. The
governing equations are expressed by the relations between the overall forces and displacements” ' (or positions),
or the relations between the incremental forces and incremental displacements” (or positions) with? 7" or with-
out? ¥ the separation of rigid body displacements, The most popular among them seems to be the updated
Lagrangian formulation with the separation of rigid body displacements in terms of the incremental forces and
displacements.

Nonlinear discrete equations of structural systems can be solved numerically by the simple load incremental
method without iteration or the iterative procedures such as the Newton-Raphson method” ~®-9 and the method of
successive substitutions?® . The simple load incremental method is the easiest for mathematical manipulation, but
may result in the accumulative errors in computation. The Newton-Raphson method produces second-order
convergence'” when the tangent stiffness matrix is nonsingular, The direct solution of the governing equations by
successive substitutions is simple in the iterative procedure. However, one of the drawbacks of the method of
successive substitutions is that, unlike the Newton-Raphson method, the existence of convergence region is not
guaranteed in the neighborhood of the solution and that it produces first-order convergence” = even when the
solution converges,

Singular points of equilibrium such as bifurcation points can be analysed using the methods of eigen values” 1,
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perturbations' -1 1 or initial imperfections” - . The perturbation method is most useful in the theoretical
investigation of the behavior near bifurcation points, however, few numerical solutions have been tried only for
simple problems since tedius and cumbersome computations are inevitable, The method of initial imperfections
appears physically tractable and has been used for the analysis of simple structural systems” ' But solutions are
found only in a heuristic sense, and no versatile procedure has been established in assuming the configurations of
initial imperfections that will trace the most critical equilibrium path,

The use of eigen values may be most advantageous and versatile to determine bifurcation points and to trace the
equilibrium paths branching out from the points, however, few studies have been made so far'?-19

This paper presents a total Lagrangian nonlinear formulation of elastic trusses, in which the governing stiffness
equations are described as the relations between the overall forces and positions. With this selection of spatial
positions as basic unknowns, the specification of the initial configuration becomes unnecessary and the separation of
rigid body motion is automatically attained by an appropriate selection of local coordinates, The stiffness equations
are solved numerically by the method of successive substitutions. This iterative procedure helped by the nature of

the stiffness matrix obtained in this study is proved to be the same as the Newton-Raphson method,
2. STIFFNESS EQUATIONS OF TRUSSES

Consider a structural member pg with the initial undeformed length | subject to axial force only. Fig. 1 shows
the member in equilibrium in a displaced state, for which the initial position of the member is of no importance.
Superscripts p and ¢ denote quantities at the ends p and g of the member, respectively.

Three rectangular Cartesian coordinates (g, X2y 23), (7, 203, 25) and (a1, 23,

x3)defined at the displaced state with the orthogonal base vectors Vidl=1i, i, i,

Vizl=liv i7 i3] and [izl={i; &3 i3], respectively, are introduced to describe a

point in space. xP
The bracket | | indicates a column matrix. The base vector li;} is the refer- \P
EE

ence frame fixed in space, whereas {j;] is the reference frame with i; selected

along the member from p to g at the displaced equilibrium state and hence lizl

Equilibrium Position

are generally unknown base vectors., The base vector li;] is the reference frame Fig.1 A displaced member.
selected to satisfy the condition
if' l‘z'ﬁ&? ............................................................................................................................... ( 1 )

The position of each end of the member is expressed by the coordinates as

x%=lx® 1" 2t

=1 1o x5 L Dy vt e e (2-a~c)

o=l o ! k

The components of the force acting at one end of the member pq for the respective coordinates are defined as

Fo={F" F,* |

Fo=|F F* F59 Q=G e e (3-a~c)

I:va:“;;a F5® p39)

Consider the case that the member pq is subjected only to the end forces. Equilibrium equations are then given
by

FP=|=N 0 0|

F'=IN 0 0] -
in which V is the internal axial force in a member, which is a constant quantity along the length. Assume the
material is elastic and governed by the following constitutive equation

NS EA (L= 1)) L ereeeemeemone oo et (5)

in which E, A and ] are modulus of elasticity, initial undeformed cross sectional area and displaced length of the
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member, respectively. Strain position relation is given by

Ry Y e B B (6-2)

or in vector form
Ali;:(r;"—;r;;"}i?ziquf"}‘{i;i'—‘{xq-—x"vii;} .............................................................................. (G'b)

in which superscript ¢ indicates transpose of a matrix.
Noting the direction cosine between i; and i; is expressed, in view of Eq. (6-b), by (;-,.«-xg')/z, the equilibrium

equation (4 )is transformed into

—f:*(ﬁﬂ{ f;:f;p}(%)l(of .................... i e A R (7)
in which

_:{i‘;} ___{f:] ......................................................................................................... (8+a,b)
1 0 0 —1 0 0
0 1 0 0 -1 0

K= _(1) g (1) (1) g "'(1) ........................................................................................ (9)
0 —1 0 0 1 0
0 0 -1 0 0 1

The matrix K° is decomposed to the sum of the matrix K' corresponding to small displacement theory and the

remaining part K* as

KO‘K"FKZ ............................................................................................................................. (10)
in which
1 0 0 —1 0 0]
0 0 0 0 0 0
1 0 0 0 0 O 0 ..................................................................................... .
E=l_1 0o o 1 0 o (11-2)
0 0 0 0 0 0
L O 0 0 0 0 0 |
0 0 0 0 0 017
0 1 0 0 —1 0
- 0 0 1 0 O L b
K 0 0 0 0 0 0 (11-b)
0 —1 0 0 1 0
0 0 —1 0 0 1]

Substituting Eq. (10) into Eq. (7) and making use of Eq. (5) lead to the stiffness equation of the member as

F B 0 vee e (12)
in which .

O (A DK T e e e (13)

K (EA) DK (N ] LYK weeeerseememmsom s (14-a)
In view of Egs. (5) and (10), K can also be written as

T (EA) DK A (N )R eeesemsesmems s (14-b)

Noting x3%— x;°={ and 3"~ ;"= 03" — 1:"=0, the selection of {i;} equal to | i} results in

KT mm K% (v veeeeeee e ee e (15)

FOmFOmEA =1 0 0 1 0 Qe L e (16)
and hence Eq. (12) becomes

F=FA/ DK T—EAI—1 0 0 1 0 Q) (17)
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in which F° and % are quantities similar to F° and ¥ but defined in reference frame of List.
The coordinate transformation matrix 7' relating x and F defined in the reference frame of |i,} with ¥ and F,

respectively, by

T T, F o T oo (18-a, b)
is given by

T=( t;l)z[[];”] [Ii]} ............................................................................................................ (19)
in which

La=igi, e L (20)

Substituting Eq. (18) into Eq. (12) results in stiffness equation of the member in coordinate system fixed in
space as

F K — 0 oo 21)
in which

O T T e e 22)

F'=(EA/DT'K' Tx=(EA/ DT K' Tx =(EA/ 1)< £, < 13,5 xooeveeoeeresoninn oo (23)
with

<ty>=<Ly L Ly LT T Ly g (24)
The notation < > indicates a row matrix, Making use of Eq. (14-a), K is expressed as

K=(EA/ D)< 5. > (N LT KT Toevomeeeee oot (25-a)
while use of q. (14-b) results in .

K=(EA/ D)< B0 < s A (N /LK e e e e (25-b)

When | 7| is selected to satisfy Eq. (1), there follows

T T2 5T P L+ e e e (26)
Then, noting the relation

Klf/2=<~(x7"~17”)/200(J:Tq—xT”)/ZOO>l':-<_I O 0 1 0 0>l 27)

F'of Eq. (23) is expressed as

FO% LA B, b e emee et et (28)

When | 5] is selected equal to | ¢;], substitution of Eq, (18) into Eq. (17) results in the stiffness equation of the
form of Eq. (21) with K and F° given by

K:(EA/1)< t?i>t<i?i> ........................................................................................................... (29)

F(’:‘EA<$?L->t ...................................................................................................................... (30)

in which <#;,> is the row matrix defined in the same way as for <1;;>>, which is expressed by taking scalar

product of Eq. (6-b) with {, as
<tfi>:12<3.x("‘xﬂfl ~§x"—x‘>}‘> ............................................................................................ (31)

Noting the direction cosine between j; and j, is expressed by (xi"~xi")/2, the equilibrium equation (4 ) can also

be expressed in terms of global coordinates as

-_ — N xq—x’) .............................................................................................. <
Fe= ( Z ){ -(x"»—x”)} ............ (32)
Substituting Eqs. (5) and (6-a), the governing equation in global coordinates is, then, expressed as
1 1 x‘l_xﬂ
Fe=—FEA|l "t — L P e USSR 33
[[ qu,_xpqu_xp}} { — (27— x?) (33)
Differentiation of F with respect to x gives
dF:Kr(x)dx ........................................................................................................................... (';4)

in which
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K (x)=

EA .{ xq_xp ]{ xq__xﬂ }l } N
(x?— = 2P U —(29— 22 I —(x?—x7) (x—x?flx?—x*))

By making use of Eq. (31) and Eq. (6-a), governing equation (33) and the tangential stiffness of Eq.  (35) can be

7 KO, (35)

written as
F=_‘EAKZ—Z)/”< Bp > beememeee e B S S SO U USSP SOOI (36)
Kom(EA/ D)< 5>t < B3> A (N TVK® s et e i, (37)

Comparing Eq. (37) with Eq. (25-b), it can be noted that, when j; converges to §; and hence < t;,> to< 3>, the
stiffness matrix of the nonlinear stiffness equation (21) becomes equal to the tangent stiffness of the same system.

The stiffness matrix of Eq. (14-a) consists with the constant matrix (EA/])K" corresponding to the stiffness
matrix of small disblacement and the matrix of a function of position [N(gc)/Z]Kz corresponding to the geometric
matrix. Since this expression of the stiffness matrix with these two terms agrees with the customary expressions,
the expression of Eq. (14-a) seems to be the most natural choice. In this paper, however, an alternative
expression is given in Eq. (14-b) . When stiffness equation is transformed into global coordinate system, these
stiffness matrices are expressed by Eqs. (25-a) and (25-b), respectively.

The customary expression of the stiffness matrix involves transformation matrix T defined between all three
components of {3} and those of {i,}. While the alternative expression involves only the transformation vector of Eq.
(24) between {7 and three components of {i,]. In view of Egs. (23) and (25'b) ; it is obvious that, in the
formulation of the member stiffness equation (21), the selection of base vectors {5 and j3 is trivial, It seems natural
that quantities irrelevant to the final result are to be excluded in the formulation of the governing equation. By this
reason, the stiffness matrices of Egs. (25-b) and hence (14-b) are preferred in this paper and being used in the
following numerical analysis. ) ;

It is noted that, when |i;| is selected to be equal to {i;}, the stiffness equation for finite displacement of trusses
becomes equal to that for small displacement as obvious from Egs. (29) and (30).

The stiffness equation for a whole truss is obtained by the standard superposition procedure by making use of the

equilibrium of forces and continuity of position at each nodal point.
3. ITERATIVE PROCEDURE BY SUCCESSIVE SUBSTITUTIONS

The nonlinear stiffness equation of a truss has been expressed in the form of Eq. (21). In view of Eq. (6), the
unit vector f; in the direction of the displaced member is given by

=l = PP/ o T P P T P e (38)
Considering iterative solution for Eq. (21), position vectors after p-th iteration are denoted by (x”)* and (x9".
The y-th unit base vector (j;)* for the (y+1)-th iterative solution may, then, be chosen as

(1 = U D = (PR AV TE D (T D (R PJ] v tomeemesein ettt e e e e L (39)

This procedure is performed on each component member of the whole truss. When solution converges, comparison

of Egs. (38) and (39) shows that the condition of Eq. (1) is automatically satisfied. With (j;)” determined by Eq.

(39), the coordinate transformation vector < t;;>" as defined by Eq. (24) is expressed by
<> =< — (2 — e D= (P> IV D = (P D — (PP] - ovreeeevesmereeie s (40)

The force and position vectors consisting of the nodal points of the whole truss are denoted henceforth by the

same notations as for the member element.

To utilize the method of successive substitutions, Eq. (21)is solved for x as

=K () HF A F )l S S RN 41)
and successive estimates of the solution are determined using
V=K (V)T HF A FO (X)) e 42)

Unlike the Newton-Raphson method, the method of successive substitutions does not assure convergence, - and only

produces first-order convergence in general, even if the solution converges'”. When the successive substitutions

5s



44 F. NismiNo, K, Ikepa, T, SAKURATI and A, HASEGAWA

converge, {7 also converges to j; and hence either of the expressions of Egs. (25) and (29) may be used for the
stiffness matrix K in Eq. (42).
The Newton-Raphson procedure for Eq. (33) under the given force F' is expressed by'?

2 = [ = K ()] F F EALLXY) 1= 1< i) U f o oveee e omerae st (43)
with K, of Eq. (37). Using Eq. (5) and the following identities

(N DK 20 = N < B>t ooeteeemse e e mie st (44)

S Bgy s> Qo vt e e e (45)
Eq. (37) post-multiplied with x yields

K = — EA (L] 1)< By boreeeemme et (46)
from which ‘

V= —[EALEY) LK ()] 1 By (27)55 e erreeeesommes ettt 47
Substituting Eq. (47) and Eq. (37) into Eq. (43) results in

xuuz[,f;{, < i?i(x'/)>b <ty (x> +'1N';V[K“]"1J§F—-EA< tr,—(x")>i} ........................................... (48)

x") I(x")

Noting that y-th estimate <#;,(x*)> is nothing but < #;;(x*)> and that Eq. (28) holds when Eq. (39) converges to
Eq. (38), the successive substitutions of Eq. (42) when the stiffness matrix of Eq. (25-b) is employed is identical
to the Newton-Raphson procedure of Eq. (48) and hence of Eq. (43), Accordingly, under the given force, F, the
successive substitutions of Eq. (42) with K of Eq. (25) guarantee second-order convergence for an initial value
sufficiently close to the true solution x.

For the most general numerical treatment, the force vector F' is expressed by the product of constant vector £

and varible scalar f as

By specifying the values of x”, Eq. (42) or its original form, Eq. (21), when Eq. (49) is substituted, constitutes
linear simultaneous equations with unknowns x**' and f**' which can be written as

v+1

x

f!/?l

Since the number of unknowns is larger by one than that of the equations, an additional condition must be introduced

[K(xv) _f]{ }*‘F“(xv):() .................................................................................................. (50)

among variables x and f. In structural analysis, it is common that nodal positions of structures are solved under
the given force as expressed by

€y T () oo e 51
where c,,, is a constant for (j-+1)-th solution. While, so-called position control or path length control™ is also

used in nonlinear structural analysis. In the former, one of the positions, for example x;, is given as

i Gy g () e o e e e (52)

In the latter, a path length of equilibrium curve in n+1 dimensional space is given as
n
tzag(xi_xg)2+a31“(f._f0)2_.ci,il:0 ............................................................................................ (53)
=1

in which f° and x} are the known components of j-th solution on the equilibrium curve. The a; up to @, are non-
dimensional arbitrary constants, while g,,, is another arbitrary constant equating the dimension of f to that of x,.
It is noted that Egs. (51) and (52) are the special cases of Eq. (53). From this, it is obvious that to retain all
of the left side terms of Eq. (53) is not necessary and some of the terms may be discarded arbitarily by selecting a,
being equal to zero. The magnitude of q, may be selected on trial basis for a faster convergence, With no
information available for appropriate magnitudes, unity or zero may be assigned for g, up to @, while the
magnitude of g,,, may be selected such that the order of g,,,|f—f°| becomes equal to that of the largest element

of |x;—a?| at the range where linear small displacement theory holds.
Since Eq. (53) is nonlinear, it may be linearlized for the purpose of iteration. Expanding in Taylor series about

the y-th estimates, x¥ and f* and retaining only linear terms, Eq. (53) becomes
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M=

i

!

With the specification of one additional condition, the n+1 unknowns x and f may be solved by iteration

Qi (=2 P+ b (=P e 2] £ al =zt et = )+ @b (F= £N = )] =00 (50)

1

Combining Eq." (54) with Eq. (50). successive estimates of the solution are determined by

xy+1 = K(xy) _f ”‘. Fo(xu) .................................................................... [N
e kst atwirer] ] (95)

where
Koiy ()= a2 (V= 20) - Q2820 o @5 (2 20) >+ veeer e e o oe s, (56)
b2 =| £ ettt + aba (= - L[ £ at@— et ab - s e 57)

By similar treatment as for the derivation of Eq. (48), it can be shown that successive substitutions of Eq. (55) is
identical to the Newton-Raphson procedure of n+1 nonlinear simultaneous equations (33) and (53).

From the view point of convergence, it is advantageous to employ Newton-Raphson iteration than other iterative
procedure. An alternative process may also be employed, however, by dividing the iterative process of Eq. (55)
into two processes. With x” and f¥ x**' is determined first by Eq. (42) and then f**' is determined by
substituting this x**! into either Eq. (53) or (54). Using Eq. (53). f¥*!is given as

n
cin— 2 aflel =z

Sfri= Y (58)

Ao
This two step process may be in advantage at a point close to a stationary point for loading intensity, where f— f°
becomes close to zero and hence the last diagonal term of the coefficient matrix of Eq. (55) . Further, the
symmetry of K(x*) is fully utilized in numerical computation. It is noted that this alternative iterative process is not
identical with the Newton-Raphson process even if f**'is determined from Eq. (54).

Selection of initial values is very important for the iterative procedure by two reasons. Firstly, it affects the
efficiency of iteration in successive substitutions. Secondly, when equilibrium paths branch out from bifurcation
points, the convergence of the solution into a point on the original equilibrium path or on the branch depends on the
selection of initial values. Knowing the j-th solutions f° and x°, the initial values f' and x' for the next (j+1)-th

solutions can be selected by the sum of these solutions and their increments as
Sl O ALY, b A et e e e SRR (59-a, b)

Since the stiffness matrices of Eq. (25) coincide with the tangent stiffness of the system, the load increment and

increments of positions are related as
AL F K2 Ao oo e e - (60)
The solution of Eq. (60), when the nearly equal sign is replaced with the equal sign, is given by"¥

Axozé(e“/\'if>Afnei.......‘.4..“..........‘.‘.,...;..M..,..; ............................ i R 1)

where ), and e, are the j-th eigen value and the corresponding normalized eigen vector of K(x°). Eq. (60) has an
unique solution unless A;=0, that is, unless K(x°) is singular. The unique solution is given in a moae familiar form

as

A== AL (O] F v e i i (62)

When A,=0 where A, may be multiple roots, a solution of Eq. (60) exists only whex{ e;-f=0 and/or Af°=0.
When e, %0, Af° has to be equal to zero. The loading is then stationary at this equilibrium point x° with respect
to the variation of x and hence it is the maximum, the minimum or an inflexion point. Since Af°=( at this
stationary point, the increment Ax® of Eq. (61) is expressed by a linear combination of eigen vector e,

corresponding to zero eigen values, \,=0, as

where ¢; is an arbitary constant. Eq. (63) is the homogeneous solution of Eq. (60) with Af°=0. When a solution
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of Eq (60) exists with nonzero Af°, e, f has to be equal to zero and hence Eq. (61) becomes
A.I‘O:)_? G @i A v (64)

where Ax” is a particular solution of Eq. (60) and may be given by

2 i f L.
Ax’=2X (e/\) Af° e; (]=\:L) .................................................................................................. (65)
J=1 J

The fact that the solution Ax® of Eq. (60) is not unique at a nonstationary point shows that the singular point is a
bifurcation point of equilibrium,

Assigning an appropriate value to Af°, the initial estimate of f' and x' for (j+1)-th solution are determined by
Eqs. (59) together with (52) . The value of Af° is arbitrary, however, when no information is available for an
appropriate value, it may be determined by the condition that the initial estimates of the increments satisfy the
condition of Eq. (53). Substituting Eqs. (59) and (62) into Eq. (53) yields

C“‘ ......................................................................................................
(as7y TLKG] 7 F o [K(x] 7 Fi ad 0

in which
<al az an> ................................................................................................................. (67)

At the end of each iteration, it is necessary to check .the existence of singular points between the two
neighbouring solutions, if there is any possibility. This can be done by checking the eigen values for the change of
the sign between the two sufficiently close neighbouring solutions. With the presence of a possible bifurcation
point, initial values may be determined with Eq. (63) or (64) whichever appropriate for a solution on the possible
bifurcation path, When Eq. (63) is to be used to determine the initial values, the number of arbitrary parameter ¢,
is equal to the number of zero multiple roots at the singular point. When Eq. (64) is to be used, the number
increases one more with Af° as an additional arbitrary parameter. For these number of undetermined parameters,
there exists only one condition, Eq. (53) or (54), which may be used to relate them. An appropriate value is to be
assigned on trial basis to each of the undetermined parameters, ¢, and Af°, or to each of them except one which is
determined by Eq. (53) or (54).

Since the iterative process involves the computation of the inverse of K, numerical computation may become
unstable at a point close to a singular point when K of Eq. (25) is used. Generally, solutions at singular points or
very close to them may not be necessary to trace equilibrium paths. If, however, a solution is required at a point so
close to a singular point that the solution can not be obtained within a tolerable accuracy, iterative solution may be
tried with the stiffness of Eq. (29). Since the matrix is the same with that of small displacement theory, it is
nonnegative and hence it exhibits nosingularity except at the unstable geometrical configuration in the sense of small
displacement theory of structural analysis, By this reason, a solution can be obtained even at a stationary point or
at a bifurcation point by the use of K of Eq. (29), when the solution converges. Contrary to Newton-Raphson
process, there is no guarantee for the convergence even for initial values sufficiently close to the true solution,

however, the iterative process with K of Eq. (29) converges to a true solution when it converges.
4, NUMERICAL EXAMPLE OF A TWO-BAR TRUSS AND ITS CONVERGENCE

The convergence of Eq. (42) of the successive substitutions is examined for a two-bar truss as shown in Fig. 2.
The truss is subject to only one external force F, at point @ in the j,~direction and displacements are assumed to be
symmetric with respect to the j,~axis. Thus, the {,~component x, of the
position vector at point Q is identically equal to zero, and x, is the only

one unknown. The successive substitutions of Eq. (42) for this truss

becomes
+1:[f+ F“(x{’)]/K(x}’) .................................................... (68)
When Eqs. (25-b) and (23) are employed, K(x,) and F°(x,) are express-
ed as Fig.2 A two-bar truss,
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K(z)=@EA/DA— b1/ ) #102E8), 3
F"(x,)=(2EA/2)(1—b’/zz)x, ......................... (69.a~c) fos (1) with 8.2)
2:\/ b +x? Eq. (4.4)
While the employment of Egs. (29)- and (30) yields Eqs. (4.1) with(4.3)
K(x)=@EA/ Dt/ 1) s N
() L T (70-a, b) . h i

F°(2)=QEA/ D~ 1+ +xi/ 1)
Regarding x! as known quantity, Eq. (68) is a linear relation

between f and x'*'. The exact relation of Eq. (33) for this truss

between f and x, is given by

Fig.3 Equilibrium path of a two-bar truss.
Fig. 3 shows graphically this exact equation (71) and the linear

relation of Eq. (68) between f and x¥*', In the latter, the points satisfying x¥*'=1x, are marked by the dot ( - ) on the
straight line of Eq. (68). These marked points are located on the equilibrium curve. This shows that the values (f,
21 of Eq. (68) are identical with the solution of Eq. (71), if the successive substitutions converge.

As has been discussed earier, it is seen in Fig. 3 that the straight line of Eq. (68) with Eq. (69) becomes the
tangent line to the exact equilibrium curve of Eq. (71) at the point satisfying x{*'=x,. On the other hand, the
straight line of Eq. (68) with Eq. (70) is not the tangential line to Eq. (71). Further, the slope of this straight
line is non-negative even for unstable regions of equilibrium; which is due to the non-negative property of the
stiffness matrix.

Fig. 3 also includes the relation between x, and A determined from K(x,) of Eq. (69-a). The degree of freedom of
this truss is ene, and hence there exists only one eigen value. As shown in the figure by a dotted line, the eigen
value is equal to zero at the stationary points B and C. It is obvious that, by noting the change of sign of the eigen
value at two neighbouring points, the presence of a singular point in between can easily be detected.

Convergence of the successive substitutions under the force f given is examined on this example. As discussed
before, the successive substitutions of Eq. (68) with K(x?) of Eq. (69) produce second-order convegence for initial
values sufficiently close to the true solution except at the singular points B and C. On the other hand, successive
substitutions of Eq. (68) combined with K(x?) of Eq. (70) is not the Newton-Raphson iteration and hence there is

no guarantee for convergence. The successive substitutions of Eq. (68) converges when the following inequality
holds™™

g(l’l)zgd‘;{[f'FFo (xJ]/K(x,)Kl ................................................................................................. (72)

Otherwise the solution diverges, Substituting Eq. (70), g(x,) is expressed as

£(x107%EA) . £(>1072€4)

a(xy)

: \ <€ 500
N \ \\\ N
(a) Use of Eqs.(4.1) and (4.2) (b) Use of Ens.(4.1) and (4.3}

x1/1
Remarks:
1) r——=:Equilibrium Path with Converaence
-1 ” 2) -——=:Equilibrium Path without Convergence
3) Shaded Portion indicates Convergence Region of Successive Substitution.

Fig. 4 Profile of g(x,). Fig.5 Convergence regions.
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g(x,)=(b2/xf)(—1+l/m) ................................................................................................... (73)
Fig, 4 shows the relation between x, and g(x,) as given by Eq. (73). The figure indicates that the solutions diverge
in the region of unstable equilibrium between points B and C and converges in the remaining region,

Fig. 5 shows the regions of the initial value x,, with which the iterative process converges under a given force f.
The solid lines of the equilibrium curve indicate the solution which the iterative process converges, while the
dashed line is the solution which the iterative process can not converge regardless of the initial values, The shaded
portion is the region of initial values with which solution converges to the solid line in that region and the open
portion is the compound region of initial values, with which the itekrative process converges to one of the three

solutions depending on the location of the initial values in the region.
5. NUMERICAL EXAMPLE OF A RETICULATED TRUSS

A reticulated truss? 10191919 a5 shown in Fig. 6 is analysed as a numerical example with multi-degrees of free-
dom system. The solution is obtained by prescribing the path length of equilibrium using the stiffness matrix of Eq.
(25-b).

Fig.7 shows relations between loading intensity and vertical position of the node b of the truss for the loading
pattern (a) as given in Table 1. The numerical results obtained by the present study are shown by dots. Also shown
in the figure are the results by Hangai and Kawamata'® Jagannathan, Epstein and Christiano? and Yoshida,
Masuda, Morimoto and Hirosawa!® . The analysis agrees well with the results of Yoshida et al. but differs
remarkably from the others. It has been checked that the numerical results of this study satisfy the exact governing
equation (33).

It was pointed by both Jagannathan et al, and Yoshida et al. that the curve should pass the origin again when
/=0 and hence numerical errors are present in the analysis of Hangai et al. This configuration corresponds to the
displacement of node a downward by 4 cm and no displacement at other nodes (see Fig.9. (¢)). It is obvious that the
system is in self-equilibrium and hence f must be equal to zero at this configuration.

Jagannathan et al, assumed a linear constitutive relationship between the

Kirchhoff’s stress tensor and the Green’s strain tensors, as expressed by Table 1 Vertical loading pattern,
Joint NO. Pattern Pattern
(a) (b)
For comparison, numerical computations were made by the mehod of present a 1.0 0.5
. . s Lo b 0.0 1.0
analysis employing Eq. (74) as constitutive equation instead of Eq. (5 ). 00 o
C . .
The results are plotted in Fig,7 as indicated by triangles, There was d 0.0 1.0
difference between the solutions employing Eqs. (5) and (74). but, as can e 0.0 :'0
f 0.0 .0
be seen in the figure, it was insignificant within the range of loaing and g 0.0 1.0
r F(>107%€4)
| ® Present Analysis Eq.(2.5)
= a Present Analysis Eq.{5.1) 4 o
el Masuda et al.l9)(1979) //
»»»»»» ey ~~== Hangai and Kawamata!" Y A
{1972 ;
——— Jagannathan et al.?’ al ; 4
2] {1975) / [oN
OACF /
L, o free joint }g Ve E \\ / 4 ,/
- / 2 b /A /
| o fixed joint ﬁ / \ / B

; )
iy (f{ // \ /;Zx/ © /

§G [, gx 18 I‘ &/‘2'0 B 2.‘1 X3 (cm)
2525 v (\ s 7 e
e 50 . S0 % N a© 72 "
o &N -
is ST -4

Fig.6 A reticulated truss (unit in cm), Fig.7 Equilibrium path for loading pattern (a).
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displacements of Fig, 7. These numerical results were also checked for the accuracy to satisfy the exact governing
equation which can be obtained by substituting Eq." (74) into Eq. (32). The accuracy of the results by Jagannathan et
al. may also be subject to question.

In order to demonstrate the numerical computation to find bifurcation points and bifurcated equilibrium paths, the
reticulated truss is analysed for loading pattern (b) of Tabie 1 15 The main equilibrium path starting from the
initial cdnfigﬂration with symmetrical displacements is shown in Fig. 8 with the vertical position x¢ of node a in the
abscissa and the force intensity f in the ordinate. The eigen value analysis is performed to check the presence of
possible singular points simultaneously with the determination of a point on the main equilibrium path. The singular
points thus obtained are marked in the figure by symbols (4), (V) and ([J) which indicate bifurcation points with a
single root and multiple roots of zero, and stationary points, respectively. Fig. 9 shows the self-evident
equilibrium configurations for f=0. These configurations correspond to points Q, R, Sand P in Fig. 8. It may be
worth to mention that this rather complex equilibrium path has been obtained by a single job of computation,
detecting all the singular points.

The first portion of the equilibrium path of Fig.8 is enlarged and depicted in Fig. 10. Aslo shown in Fig. 10 by
dotted lines are the changes of the magnitude of each eigenvalue with the change of equilibrium configuration, where

A is the i-th smallest eigen value. Single dotted line for X, A and that for A, As show that both of them are

£(x1079ER)

20.0
0 Self Evident Equilibrium Points

See Fig.9 a): Q
b}t R
(S
d): P

10.0

s

b
;J/ .
3

v Bifurcation Point
{multiple roots)

-10.0} & Bifurcation Point
(single root )

o Stationary Point

-20.0¢

Fig.8 Equilibrium path for loading pattern /™

F(x1079€A) X

~ fa)n
(5 R ® Present Analysis
v Bifurcation point
(muitinle roots)
o~ & Bifurcation Point
P (single root}
et
51 rm O Uinit Point
O
{c) S
\
\ N

\ N 1.0 X3 (em)
\

1

A N N,
ISR AREIRERRFIAE) \ g
R A\,

Fig.9 Self-evident equilibrium configurations for f=0. Fig.10 Equilibrium path and eigenvalue curves.

11s



50 F. Nisuino, K, IKEDA, T, SAkuraland A, HASEGAWA

double multiple roots, Singular points within Table 2 i;-Components of eigen vectors at points A, B, C and D,
the range of this figure on the main equilib- Point B 5 c [ .
rium path are points A, B, C and D, where Eigen Value 3170 0 o ap=0 0L s=0 | gm0
the corresponding eigen values A, through A, %3 0.00 0.00 0.00 0.00 0.00 0.49
are reduced to zero. i X 1.00 0.00 2.00 0.00 -2.00 1.00
Table 2 shows the seven j,~components of X5 -1.00 -1.00 -1.00 -1.00 -1.00 1.00
eigen vectors at points A, B, C and D. The x5 1.00 1.00 -1.00 -1.00 1.00 1.00
other 14 components are small compared with x5 -1.00 0.00 2.00 0.00 2.00 1.00
unity and omitted to list in the Table. The x5 1.00 | -1.00 | -1.00 1.00 1.00 100
value of f:e; becomes zero at points A, B and X o 100 10 100 7100 1.00
C, whereas the value at point D is not reduced
to zero. This shows that points A, B and C I

are bifurcation points and point D is a station-
ary point,

The method of successive substitutions is
performed to compute bifurcated equilibrium

paths using values of Eq. (59) with increment

determined by Eq. (63) in which arbitrary
constants ¢; are determined on trial basis.
The results are shown in Fig. 11 with positions
x? and xf in the orthogonal horizontal axes
and force intensity f in the vertical axis. In
the figure, () indicates a portion of the main
equilibrium path shown in Fig. 8, whereas A),
B-1) ~Be—3) and C—1) ~C—6) indicate one,

three and six bifurcated paths from points A, Fig. 11 Spatial sketch of equilibrium paths near bifurcation points.

B and C, respectively.

Since points A, B and C are not the stationary points, Eq. (64) can also be used for the estimation of an
increment, With this increment including the particular solution, however, the iterative solution showed a tendency
to converge on a solution on the main equilibrium path, rather than on the bifurcated paths. The force increment at
the bifurcation points in the direction of bifurcated paths are nearly equal to zero at A and C, whereas that is not
so at B. This shows that the bifurcated paths at A and C are stationary at the bifurcation points, whereas those at
B are not., These two types of bifurcated equilibrium paths are called as symmetric and asymmetric bifurcations,
respecitively!”-19-19  Because of this, it is obvious that a better initial value for a solution on the bifurcated paths
can be estimated at A and C by the homogeneous solution, but the particular solution represents the increment on
the main equilibrium path,

The tangential vectors at each singuar points A through D are determined by the vector from the bifurcation point
to a nearby point on the bifurcated equilibrium path, and their i,-components are given in Table 3. Comparing
Tables 2 and 3, it is seen that the modes of the tangential vectors agree with those of the eigen vectors or with their
linear combinations at symmetric bifurcation points A and C where the force increment is equal to zero for
bifurcation paths, On the other hand, the tangential vectors at asymmetric bifurcation point B where the force
increment is not equal to zero can not be expressed by the linear combinations of the eigen vectors. This is obvious
by the fact that the linear combination of the eigen vectors of Eq. (63) represents the homogeneous solution of Eq.
(60) and hence it can not represent the mode of tangential vectors, Ax®, for asymmetric bifurcation in which Eq.
(60) is not homogeneous. The non-homogeneous mode can be represented by Eq. (64) adding particular solution to
the homogeneous solution. Whether a bifurcated path is symmetric or asymmetric is not known beforehand, but it

becomes known only when solutions are obtained within the frame work of the present study. The behavior of the
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Table'3 Tangents of equilibrium paths at points A, B, C and D.

Point A B C D
df 0 % 0 0 0
Path A) B-1) B-2) B-3) c-1) | c-2) C-3) C-4} c-5) C-6) D)
x? 0.0 c.21 0.21 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.49
xg -1.0 1.0 1.0 0.98 | 1.0 1.0 G.0 1.0 -1.0 -1.99 1.0
xz 1.0 1.0 O.éé 1.0 1.0 0.0 -1.0 -1.0 -1.99 { -1.0 1.0
xd |10 | o9l 10 | 10 0 00 [ <10 [-1.0 1 -1.99 | -1.0 | 1.0 | 1.0
x% 1.0 1.0 1.0 0.98 | -1.0 -1.0 0.0 -1.0 1.0 1.99 1.0
xE -1.0 1.0 0.98 1.0 -1.0 0.0 1.0 1.0 1.99 1.0 1.0
x3 1.0 0.98 1.0 1.0 0.0 1.0 1.0 1.99 1.0 -1.0 1.0

v - Bifurcation Point
(multiple-roots)

& Bifurcation Point
(single root)

o Stationary Point

8-1),8-2),
Q) Main path
N /A
I
. /1
} IR 15.0 / Jxstem)
\T“‘_v___~*~»“k/,
\ / Y/
\ s
& SN // I’
\
-10.0 o ™~ LY
/ \ NN 4
N N e
| AN
‘ N ~
s 810.8-2),8-3) N Y
y £ 3 S~ g
€-4),-5),6-6)

Fig. 12 Main equilibrium paths after bifurcations at A, B, and C.

F{x107%EA)

bifurcated equilirium paths can be studied considering higer
order differentials’ with the expense of additional
computaion, Whether the effort is worth for computing
equilirium paths remains to be studied, Because of this,
generally a trial for the selection of Eq. (63) or (64) is also et
necessary in addition to the trial selection of ¢, for the

choice of initial' values to obtain solutions of a point on ﬁ}“’c'g)’c's)

bifurcated paths. e

T e

After the main equilibrium path as shown in Fig.8 is .~ /2 /7 2" T TTToo—- 8-1),8-2),8-3)

— SR B

1.0 %3 (em}

traced, similar analysis can be performed next to trace the
main paths of the bifurcated equilibrium paths from each
bifurcation point., Those paths may be called as the second
generation of the equilibrium curves. All of the main Fig.13 Complete equilibrium paths near the initial
equilibrium paths, that is smooth continuous paths, bifur- configuration;

cated from points A, B and C are thus traced and shown in

Fig. 12 selecting the position x,* in the abscissa and the force intensity f in the ordinate. Although some of the
bifurcated paths such as B—1) ~B—3) are identical when projected into this two dimensional plane of (f, x;%, those
differ from each other in the 22-dimensional space of (f, x). Hosono' ¥ has also computed the equilibriumpath

bifurcated from the points A, B and C, but part of them.
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After the main paths of the bifurcated paths from the original main path () are traced, similar analysis can be
performed again to trace the bifurcated paths, that is, the third and further generations of the equilibrium curves
from the bifurcation points on the second generation of the equilibrium curves as shown in Fig. 12. An example of
this third generation curves is shown in Fig. 13 which depicts all the bifurcated paths within the range of —1
<x3°<1.4.

6. CONCLUDING REMARKS

Although the up-dated Lagrangian formulations in terms of incremental forces and displacements are popular in
general for the analysis of the finite displacement problems of structures, this paper presents a total Lagrangian
formulation in terms of overall nodal forces and positions, which seems to be even simpler than up-dated Lagrangian
formulation at least for the analysis of a truss. Use of nodal positions as basic unknown quantities instead of
displacements is noted by two reasons. The first is that the formulation does not require any information on the
initial configuration but only the dimensions of the members and continuity conditions of the nodes. It seems natural
that quantities irrelevant to the final results are to be excluded in the formulation of the governing equations, The
second is that the so-called separation of rigid body displacements becomes trivial. Selection of local coordinates
along the displaced configuration accomplishes automatically the same effect of removing rigid body displacements.

It has been proved that the finite displacement problem of trusses can be solved not only by the stiffness equation
for finite displacement, but also by that for small displacement, when local coordinate i7 is selected in the direction
parallel to the displaced member axis and when an iterative process converges.

The stiffness matrix of this total Lagrangian formulation becomes equal to the tangential stiffness of the system,
when the local coordinate {5 is selected along the displaced member axis. The iterative procedure by the method of
successive substitutions is presented to solve the stiffness equation developed in this study and its convergence is
discussed. Since the stiffness matrix of this study converges to the tangential stiffness of the system, the simple
and most primitive successive substitution procedure becomes equal to the Newton-Raphson iteration, resulting in
second order convergence for initial values sufficiently close to a solution.

The stiffness matrix is presented in two different forms. One is the customary form, Eq. (25-a), as the sum of
the stiffness matrix for small displacement and geometric matrix. The other is presented in slightly different way by
Eq. (25-b). Though the latter form is not reported in any literature, it seems to be preferable by the reason that
the quantities irrelevant to the final results are not included in the latter but included in the former as has been
discussed before.

It seems essential to perform eigen value analysis for the finite displacement solutions of a complex structure.
Path length control is effective to trace the main equilibrium path, however, the detection of bifurcation points is
possible only with the help of eigen value analysis. Further, it may be a difficult task to locate a solution on
bifurcated paths if information on eigen vectors at the bifurcation points is not available.

A simple two bar truss and a reticulated truss are investigated as numerical examples. In the former, the
characteristic of the present formulation and the convergence by the successive substitutions have been
demonstrated in detail. The latter example is chosen to show the effectiveness of the present formulation and simple
systematic procedure to trace the finite displacement equilibrium paths including the main path and paths after

bifurcations.
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