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SYNOPSIS

In the case study presented in this work, the calibrated parameters of a Conceptual Rainfall Runoff (CRR) model
could not be uniquely identified. Moreover, the covariance and variance of model parameters varied among basins. The
uncertainty in the calibrated model parameters have been recognized as a concern for successful model parameter
regionalisation. Therefore, regionalisation should include assessment of model parameter uncertainty. For this reason,
we proposed a regionalisation scheme which, instead of regionalizing the single best value of model parameters,
regionalizes their joint probability distribution. A functional relationship between catchment attributes and characteristic
parameters of joint distribution are developed. The uncertainty in model prediction is quantified using multivariate
stochastic simulation technique, whereby a large number of model parameter vectors are sampled from their estimated joint
distribution that lie within 90% confidence region and fed into the CRR model. Regionalisation of joint distribution
addresses the effect of model parameter uncertainty in the result of regionalisation by taking into account the covariance
between model parameters which are generally ignored in approximate analytic techniques based on Taylor series
expansion. In the case study presented in this paper, the predictive uncertainties quantified from the proposed method
closely followed the prediction uncertainties quantified from the calibrated joint probability distribution of model
parameters.

INTRODUCTION

Conceptual Rainfall Runoff (CRR) models are popular tools for modeling flow at gauged site. Though some

parameters of CRR model have a physical basis, they are effective values at the catchments scale and are hardly measurable



in the field. Therefore, they are obtained by calibrating the model against observed data. The necessity of calibrating the
parameters has led to linking of model parameters of CRR models with catchment attributes in order to model flow at
ungauged site. A number of methods for transferring or regionalizing the parameters have been explored in the past
(Merz and Bloschl (1); Wagener et al. (2)). Among various methods, the use of multiple regressions to relate model
parameters () to measurable Catchments Attributes (CAs) is widely used in modeling ungauged basins (Wagener et al.
(2); Heuvelmans et al. (3)). This typically results in a set of multiple regression equations which estimates one model
parameter at a time rather than equations that jointly estimate model parameters. Thus any information about covariances
and variances of the model parameter is usually lost.

The uncertainty in the calibrated model parameters have been recognized as a concern for successful model
parameter regionalisation. Merz and Blgschl (1) addressed the issue of the uncertainties in 6 by making a comparison of
model parameter for two sub periods. Sequential Regression (SR) addresses this issue by combining model calibration with
regionalisation. Though SR relaxes the assumption that the model parameters are independent, and helps in improving the
identifiability of model parameter, it is difficult to apply without introducing bias into the regionalized parameters
(Wagener et al. (2)). Moreover, regional calibration method (Bastola et al. (4); Parajka et al. (5)) have appeared more
recently to minimize the effect of the model parameter uncertainty in the result of regionalisation by skipping the process of
model calibration. Regional calibration approach estimates the value of model parameter at all sites simultaneously in an
attempt to achieve the best regional relationship, thereby skipping the direct calibration of local model. However, regional
calibration method failed to identify the unique regional relationship, thereby inducing considerable uncertainties in model
prediction (Bastola et al. (4)). In a similar effort, Wagener et al. (2) used weighted regression to reduce the influence of
parameters of a gauged catchment that were poorly identified during calibration, but this does not introduce weights to
allow for the model’s local performance. Furthermore, the determination of identifiability is dependent on the sample size.
In an attempt to include model parameter uncertainty in the result of regionalisation, instead of regionalizing a single best
value of model parameters Bastola et al. (4) attempted to regionalize a number of plausible values of model parameters.
As the uncertainty in regional parameters can not be avoided, they incorporated non-parametric bootstrap sampling to
account for the uncertainty associated with parameters of regional models. Though this approach recognizes the existence
of a number of plausible values of model parameters, and addresses the uncertainty in the estimated regional parameters,
they, however, assumed that model parameters are independent to each other thereby ignoring the information on parameter
covariance. Moreover, enormous numbers of predictive models were required as they rely on the selection of a number of
plausible values of model parameters and number of bootstrap samples. All the studies mentioned above attempted to
address the issue of model parameter uncertainty but they did not explicitly incorporate the joint probability distribution of
model parameters which provides the information on the model parameter uncertainty.

This paper aims at developing an approach for the regionalisation of parameters of CRR models by considering the
uncertainty in the calibrated model parameters and their interdependency, The methodology is demonstrated through a
case study that includes a number of small to medium size basin (~25 to 1900 km?) located in different geographic and
climatic regions. The motivation for this work lies in the need to address various sources of uncertainty which have
drawn much attention in recent years and would otherwise hinder successful regionalisation.

METHODOLOGY

In most CRR models, the model parameters are typically strongly correlated leading to the existence of multiple optima.
Thus, such information should be included in deriving a regionalisation procedure. To accomplish this, it is assumed that
the joint distribution of model parameters can be approximated by multivariate normal distribution (i.e. the posterior mean
and entries of covariance matrix) and they vary among basin depending on their attributes and data aspects. This
consequently allows us to seek for a functional relationship between the characteristic parameters of joint probability

distribution of model parameters and basin attributes. The methodology is divided into two parts: estimation of joint



distribution of model parameters, and regionalisation of joint distribution of parameters.

As the parameters of hydrological model can not be uniquely defined and are uncertain, the goal of model calibration
should include the estimation of Posterior Probability Distribution of model parameters () conditioned on observation (D)
which is hereafter referred as PPD interchangeably. If one assumes that there is a probability distribution of outcomes based
on knowledge, then one can discuss uncertainty. Bayesian statistics describe uncertainty using posterior probability
distribution which represents what is known about the parameters given the prior knowledge and data. It combines two
sources of information for learning about unknown parameters: the prior probability that represents the prior (subjective)
belief about the values of parameters, and the likelihood function that reflects how the uncertainty enters and propagates
through the system. Bayesian statistical inferences provide an ideal means of assessing parameter uncertainty. However,
such apﬁroaches are hindered by difficulties in summarizing and exploring the posterior distribution. Recent advances in
Markov Chain Monte Carlo (MCMC) methods have Iargely overcome these difficulties by providing an alternate means of
sampling from a posterior distribution (see Kuczera and Parent (6)). Marshall et al. (7) compared four MCMC sampling
algorithms in the context of rainfall-runoff modeling and found that adaptive metropolis algorithm is superior in many
respects and can offer a relatively simple basis for assessing parameter uncertainty.

The metropolis algorithm produces a Markov chain sequence of samples that constitute a random walk in the parameter
space. Each iteration of the algorithm proceeds by first generating candidate parameter samples using a suitable arbitrary
probability distribution referred to as the jump distribution. These candidates are then either accepted or rejected using
criterion which ensures the algorithm is sampling from the posterior distribution when the Markov chain has become
stationary. Vrugt et al. (8) demonstrated that an MCMC sampler known as the Shuffled Complex Evolution Metropolis
algorithm (SCEM-UA) is efficient and well-suited to infer the posterior distribution of hydrologic model parameters. It is
an adaptive sampler, where the covariance of the sampling distribution is periodically updated in each complex during the
evolution to the posterior target distribution using information from the sampling history induced in the transitions of the
generated sequences. The following is a brief outline of the method used for generation of posterior probability distribution
(see Vurgt et al.(9) for detail).

1. Select the population size s and number of complex ¢ for model calibration.

2. Generate 5 set of parameters from the prior probability distribution and compute the multi-objective vector f for each
individual of the population and the rank the population based on the fitness assignment strategy proposed by Vurgt et al.
(9). Sort the s individual in order of decreasing fitness value and store the parameters and sorted fitness value in an array D.

3. Partition the population in array D into several complexes Cx (e.g., Cx', Cx*.....Cx9).

4. Compute the parameter covariance matrix for each complex C. Subsequently a new candidate points in k* complexes Cx*
is generated according to 9'=N (6", £ ) where 0'is the current draw of the s.

5. Begin the metropolis algorithm

a) Compute the acceptance ratio r = (f//f"), where £'and f**! are the fitness associated with current draw
and offspring parameters respectively

b) Randomly sample a uniform label Z over the interval O to 1.

¢) Accept the new sampled points "' if Z<r

d) Replace the worst point of C* with "'

6. Unpack all complexes Cx back into D.

7. Check the convergence statistics, if convergence statistics are satisfied stop, else go to 3. )

The assessment of parameter uncertainty using the Markov chain based approach has been largely used to quantify the

uncertainty in model parameters at gauged site. However, there application to modeling flow in un-gauged basin is difficult

due to the unavailability of observed data to construct the posterior probability distribution of model parameters. ~Therefore,
two presumptions are made in this study to extrapolate the joint distribution of model parameters of a specified hydrological
model from gauged to ungauged basin. Firstly, we presumed that the model parameter uncertainty depends on basin

characteristics, input data and the structure of hydrological model, and secondly we presumed that for parsimonious model



structures, the joint distribution can be sufficiently approximated by multivariate normal distribution which is the most

widely used distribution for dependent continuous variables. A close examination of the work by Uhlenbrook et al. (10) and

Seibert (11) reveals that the model parameter uncertainty depends on basin characteristics, input data and the structure of the

hydrological model used. Therefore, formulation of relation between the characteristics parameters of joint distribution of

model parameters and basin attributes is presumed plausible to estimate the joint distribution of model parameters at
un-gauged site.
The outline of the regionalisation joint distribution of model parameters is described as follows (Fig. 1):

1. Select a number of gauged basin and estimate vectors of relevant catchment attribute.

2. Calibrate the parameter of the selected hydrological model for all basins using the Markov Chain Monte Carlo method.
Subsequently, estimate the joint distribution of hydrologic model parameters for all basins assuming that it can be
sufficiently approximated by multivariate normal distribution. )

3. Identify the posterior mean vector u, and the set of pair wise covariances Cov (X;, Xj), including the variance Var (X;)
from the estimated joint distribution of model parameters.

4. Identify the functional relationship between the characteristic parameters of joint probability distribution of model
parameters and catchment attributes. )

5. Reconstruct the joint distribution of model parameters at ungauged basin from the functional relationship derived in
step 4.
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Fig.1 Schematic of regionalisation of joint probability distribution of model parameters for modeling flow in ungauged
basin where £ is the covariance matrix of the joint distribution of model parameters approximated by multivariate
normal, ¢ is the mean model parameter vector, @ is the vector of catchment attributes, f{.) is the hydrological
model, Q is the stream flow, [ is the model input, ¢ is the error.



The muitivariate stochastic sirhulation based on multivariate normal distribution (Scheuer and Stoller (12)) is adopted to
quantify the predictive uncertainties in simulated flow. - The Scheuer and Stoller algorithm presupposes estimates of 1) the
covariance matrix % containing the variance and covariance of the normally distributed random variables, and 2) the vector
of their means p. The algorithm is based on the theorem that if x is an n-component vector of variables with a multivariate
normal distribution (i.e., x is distributed as N(p , X ) where i is the vector of mean values and £ is the covariance matrix),

then a vector of variates X that corresponds to the multivariate normal distribution of x is given by Eq. 1.
X=CZ+u (0]

where C is the Cholesky Factor of £ and Z is an n-component vector of independent standard normal variates.  The mattix
C is the unique lower-triangular matrix such that it satisfies Eq. 2. Thus, finding C (Cholesky factorization) is equivalent to
finding the “square root” of the covariance matrix.

cc=% : @

Thus, once the Cholesky matrix C has been derived from the covariance matrix T, repeated application of Eq. 2 to
successive random vectors Z yields a large sample of independent pseudorandom data vectors, each vector corresponding to
an independent observation of the variables from the specified multivariate normal distribution. From larger number of
parameter sets, only those falling within a pre-specified confidence region i.e. the parameters set that satisfies Eq.3 is
selected.
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where F(c, p, m-p) is the 1-a percentile of the F' distribution with p and m-p degrees of freedom. This consequently
results in the ensembile of simulated flow. Subsequently the distribution of model output are examined in order to provide
inference on the probability that various subset of outcomes will occur.

This approach discussed above for regionalisation of parameters of hydrological model under parameter uncertainty
relaxes the assumption that parameters are independent and, thereby preserves the information on the correlation among
model parameters. Furthermore, the number of predictive models always remains equal to the number of characteristic
parameters of joint distribution of model parameters (e.g., the predictive models required for three parameter hydrological

models is nine when the joint distribution is approximated as multivariate normal distribution).
CASE STUDIES
Study area and data considerations

The 26 small to medium size basins situated in different geographic and climate zones (Table 1) were selected. The
21 catchments were considered for calibration of regional model and 5 catchments each located in 5 different countries (e.g.,
395.5, Ukaibashi, K0744010, 27035 and 204016) were presumed ungauged for the appraisal of the performance of
regionalisation schemes. Though the inclusion of larger number of basin are desirable, general problems with model
parameter regionalisation studies are: availability of only limited data, difficulty in selecting a more general types of
hydrological models that can be applied to a large number of basin characterized with different dominant hydrological

processes. Therefore, we only focused on small to medium size humid basins. The subset of hydro-metrological data used



Table 1 Description of selected basins

Mean Mean

SN Ri " Catchment Area Ni{eant 0 annual  annual tAverage hi
VETS Sysicin d sz €ievatio; Rainfall Runoff opograpnic
(m) Index
(mm) (cumecs)
1 West rapti 330° 1980 1757 1706 1336 6.26
2 Kankai 795° 1148 1229 2366 1833 9.47
3 Tinau 390° 554 909 2213 1950 6.44
4 Jhimruk 395.5° 683 1654 1716 1031 6.33
5 Fuji Torinkyo® 1020 943 1050 823 7.52
6 Arakawa Arakawa® 953 837 1115 616 6.39°
7 Ukaibashi Ukaibashi® 487 1102 1165 855 7.1
8 Conwy 66011° 344 345 2055 1704 7.8
9 Teifi 62001° 893.6 211 1382 1011 79
10 South Tyne 23006° 3319 438 1331 1003 8.19
11 Ure 27034° 510.2 366 1342 979 8.25
12 Aire 27035¢ 2823 233 1153 713 8.37
13 Bielsdown creek 204017 82 774 1884 1202 7.86
14 Swan 302200¢ 448 342 763 281 7.81
15 Tuross 218001°¢ 93 1060 946 368 7.56
16 Burnett ck . 145018¢ 83 556 1411 218 7.13
17 little Murray 2040164 104 910 1703 1041 7.07
18 Le Guillecd Trézilidé La  J3024010° 43 85 1014 491 8.68
19  LaRiviére de Pont-I'Ab ~ J4124420° 32.1 79 1236 522 8.39
bé a Plonéour-Lanvern
20 LEll¢ au Faouét J4712010°¢ 142 201 1192 611 8.32
21 L'Yonne & Corancy H2001020° 98 601 1299 930 7.61
22 Le Loup a Villeneuve- Y5615030¢ 279 835 1159 505 7.21
Loubet
23 Le Lignon du Forez K0753210° 371 869 1012 485 7.5
4 Boén
24 L'Aix a Saint-Germain-  K0813020° 193 751 988 493 7.27
Laval
25 Le Ternay a Savas V3517010¢ 255 - 906 867 429 7.82
26 L'Anzon a Débats- K0744010° 181 758 980 443 747

Riviére-d'Orpra

a)catchments located in Middle mountain physiographic region of Nepal and data were obtained from Department of Hydrology and
Meteorology (DHM), Nepal, b) catchments located in Japan, and data were obtained from Ministry of Land, Infrastructure and Transport
(MLIT), Japan, ¢) catchments located in UK, and data were obtained from http://www.ceh.ac.uk/data/nrfa/index.html, d) catchments
located in eastern Australia, and data were obtained from http://www.stars.net.aw/tdwg/?datasets e)catchments located in France, and data
were obtained from Model Parameter Estimation Experiment (MOPEX)-France.

in study has also been used in other parameterization and regionalisation studies (e.g., Xie and Fei (13); Shrestha et al.(14);
Reichl et al.(15)).

To link the calibrated values of model parameters with easily measurable basin attributes, a number of landscape
attributes were selected in this study, which are as follows: 1) area (A) (km?), 2) average topographic index (Ave.
Topographic Index or ATI), 3) Shape Factor (SF) (km/km?), calculated as the square of the length of the longest flow-path
divided by the watershed area; 4) basin average saturated transmissivity (Ave. Transmissivity or AT) (cm/h), 5) basin average
maximum root zone depth (Ave. SRMAX) (m), 6) Mean Elevation (ME) (m), 7) average Basin Slope (BS) (%), 8) Drainage
Density (DD) (km/km®). Moreover, as the basins selected in the study are situated in different climate zones, a number of
climate attributes were also considered such as: (1) Annual Average Rainfall (AAR) (mm), (2) Variance of monthly Rainfall
(VR), and (3) Wetness Index (WI), calculated as the ratio of average rainfall to potential evaporation. In order to extract the
landscape attributes for all basins, the land use data obtained from International Geosphere-Biosphere Programnie (I1GBP),
soil data obtained from Food and Agricultural Organization (FAQ), and The Shuttle Radar Topography Mission (SRTM)
data that cover the entire globe with a 3-arc second (approx. 90m) digital elevation model were used. v



Hydrological model

The TOPMODEL (Beven et al. (16)), which is a variable contributing area physically-conceived semi-distributed
hydrological model, was selected. Based on a simple theory of hydrological similarity of points in a catchment,
TOPMODEL makes distributed prediction of catchment response. These points of hydrological similarity are identified
by an index that is derived from catchment topography. Flow is separated into surface runoff generated by rainfall on
saturated contributing areas and subsurface downhill flow. The four basic assumptions that TOPMODEL uses to relate
local down slope flow from a point to discharge at the catchment outlet are: 1) the dynamics of the saturated zone are
approximated by successive steady state representations, 2) the recharge entering the water table is spatially homogeneous,
3) the effective hydraulic gradient of the saturated zone is approximated by the local surface topographic gradient, 4) the
distribution of down slope transmissivity 7o with depth is a function of stbrage deficit. The parameters requiring
calibration are the decay parameter (m) (m), lateral transmissivity (To) (m*h), delay factor (7d) (h/m), maximum root zone
storage (Srmax) (m), and parameters related to channel routing.  As we focused on modeling flow in small to medium size
basins at daily time scale, the routing of flow is not implemented. Moreover, the Srmax parameter was estimated from the
root zone depth and soil properties (Beven et al. (16)). The inputs of the model are the land cover map, digital elevation
model, soil map, daily precipitation, and potential evaporation data. For model calibration only the daily stream flow

measured at a basin outlet was used.
Model calibration

As multi-objective calibration eases in retrieving more information from the observed data and provides insight into
parameter uncertainty and limitation of model structure, the Multi-Objective Shuffle Complex Evolutionary Metropolis
algorithm (MOSCEM-UA) (Vrugt et al. (9)) was used. The primary strength of MOSCEM-UA is the estimation of the
PPD of CRR model parameters and is best suited for calibration of models that have small number of mode] parameters
(Tang et al. (17)).

For calibration the following goodness of fit criteria were used: 1) The Nash Sutcliffe efﬁcieﬁcy (NSE), 2) NSE for
the transformed flow to consider the heteroscedastic variance in flow, here the flow is transformed explicitly by
using,z =[(y+1)* =1]/ 4 , (Box and Tiao, (18)), where A is the transformation parameter and is selected to be 0.3, z is
the transformed stream flow, and y is the observed stream flow , 3) NSE for Low flow and 4) NSE for peak flow. The
objective criteria were calculated using observed and simulated daily stream flow values at the basin outlets. The peak
flow and low flow are defined as the periods where the observed discharge is above or below the mean flow level,
respectively. The result of model calibration i.e. the most probable value of model parameter, and Coefficient of
Variation (CV) of model parameters, is shown in Table 2. The coefficient of variation (CV) for model parameters is
calculated as the ratio of the standard deviation to the mean. It represents a dimensionless measure of parameter uncertainty.
A coefficient of variation of model parameters is calculated from the ~1000 set of Pareto optimal model parameters sets
sampled from their joint probability distribution. The variation in the CV of model parameters indicates that the degree of
uncertainties in model parameters varies from basin to basin depending on the basin attributes and data aspect. The model
parameter m and To were found comparatively sensitive than 7d. Furthermore, the correlation between the model
parameters also varied among basins. Apart from the basin attributes, the parameter uncertainty also depends on the
quality and quantity of data selected for model calibration. The required length (quantity) of the time series depends,
among other things, on the complexity of the model structure used and the information content off the data. It might
range from three years for a simple structure (Sefton and Howarth (19)), to up to a decade for more complex model
structures (Yapo et al. (20)). However, in principle the data set should always be long enough to avoid the problem of the

parameters being representative only of a particular climate sequence. With increase in the length of calibration data, the



Table 2 Most probable parameters and coefficient of variation of model parameters

Basin Posterior mean Coefficient of variation
D m(m) | To(m¥h) | Td(wm) m To Td
1 0.115 10 0.4 0.059 0.522 0.818
2 0.05 6 0.5 0.380 0.082 0421
3 0.09 5 1.5 0.171 0.065 1.004
4 0.11 5 1 0.238 0.087 0.844
5 0.027 3.75 0.75 0.178 0.080 0.759
6 0.013 42 0.5 0.043 0.016 0.698
7 0.027 6 25 0.095 0.044 0.710
8 0.015 35 2 0.089 0.038 0.674
9 0.011 485 4 0.108 0.042 0.646
10 0.068 52 15 0.025 0.032 0.642
11 0275 1.25 25 0.293 0.297 1.404
12 0.03 225 1 0417 0.199 0.743
13 0.275 125 1.5 0210 0.333 1.444
14 0.095 4.8 1 0.056 0.008 0.677
15 0.15 55 1.2 0.149 0.041 0.840
16 0.045 6.2 1.5 0.163 0.034 0.691
17 0.045 4.1 2.5 0.193 0.037 0.648
18 0.04 4.8 1.6 0.150 0.057 0.704
19 0.037 4.7 0.5 0.056 0.023 0.681
20 0.03 45 1.8 0.144 0.133 0.649
21 0.038 6.25 1 0.078 0.070 0.640

standard error of the estimate of parameter decreases (Gupta and Sorooshian (21)), but this improvement becomes smaller
after nearly 1000 data points. The same paper suggested that two to three years of calibration data should be sufficient,
provided that the data are of the right kind. In this study, we selected three years of hydrological data for model
calibration. For an Australian basin where the hydrological variability is higher compared to other basins, we subjectively
selected 3 years time series of data with the aim to include as much variety in the hydrological regimes as possible.
Furthermore, the impact of input uncertainty and the presence of errors in the stream flow data were neglected. It cannot
be assumed that instrumentation and observational practices will be consistent across the countries that this study covers.
This may cause the same problem as structural errors because data biases are catchment-specific and will be compensated
for, in a catchment-specific manner, by parameter calibration. The explicit representation of such uncertainties is beyond
the scope of this study.

Joint probability distribution of model parameters

The posterior probability distribution can be entirely characterized by its mean, a set of pair wise covariance and
variances if it can be sufficiently approximated by multivariate normal distribution. For the structure of model use in this
study, the number of characteristic parameters of joint probability distribution to be estimated via regional link function is
nine ie., three posterior mean and six entries of covariance matrix. The covariance matrix for the parameters of
TOPMODEL used in this study can be expressed as follows (Eq.4):

VAR(m), ~ COV(m,T;), COV(mT,),
3.5 COVm.T),  VART),  COV(T,T), 4
COV(m,T), COV(T,T,), VAR,

where z is the covariance matrix for the i basin, COVm, To),, is the covariance between m and To (model parameter)

for i" basin, and Var(m); is the variance of the model parameter m for i basin.



Regionalisation procedure

Assuming that the combinations of attributes are able to capture the exclusivity of each catchment, the method based on
the regional link function (i.e.0 = H(B | ®) +e¢, where 6, p and ® are dependent variables (e.g. model parameters and the
entries of covariance matrix of 0), regional parameters and catchment attributes respectively, H () denotes the functional
relation between 6 and B, and e is the error term) was used to transfer information from gauged to ungauged basin. The
linear correlation between the characteristics parameters of probability distribution of model parameters and catchment
attributes (see Fig.2) apparently shows the potential for developing the statistical relationship between the above mentioned
dependent and independent variable (CAs). The correlation coefficient calculated between the posterior mean value of
model parameters and the basin attributes reveals that basin with a higher wetness index and receiving higher average annual
rainfall were characterized with lower values of model parameter m ( the physical interpretation of the decay parameter m is
that it controls the effective depth of the catchment soil profile).. It is possible that the depth to water table is comparatively
greater in basins characterized with lower wetness index. The model parameter 7o which defines the transmissivity of the
catchment soil profile when saturated to the surface was found to be higher in the basin with higher mean basin elevation,
steeper slope, larger drainage area and higher standard deviation of monthly rainfall. The parameter 7d (defines the time
constant for the vertical flux) was observed lower in the basin characterized with steep slope, high elevation, and high
variation in monthly rainfall. Though 74 has no direct physical meaning it has been interpreted as inverse of To which is
also observed here in this study. Due to uncertainty in the calibrated model parameters, it is difficult to interpret the entire
observed relationship/correlation solely based on physical reasoning.

Some of the predictors are strongly correlated to each other. Therefore, we combined various independent variables
and selected only those combined variables for which the Variation Inflation Factors (VIF) is less than 10. The VIF is an
index which measures how much the variance of a coefficient (square of the standard deviation) increased because of co

linearity. The square root of VIF reflects how much the standard error is, compared with what it would be if that variable
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were uncorrelated with the other independent variables in the equation (see Allen, Theodore T. (22)).

In this study, we used second order polynomial form of the equation to regionalize the value of posterior mean. For
each dependent variable the following set of independent variables were selected: a) Ave. SRMAX/(KS*ATI), SF*KT, WI and
AAR were selected as input to estimate the model parameter m, b) KS, A4R/VR, ATI*Area and AAR*SF were used as
independent variable for parameter To, and ¢) DD/ATI, BS/KT and VR were used as independent variable for model parameter
7d. 'The close observation of the covariance between model parameters for all basins indicates that the interaction between
model parameters varied among basins. The plot between the combinations of selected basins attributes and coefficient of
covariance matrix is shown in Fig. 3. To regionalize the coefficient of covariance matrix, we employed an artificial neural
network. Artificial Neural Networks (ANNs) are more flexible model structures that can easily account for non-linearities.
For the ANN-based schemes, the popular feed forward neural network consisting of three layers: an input layer, one hidden
layer and output layer. We assume m/ input nodes (number of independent variable), n hidden nodes, and single output
nodes. Subsequently, a total of six neural networks were trained in order to regionalize the joint distribution of model
parameters. For each dependent variable the following set of independent variables are selected as input to the
corresponding neural network: a) variables WI/ATI, Area/AAR and Ave. SRMAX were selected as input to estimate the
variance of model parameter m, b) variables Area*BS, AAR/ATI, VR/SF and ME*WI/DD were selected to estimate
COV(m,To), c) variables AAR, Ave. SRMAX and ATI were selected as input to estimate the variance of model parameter 7o,
d) variables A4R, DDIATI and SF*AT/WI were selected as input to estimate COV{(m,Td), ) variables BS/WI, ATI and
Area*ME were selected as input to estimate COV(To,Td), and f) variables A4R*Area, VR*ATI, DDIATI and BS/AT were
selected as input to estimate variance of model parameter Td.

The use of regional link function typically results in a number of regional estimation equations that estimate the posterior
mean and entries of covariance matrix from easily measurable catchment attributes. The estimated joint probability
distribution subsequently allows estimating the predictive uncertainty.

RESULTS AND DISCUSSIONS

The parameter of the TOPMODEL was calibrated using 3 years of daily hydro-meteorological data utilizing
MOSCEM-UA. As the calibrated parameters could not be uniquely identified, the posterior means of model parameters
were regionalized simultaneously via a regional link function that links the posterior means to catchment attributes. The
simulated flow corresponding to posterior mean values accounted for much of the variability in the observed runoff in the
basins considered for regionalisation. The performances of model evaluated in terms of NSE for posterior mean value of
model parameters varied from 0.52 to 0.86 (see Fig. 4). A comparison between the estimated and the calibrated value of
model parameters can be made to evaluate the performance of regionalisation schemes, but the accuracy of the flow
simulated with regionalized parameter is a more relevant indicator. The difference between the calibrated and the
estimated model performance is here after referred to as spatial loss in model performance. The predictive model
performance of parameters estimated from regional link function for all basins is shown in Fig. 4. Both spatial losses in
the model performance and the spatial proximity of the estimated model parameters were used to evaluate the predictive
performance of regionalisation schemes. The spatial loss in the model performance was 7% for basins considered for
calibration and 12% for basins presumed ungauged. The mean value of three model parameters that are calibrated are
0.079, 4.614 and 1.32 and the estimated through regional models are 0.0759, 4.17 and 1.41. Standard error in the
estimated parameters is 0.009, 0.207 and 0,77 respectively for the model parameter m, To and 7d. k

The joint probability distribution of model parameters provides insights into the uncertainty and the interaction
among model parameters. The extent of interaction and uncertainty in model parameter vary from basin to basin (Table 2)
depending upon CAs and data aspects. The model calibration result indicates that uncertainties in the model parameter 7o
was higher in larger basins, characterized with higher elevation, steeper slope and lower wetness index. Besides 7o and m,

CV of Td was also significantly correlated with annual average rainfall and SD of monthly rainfall.
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Fig.3 The scatter plot showing the relationship between the derived basin attributes and the covariance
between model parameters.

To determine the uncertainty at each time step, the predicted output from the plausible value of parameters sampled
(lying within 90% confidence region) from their joint distribution were equally weighted and ranked to form a cumulative
distribution of the output variable. Subsequently, prediction ranges at each time step were determined corresponding to
the chosen quantiles. In this study the 5, 95% quantiles were used to define the prediction bounds. From the prediction
range, Average Width of the Interval of the Simulated Flow (AWISF) was calculated using Eq. 5.

AWISF = i(Qi,a -Q..)Q ©
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The value of AWISF (%) resulted from using numbers of plausible value of model parameter was adopted here as a
measure to quantify the prediction uncertainties associated with parameter uncertainty. The value of AWISF for all basins
estimated using model parameters sampled from its joint distribution conditioned on observation (referred to as calibrated
in Fig. 5) is significantly (at 5% significance level) correlated with CV of model parameters. A close look into the
prediction uncertainties and CAs reveals that higher prediction uncertainties are found to be associated with basins
characterized by the following aftributes: larger area, higher elevation, steeper slope, lower wetness index, and higher
variance in monthly rainfall. = Predictive uncertainties were observed lower in French and English basins compared to
Nepalese and Japanese basins. For the English and French basins which are relatively wetter, the model parameter
uncertainties were found comparatively less. - This is in accordance with the observation of Yapo et al. (20) who also
observed that the reduction in parameter uncertainty was maximal when the wettest data periods on record were used.

Once the joint distribution of model parameter are estimated using the regional estimation equations, 500 various sets of
model parameters that satisfy equation 3 at 90% confidence level were sampled. The AWISF corresponding to the plausible
set of model parameters sampled from estimated joint distribution was compared with the same obtained from parameters
sampled from the calibrated joint distribution (Fig. 5). The uncertainties in the model prediction quantified from the
parameters sampled from their regionalized and calibrated joint distribution were significantly similar to one another. The
average value of AWISF obtained from the model parameters sampled from their calibrated joint distribution was
approximately 28% for basins considered for calibration and 25% in basin presumed ungauged, whereas it was 34% and 33%
in basins considered for calibration and validation respectively (referred to as estimated in Fig. 5). Furthermore, the

ensemble of flow simulated with parameters sampled from regionalized joint distribution of model parameters for two
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Fig 4 Predictive performance of Regional model compared to the calibrated performance.
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Fig.5 Average Width of the Interval of Simulated Flow (AWISF) corresponding to model parameters sampled from
regionalized Joint distribution of model parameters (Estimated) and joint distribution of model parameters
conditioned on observation (Calibrated).
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Fig.6 Ensemble of simulated hydrograph obtained from the MPs sampled from regionalized posterior probability distribution
of MPs for two basins presumed ungauged (a) 330 (Nepal), (b) 27034 (UK)

selected basin is shown in Fig. 6. Even though the simulated ensemble flow encapsulated the simulated flow corresponding
to posterior mean value of model parameters, it could not encapsulate completely the observed time series. The observed
annual average flows for most of the basins were within the ensemble ranges except for Torinkyo (Japan), K0813020
(France) and Y5615030 (France) where it fell marginally outside the ranges of simulated annual average flow. This is most
likely due to the insufficiency of model structure, because, even the ensemble of flow simulated using parameters sampled

{rom the calibrated joint distribution of model parameters failed to encapsulate the annual average flow in these three basins.
CONCLUSIONS

Parameters of hydrological model can not be identified as a single value due to the interaction among model parameters.
Close observation of the joint distribution of model parameters conditioned on observed stream flow revealed that despite
using the parsimonious model with only three parameters to be calibrated, the uncertainty in the model prediction is apparent.
Moreover, variations in the characteristic parameters of joint distribution of model parameters, approximated as multivariate
normal distribution, were apparent among basins. Few catchment attributes were found correlated with the characteristic
parameters of joint distribution of model parameters, but it is difficult to entirely define such correlation or regional
relationship through physical reasoning. Apart from basin attributes, parameter uncertainty also depends on objective
function used for calibration, and data quality/quantity. However, some relationship or pattern between uncertainty and
basin atiributes and data aspects is apparent. Therefore, an attempt to regionalize the joint distribution of model parameters
is demonstrated through the case study involving a number of small to medium size basins and TOPMODEL. The
prediction uncertainties quantified from the model parameters sampled from regionalized joint distribution and falling within
90% confidence region closely followed the same quantified from the model parameters sampled from their joint probability
distribution conditioned on observation indicating the potential for such methods in dealing with the model parameter

uncertainty while carrying out regionalisation.
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APPENDIX —~ NOTATION

The following symbols are used in this paper:

C = Cholesky Factor of %,

COV(m,To); = covariance between m and To (model parameter) for ™ basin;
COV{(m, Td); = covariance between m and 7d (model parameter) for i® basin;
COV(To,Td); = covariance between 7o and 74 (model parameter) for i* basin;
Var(m); = variance of the model parameter m for i basin;

Var(To); = variance of the model parameter 7o for it basin;

Var(1d); = variance of the model parameter 7d for i basin;

X = vector of variates;

z = n-component vector of independent standard normal variates;

= regional parameters;

0 = model parameters;

6 =mean model parameter vector;

w = vector of mean values;

= = covariance matrix of the joint distribution of model parameters; and
o> = vector of catchment attributes.
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