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SYNOPSIS

A wall stress model for Large-eddy simulations (LES) of flows over complex boundaries that involve flow separation
and roughness effects is proposed and verified in a few test cases. It is based on a resistance formula for the bulk flow
parameters applied to the near-wall flow on a local and temporal basis and is much simpler than the previous method
involving dynamic determination of model constants. The results indicate that the new wall-stress model used in
conjunction with the standard Smagorinsky model or the newer shear-improved Smagorinsky model gives consistently
good results of the mean velocity and the Reynolds stresses.  The grid we used is a very coarse grid and does not resolve
the viscous sub-layer or the buffer layer. More commonly used logarithmic-law similarity or the power-law similarity is
found to produce incorrect results in the separated or reattaching regions. Since it is impossible to resolve viscous sub-
layers in real-scale applications with computational grids that can be accommodated by available computer systems, the
proposed model will be useful in such applications. Test calculations also indicate that the standard Smagorinsky sub-grid
scale model, which is known to work only if the wall layer is resolved and if damping is applied to the eddy viscosity
coefficient in the viscosity dominated region, yields surprisingly good results if no wall model is used at all.

INTRODUCTION

With the ever increasing power of digital computers, Large Eddy Simulation (LES), which was thought to be too
~ costly to perform calculations of real-scale open-channel flows and realistic river flows, is coming within the reach of
practical hydraulic engineers (eg. (1, 2)). It gives detailed information of the three-dimensional turbulent motion that is
very important in solving various engineering problems such as the estimation of the drag on the bed, transport of sediment
and other hydrodynamic forces on structures. The LES method has been tested and validated in basic flows such as
homogeneous turbulence and fully-developed channel flows (1, 2) but has not yet been tested in simulation of large-scale
flows over complex boundaries. For large-scale flows, the fraction of fluctuating motion that can be resolved compared
with the entire flow decreases and the accuracy of the flow simulation depends more on the accuracy of representation of
the unresolved modelled part of the flow. Therefore, much focus has been placed on developing accurate and efficient
sub-grid scale (SGS) models. However, for realistic flows with complex boundary geometry, not only the SGS stresses
but the boundary effects must also be accurately represented. The flow near solid boundaries in real scale flows cannot be
resolved to obtain the boundary stress without a model.

“Wall models” have been studied intensively to make the LES applicable to high-Reynolds number engineering flows in
which the near-wall flow cannot be resolved (e.g. Piomelli and Balaras (3)), but the problem is still unsolved. = Particularly
when the boundary geometry becomes complex and rough, no working wall model is available. The present authors
proposed (Kitano and Nakayama (4)) a model applicable to arbitrary geometry with un-resolvable roughness by a dynamic
procedure, in which the unresolved boundary effects are estimated from the resolved flow and the resolved boundary shape.
However, the procedure involves complicated filtering over complex flow field and takes a considerable amount of
computational time for practical calculations. The values of the model coefficient thus determined were found to be close
to the values implied by conventional resistance formula, which can be exploited to simplify the model.

In the present work, a more simplified model in which the model coefficient that was determined by a dynamic
procedure is fixed at a nominal value estimated from the overall resistance of the flow, is proposed and tested in a few
different flow conditions. The first test case is a flow over model hills placed at the bottom boundary of a long channel,
which has been computed by reliable high-resolution LES by Temmerman, L. and Leschziner (5). The second test case is
a wavy surface for which Direct Numerical Simulation (DNS) has been done by the present authors (6). The latter case
can also be regarded as a flow over a model rough surface since the height of the waviness is only 5 percent of the channel
depth. Two commonly used SGS models are used in conjunction with the present wall model, and the relative merits are
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also discussed.
BASIC EQUATIONS, SGS MODELS AND WALL MODELS
Basic equations

The basic equations for the filtered flow field are the filtered equations of motion

. Ouu; . Ou; | Ty
2&+;&:_i_@1+gi+_a_{v[%+_1_)+i} 0

and the filtered continuity equation
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for incompressible flows, where u; is the spatially-filtered velocity component in the Cartesian coordinates x;, P is the
filtered pressure, g; is the component of the gravitational acceleration in x; direction, v is the kinematic viscosity coefficient
and 7; is the subgrid-scale stress. It is noted that we do not use the explicitly filtered form of the equations of motion,
which is
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where the angular brackets indicate filtering (saving the overbar to mean the time average) which can be explicitly
performed but requires additional definition of the filter and extra computation (7). The implicit form (1) necessarily
makes use of the numerical filtering effects is thought more efficient in real-scale applications and used in the present work.
The filtered pressure P in Equation (1) includes the isotropic part of the subgrid stress so that 1, contains only the non-
isotropic part which can be expressed by the eddy viscosity model with kinematic eddy viscosity coefficient 1, as '
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This form does not require an additional model for the isotropic part. The eddy viscosity representation with an
appropriately determined eddy viscosity coefficient works well within the flow in most cases. However, near solid walls,
particularly if the non-slip wall condition is used and if zero velocity is assumed on the wall, the velocity gradient is
significantly underestimated and the wall stress is calculated incorrectly. This is the main difficulty in using Equation (4)
near the wall in high Reynolds number flows. We present the wall stress model that circumvents this difficulty in the
following section.

SGS models

For the SGS model, we use the commonly used standard Smagorinsky model (8) and the shear-improved Smagorinsky
model proposed by Leveque et al. (9) that has been shown to do as well as the dynamic Smagorinsky model without
performing a numerical filtering (5). The standard Smagorinsky model with a near wall damping is given by:
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where Cs is the Smagorinsky constant (in the present work, taken as Cs=0.1), A is the filter size (in the present work, taken
as the geometric average of grid spacings in three directions), y'=uy/v, where y is the distance to the wall and u. is the
friction velocity, and S is the rate of deformation tensor and
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The shear-improved Smagorinsky model has been shown to give good results both in homogeneous and wall turbulence
including those transitioning from laminar to turbulent flows (9). It is given by:
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where the overbar indicates the ensemble or time average. In the present validation calculation, since the geometry is
two-dimensional, the transverse average is used.

Wall models

In this section we describe the wall models used in the present work including a new simplified one. Wall models
relate the local and instantaneous wall shear stress to the velocity near the wall without using the molecular viscosity law.
Most of the existing models make use of similarity relations for the velocity distributions near wall expressed in terms of
the wall shear stress (eg. Piomelli and Balaras (3)). However, the instantaneous velocity distributions fluctuate around the
mean velocity distribution with the amplitude as large as the local turbulence intensity and do not follow the similarity most
of the time (Nakayama et al. (10)). Since the resistance coefficient defined for global flow depends little on the Reynolds
number if it is sufficiently large, we assume that the local and temporal wall shear stress 7, is given by a resistance formula
based on the local velocity u; as

Tw =pCdu1‘ull (8)

where Cj is a resistance coefficient which is in general dependent on the Reynolds number, the local geometry, and the
temporal condition, such as acceleration with a sweep-type motion or deceleration, and the way u; is chosen (10). It
depends almost on the exact equations of motion near the wall, but the experimental data implied that the temporal mode is
the most important factor. In a previous work, Vengadesan and Nakayama (11) used the temporal pressure gradient as a
parameter in the standard logarithmic-law similarity and found to improve prediction of the flow over curved hills.
Kitano and Nakayama(4) determined this resistance coefficient by taking the test filter and assuming scale similarity as is
done in dynamic SGS models. The results indicated that the dynamically determined resistance coefficient took values
close to the resistance coefficient for the entire channel flow. Furthermore they tend to be constant for higher Reynolds
numbers. Based on this, we choose a value that gives the correct overall resistance that is in a similar form as the
resistance formula for a flat surface:
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where U, is the mean bulk velocity, 4, is the grid spacing in the streamwise direction and B is a model constant set at 0.241
same as that used for flat surface boundary layer (12). The main point of the above relation is that U and B are the global
values not local as used in most wall models with local similarity, so that the total resistance in the entire channe] comes
close to that implied by the global resistance formula. Henceforth this will be referred to as WSM model.

The above-described wall model is compared with the more conventional ones given below. First the most-commonly
used two-layer model based on the logarithmic law and the linear law applied to the velocity magnitude u; at the first
calculation point which is y; from the wall.
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where « is the von Karman constant and 4 is the constant in the log law. This will be referred to as LL model.
The next one is based on the linear law and the power law proposed by Werner and Wengle (13 ). It is given by:
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This is designated by WW. It was used by Temmerman and Leschziner (5) in a calculation of flow over hills and found to
give good results.  That calculation resolved the viscous sub-layer /7., /py, /v <10, and performance for high Reynolds
number flows is not known.

NUMERICAL METHOD

The calculation method used in the present work is a fractional-step method using the collocated grid on a general
curvilinear coordinates as described in Nakayama and Sakio (6). Details are summarized in Table 1.  First the equations
of motion are integrated in time by Adams-Bashforth scheme by differencing the viscous and SGS terms using the second-
order central difference scheme and the convective terms by a second-order conservative difference scheme. The
boundary condition for the cells next to the bottom boundary is that the wall shear stress is set by the wall model. Then
the pressure is computed by solving the Poisson equation to satisfy the continuity equation and the velocity is also
corrected.

Table 1 Summary of numerical calculation method

Model elements Method
Coordinates Sigma-coordinate system
Grid Collocate
Calculation algorithm Fractional-step method
Convective term Second-order conservative central difference
Viscous term Second-order central difference
Pressure solution SOR method
Time marching method Second-order Adams-Bashforth method
CALCULATION AND RESULTS

The wall model described above has been tested in two test flows, both of which involve curved surfaces with flow
separation. The combination of models tested are summarized in Table 2.  The first test case is a fully-developed closed-
channel flow with hill-like obstacles on the bottom surface as shown in Fig. 1. The second case is a fully-developed open-
channel flow over wavy bed shown in Fig. 5. For both of these flows the bottom boundary is curved and the equations are
first transformed onto a curvilinear coordinate system before being numerically solved in the same way as was done in the
DNS (6).  The results are presented in the rectangular coordinates (x,y,z), the streamwise, vertical and spanwise distances
with corresponding velocity components (u,v,w), with the notation for the average and the filter as defined before.
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Fig. 1 Computational grid for flow past periodic train of model hills

Table 2 Summary of numerical calculation method

abbreviation SGS model Wall model
SdS+LL Standard Smagorinsky model Log law
SdS+WwW Standard Smagorinsky model Power law by Werner and Wengle
SdS+WSM Standard Smagorinsky model Wall stress model
SdS+NS Standard Smagorinsky model No-slip
SIS+LL Shear-Improved Smagorinsky model Log law
SIS+WW Shear-Improved Smagorinsky model Power law by Werner and Wengle
SIS+WSM Shear-Improved Smagorinsky model Wall stress model]
SIS+NS Shear-Improved Smagorinsky model No-slip

Flow over train of model hills

The first test case is the flow in a closed channel with hill-like obstacles placed on the bottom surface at a constant
interval defined by Almeida et al. (14) and a well-resolved accurate LES calculation of this flow has been done by
Temmerman and Leschziner (5). The numerical grid used to compute this flow is shown in Fig.1. The hill-like
obstacles of height 4 are placed at a constant pitch of 9% in a duct of height 3.0354.  The upper boundary is a no-slip wall
and the flow is fully developed, the computation can be done assuming the flow extends periodically in the streamwise and
the lateral directions. The computational region contains three hills as shown in the figure and its dimensions are
9hx3.035hx4.5h in the streamwise, vertical and the lateral directions covered by the computational grids of 60x18x30. As
can be seen from Fig. 1, the grid spacing is taken large enough so as not to resolve the wall region deliberately for the
purpose of testing the wall model to be used in a high-Reynolds number simulation. The first point from the bottom bed
is more than 30 wall units away.

Calculations were done for a Reynolds number based on 4 and Uj, the average velocity in the cross section containing
the top of the hill, of 10595 which is the same as the value used by Temmerman and Leschziner (5). The results of
calculations for this flow at three streamwise locations are shown in Figs. 2 through 4. The three locations are, a section
on the down-slope lee side of the hill where the flow is separated, the middle of the flat bottom section which is just
downstream of the reattachment point and on the upslope side of the next hill where the flow is accelerated. = Each figure
has two plots, one for the results of four different wall models including the case with no wall-model combined with the
standard Smagorinsky model (SdS) for the SGS stress and the other one for similar results obtained with shear-improved
Smagorinsky model (SIS). The solid line denotes the results of the well-resolved LES which can be regarded as the
reference. From the plots of the mean velocity profile results, one can see that all wall models do fairly well on the
accelerating up-slope position. The results in the re-circulating region and downstream of reattachment obtained with the
LL and WW models with either SdS or SIS are grossly deviated from the well-resolved LES. The results obtained by the
presently proposed wall stress model (WSM) agree consistently well with the well-resolved LES with either SdS or SIS
model. It should also be noted that the SdS and the no wall model (SAS+NS) combination is not too far off the well-
resolved LES. It is thought that a combination of underestimated velocity gradient near wall and over-estimated eddy
viscosity may have cancelling effects. SdS+WSM and SIS+WSM results are similar. The reason for this is that the SIS
model is different from SdS mode! only in the near wall region. Therefore, if the wall stress is equal, SAS and SIS results
are similar.

Fig. 3 shows the similar results of the Reynolds shear stress -u’y' where the primes indicate the deviation of the
instantaneous velocity from its time mean and the contribution from the modelled part of the stress is included. The
results of LL and WW are seen to be very close and generally under-predict -u% . The WW model after all is a minor
refinement of the LL.  Remarkably, the no wall model NS does fairly well when used with SdS but not with SIS. The
SIS model, which was shown to do well in homogeneous turbulent flow and wall-bounded turbulent shear flow, but has not
been tested in a separated shear layer like the present flow appears to over-damp the eddy viscosity and give too little
Reynolds stresses.

Fig. 4 shows similar results for the streamwise normal stress u'u’. The same trend seen with the shear stress shown
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Fig. 2 Streamwise mean velocity results using the Standard Smagrinsky (SdS) model and the shear-improved
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Fig. 3 Reynolds shear stress results using the Standard Smagrinsky (SdS) model and shear-improved Smagorinsky (SIS)
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Fig. 4 Streamwise Reynolds normal stress results using the Standard Smagrinsky (SdS) model and shear-i
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Fig. 5 Calculation grid for flow over wavy bed.
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Fig. 9 Vertical Reynolds normal stress

in Fig. 3 is also seen here, which confirms that the WSM does predict the normal stress well.

The second test case is an open-channel flow with a wavy bed for which there are DNS data though the Reynolds
number is smaller. The Reynolds number based on the average channel depth and the average velocity is 6760 (6). The
channel bed consists of sinusoidal waves with amplitude 5% of the channel height and the wave length is equal to the depth
as shown in Fig. 5. The maximum slope is steep enough for the flow to separate at the lee side of the waves. The upper
boundary is treated as a fixed flat free-slip surface. The number of grid points used in the present LES calculation is
90x35x48 which is less than 1/3 of the DNS in all directions. The grid spacing in the vertical direction is made constant
as seen in Fig. 5. The vertical spacing in wall units is about 25 and the wall layer is not revolved. Calculation for this
case is done with the combination (WSM-+SIS) of the wall and SGS models that was found to do best in the first test case.

The results of the mean velocity profiles, the Reynolds shear stress, the streamwise normal stress and the vertical
normal stress components at the top of the waviness, halfway to the bottom, at the bottom and half way to the next peak are
shown in Figs 6 through 9. Mean velocity distributions are seen to agree very well with the DNS results. The Reynolds
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Fig. 10 Mean velocity profiles plotted in the wall coordinates based on overall resistance

stress results are seen to agree fairly well with the DNS results except the peaks in the stress distributions near the edge of
the separated region downstream of the waviness peak are milder than the DNS. These LES results do not contain the
sub-grid contributions and must naturally be smoother than the actual.

The waviness in the present test flow may be regarded as roughness placed over flat surface. In fact the flow about
four roughness heights (peak-to-peak amplitude in the present sinusoidal surface) above the mean wall position is not
directly influenced by the details of the waviness (6) and the mean velocity distribution follows the logarithmic profile for
rough surfaces. The friction velocity in this case is deduced from the overall pressure gradient and not the local viscous
stress or its average. Fig. 10 is a plot of the mean velocity profiles at four streamwise locations same as those shown in
Fig. 6, normalized by the friction velocity U, that is calculated from the applied pressure difference Ap over the length of
the channel L, Jizp/pL plotted against Up/v in semi-log scale. one can see that the velocity profile in U; y/v>100 lies

nearly on a straight line that is parallel to the logarithmic law for smooth surface shifted down by about 8 U, The
roughness function AU" for sand-grain roughness of height same as the peak-to-peak height of the present sinusoidal
roughness is about 4 (Schlichting (15), Colebrook (16)). Buckles et al. (17) found experimentally that the equivalent
roughness height of a sinusoidally wavy surface is about twice the peak-to-peak amplitude and the present LES results
agree well with it.

CONCLUSIONS

A simple wall stress model based on a surface resistance formula has been proposed and tested in the calculation of
turbulent flows in channels with hill-shaped obstacles and a wavy bottom bed. The subgrid-scale stresses are modelled
with commonly used standard Smagrinsky and the shear-improved Smagorinsky subgrid-scale models. The results of the
mean velocity and the turbulent stresses are evaluated by comparing them with the well-resolved LES and DNS results.
The proposed model is shown to perform consistently better than the commonly used algebraic models based on the log-
law, and power-law similarity in flows over complex geometry that induces flow separation and reattachment. - The model
coefficient is determined by using a resistance formula for flat surface in terms of the bulk flow parameters which assures
the overall resistance is calculated correctly. It can also be used for calculating of practical flows over complex and rough
surfaces.
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APPENDIX - NOTATION
following symbols are used in this paper;

=constant in the log law;

= constant in wall stress model;

=resistance coefficient;

=Smagorinsky constant;

=components of gravitational acceleration;

“=hill height;

= pressure;

=rate of deformation tensor;

= time;

= fluctuating velocity components in x and y directions;
= Cartesian velocity components;

=streamwise velocity at the point closest to the wall;
=mean streamwise velocity;

=cross-sectional mean velocity

=mean friction velocity

=streamwise coordinate;

=rectangular coordinate;

=virtical coordinate;

=wall distance;

=the geometric average of grid spacing in three directions;
=grid spacing in the streamwise direction;

= von Karman constant (= 0.41);

=kinematic viscosity coefficient;

=kinematic eddy viscosity coefficient;

=fluid density;

=sub grid scale stress;

=wall shear stress;

=ensemble or time average;
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