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SYNOPSIS

This study proposes a new type monitoring technique of pollutant load in rivers: Optical characteristics of river
water are monitored by a multi-item optical device. The relation between the sensor signals and the water qualities
obtained from occasional sample analysis is modeled by an Artificial Neural Network (ANN). Next, the time series of
poltutant load can be produced from the optical signals. Field experiments were conducted in seven rivers flowing into
Lake Kasumigaura. The ANN model trained by the data obtained in 2005 successfully produced the time series of
pollutant load observed in 2006 and 2007. The ANN model works well in watersheds of different land use conditions if
it is trained by the data obtained in each river. Furthermore, there is a possibility that an ANN model constructed in a
river basin can be tentatively applied to other river basins where data of water sampling analysis are not sufficient to
calibrate the ANN model if the land use conditions are similar to some extent.

INTRODUCTION

Over the past several decades, many closed water bodies such as lakes, reservoirs, and inner bays became
eutfophicated by pollutant load generated by human activities in the watersheds. While the load from point sources has
been reduced by establishing laws and regulations in recent years, non-point sources such as agricultural lands, livestock
and poultry farms, urban areas and roads, still discharge polluted effluents. ~Accordingly, monitoring and regulating the
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latter is a major difficulty in solving the eutrophication problem (1). Because pollutant loads from non-point sources
rapidly increase during floods, water quality analysis of monthly or even weekly sampled water does not have sufficient
time resolution (2), so it is necessary to develop techniques of continuous or high frequent measurements of water quality.

Robotic in situ laboratory is installed in some rivers for high frequent water analysis, but it is not widely available
because it is expensive and maintenance is costly. On the other hand, monitoring of some water quality items is done by
using immersed-type optical sensors: concentration of particulate phosphorus can be estimated by using turbidimeters
(3-5); a fluorometer for measurement of chlorophyll-a (Chl-a) is already commercialized and widely used in field studies
(6); and dissolved COD is measured by using a UV meter in trial (7). At present, however, the items that can be
measured in this way are limited.

As a result, the major indices for eutrophication such as COD, TN (total nitrogen) and 7P (total phosphorus) are
estimated by using so-called Z-Q method (2, 8, 9). The method assumes the poliutant load (L) as a single function of the
river flow rate (Q) being based on a simple fact that pollutant load increases during a flood event. Needless to say, the
L-Q equation is a totally empirical correlation which depends on the characteristics of each river. Many researchers have
examined the errors of this method and have concluded that the degree of accuracy is not very high (3). However, the
strong point of L-0 method is that it can estimate a time series of load without much éﬁon, and accordingly, it is still used
widely in practice.

The purpose of this study is to increase the possibility of water quality monitoring with optical sensors based on an
extensional idea of L-Q method, which will be described in the next section. Field data of the study was collected in
seven rivers flowing into Lake Kasumigaura for three years. Autificial neural network (ANN) was employed to

 formulate and determine comprehensive empirical correlations between the signals from optical sensors and the loads of

COD, TN and TP with the data obtained in the first year. The performance of ANN models was examined by using the
data of successive two years.

BASIC IDEAS

Generally speaking, any measurement techniques employ some correlations between what we want to know and
what we can measure. The correlations can be classified into two categories. One is “universal correlations supported
by scientific theories and evidence”. For example, a standard measurement technique of material strain is based on the
correlation between the deformation rate of a gauge and the change of its electric characteristics. The classical
thermometer uses a correlation between the mercury’s temperature and its volume, and dissolved oxygen is measured by
using the correlation between the intensity of electric current and the amount of oxygen in the electrolytic liquid. = Such
measurement techniques are reliable, but the measurable items available for field measurements are limited.

The main point of this study is to utilize the “peculiar correlations at each site of measurement” as much as possible
in order to estimate a time series of water quality. Let us assume the following ideal situation (See Fig. 1): There are two

water sources in a water basin, say A and B. We focus on two
items of water quality a and f, whose concentrations are C, and Cs, t Water-A
respectively. The water from A has high C, and low Cp, and the

water from B has an opposite characteristics, low C, and high C,. C,
When the ratio of Water-A and Water-B changes in the process of
rain runoff, the water quality observed at a downstream station may

move along the straight line as shown in the figure. By doing this,

Q.
“. Water-B
]

we can “estimate” C, by measuring Cg, even if we cannot measure CB
C, directly.
Extending the above considerations, the authors intend to Fig. 1 Diagram of the two water sources




develop a method of water quality monitoring by using the signals from optical sensors (10, 11): If the water quality item
B has some optical characteristics such as pigment or fluorescence, the signals from optical sensors may have a peculiar
correlation with C, as well as C5.  As a result, the pollutant load of the item « (L) may have a peculiar correlation with
the signals and the river flow rate. In a practical situation, the correlation may be comprehensive and nonlinear among
multiple factors. In this study, an artificial neural network is employed to formulate and determine the comprehensive
peculiar correlations.

METHOD DESCRIPTION
Extension of L-Q method based on peculiar correlation

The so-called L-Q equation is a typical peculiar correlation. It assumes the pollutant load (L) as a single function
of the river flow rate (Q) as shown in Eq. (1). The concrete form of the equation is constructed by means of field data
obtained at each station.

L=f(Q) ‘ )

Although the accuracy of the estimation is questioned by many researchers, the L-Q method is still used widely in practice
because it can estimate the time series of L without much effort.

As pollutant load is a product of concentration (C) and river flow rate (0), Eq. (1) can be written in the following
form:

L=c@xQ @

The equation expresses that the pollutant concentration is a single function of 0.  On the other hand, many observations
provide evidence that the peak of particulate substances appears in the increasing phase of a flood. This fact means that
L cannot be expressed only by Q.

In view of this matter, we attempt to introduce other factors to construct a new peculiar correlation.

L= f(Q; X1, X2, X3, ) 3)

where X3, X;, - are indices of water quality whose time series can be obtained easily. Eq. (1) is the simplest form of Eq.

(3) obviously. As aforementioned, the signals from optical sensors were used as the indices in this study. In general,
however, they can be other measurable items such as electric conductivity, temperature difference between water and air,
and so on.

The counterpart of Eq. (2) can be written as follows:
L=C(X,Xp~)xQ @

where Q is dropped fmm the term of C, because the dependency of C on X;s is more essential and reasonable in a sense of
scientific reasoning than the indirect dependency on . The authors already compared the performances of Eq. (3) and
Eq. (4) in a previous paper (12), and found thai the results from Eq. (4) are slightly better than those from Eq. (3).
Therefore, Eq. (4) is adopted in this paper.
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Table 1 Basic information and measurement periods of the experiment sites in this study

Area | Annual mean : Land use (%)

River 2 R Measurement period
(km") |flow rate (m’/s) |Paddy | Cropland | Forest | Urban | Grassiand | Other use*

| Koise | 144.6 3.59 19.5 18.6 494 7.0 37 1.8 6/1/2005~12/1/2005&
Sonobe| 71.6 © 146 153 41.9 23.8 13.1 13 4.6 5/18/2006~12/31/2007
Hokota| 39.5 0.93 11.3 539 242 75 1.8 13
Ono 144.8 222 14.0 32.8 18.2 215 39 9.6

Sakura| 333.0 7.70 28.1 16.9 34.6 11.7 4.1 4.6 9/15/2006~12/31/2007

Seimei | 25.0 0.61 20.0 29.1 22.7 18.5 4.5 52

Tomoe | 113.2 2.11 15.9 46.8 216 11.0 1.1 3.6

*QOther uses include water surface, wasteland and other.

 Inthis study, the loads of COD, TN and TP were considered as L in the equation. X; and X, are two kinds of signals
from an optical device (Compact-CLW: ALEC Electronics). X is the intensity of back scattered light whose wavelength
is 880 nm, and the converted output of this signal is so-called turbidity (7h). X is the intensity of fluorescent light of
680~1000 nm from the target water induced by the emission light of 470 nm. It has been said that X, has a correlation
with the chiorophyli-a (Chl-a) obtained from water analysis, but they are not identical because the correlation depends on
the species of algae, and measurements are also affected by the existence of other fine particles in water.

Artificial Neural Network (ANN)

Recently, ANN has been widely used for empirical modeling of hidden dynamics in the environment (13-16). Itis
said that ANN belongs to a class of data driven approach whereas conventional statistical methods are model driven (17).
In other words, ANN is more flexible than conventional statistic methods because it can grasp complex relations among
environmental data, or, in a sense, ANN is able to simplify the procedure of statistical analysis of the complex relations
(18).

The software named “Predict” supplied by the Neuralware Company was adopted in this study in order to model the
peculiar correlation in the form of Eq. (4). The Predict was designed based on “Cascade-Correlation Learning
Architecture” which begins with a minimal network, then automatically trains and adds new hidden units one by one,
creating a multi-layer structure (19). One of the benefits of this method is that the network retains the structure even if
the training set changes, and that it requires 10 back-propagation of error signals through the connection of the network.
In our case, therefore, even if the condition of river basin gradually changes, the model can be easily improved by adding
training data obtained from recent measurement (12).

STUDY AREA AND EXPERIMENTAL SETUP
Studied sites

Lake Kasumigaura is the second largest lake in Japan which is located to the northeast of Tokyo. The average
depth is only 4 meters and the water surface area is about 220 km®. The area of the watershed is 2157 km®, The lake is

* eutrophic due to pollutant load mainly from non-point sources in the watershed. The experiment was carried out in

seven rivers flowing into the lake. Fig. 2 shows the location of measurement sites, and Table 1 shows the areas and land
use classifications of the river basins,



Table 2 Water sampling numbers of the seven rivers

River Year | COD TP TN
2005 50 50 35
Koise 2006 35 35 . 29
2007 65 65 65
2005 50 50 28
Sonobe 2006 37 37 34
2007 50 50 50

Others* 2096 21 21 21 ’
2007 48 48 48

* Others include the Hokota, Ono, Sakura, Seimei and Tomoe River.

[- o ]
0 5 10 15 20 75 unit:im
Fig. 2 Location of experiment sites Photo 1 Experimental sétup

Optical sensor measurement

An immersed-type optical device (Compact-CLW) which integrates two optical sensors was used to monitor river
water. The specifications of the device were described in the previous chapter. A wiper is installed at the end of the
device to clean the windows where the excitation and fluorescent lights pass through at regular intervals. The device
was placed aitk the low channel of each river about 1 meter under the water surface of normal condition (see Photo 1).
The measurement interval was 10 minutes. The experiments started in the year 2005 at the Koise River and the Sonobe
River, and in 2006 at other five other river locations (see Table 1).

Water sampling and chemical analysis

The water for chemical analysis was sampled in both storm condition and low flow condition. The frequency of
the latter was once or twice in a month accompanied with the maintenance of the optical device. The major items of
chemical analysis were COD, TP and TN. They are analyzed by using the potassium permanganate acidic method, the
potassium peroxidisulfate decomposition — molybdenum blue method and the potassium peroxidisuifate decomposition -
E. cadmium reduction method respectively. The number of water samples is shown in Tabie 2.
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(a) Optical sensor measurement ) (b) Analysis of water samples
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Fig. 3 Observations during a flood event at October 17th-18th, 2005 in the Koise River
River flow rate

Time series of water surface levels were provided by the Water Information System (supported by Ministry of Land,
Infrastructure and Transport, Japan) except for the Sonobe River where the authors collected the data of water surface
level by using the HOBO Water Level Loggers (Onset Company). The time series of water levels were converted to
river flow rate by an H-Q curve for each river supplied by the Kasumigaura River Office. The annual average flow rates
of the rivers are shown in Table 1 (20).

RESULTS AND DISCUSSION
Experiment results

Fig. 3(a) shows the signals from the optical sensors and river flow rate during a flood event of the Koise River in
the year 2005. The solid line shows 7b while the bold line shows Chi-a, and the broken line represents the river flow
rate. It can clearly be seen that the fluctuations of 76 and Chl-a were different from that of river flow rate.

Fig. 3(b) shows the results of water chemical analysis of the major items during this flood event. ~ There was a time
lag between the peak of river flow rate and the peaks of pollutant concentrations which was mostly caused by the

‘ particulate forms of pollutants which had a correlation with the 7b in Fig. 3(a).

Long-term applicability of ANN model

Data collected from the Koise River,
where the measurement period was the longest X \

and the volume of data was the largest among ANN model L

the seven rivers, were used to discuss the X2 " T (COD’ TP or TN)
long-term application of peculiar correlation Q

models constructed by ANN in the form of Eq. Fig. 4 Diagram of ANN model

(4). Independent model was trained respectively for COD, TP and TN as shown in Fig. 4. The total data were divided
into two parts: the data obtained in 2005 for training the model and the data obtained in the years 2006 and 2007 for
evaluating the performance of the model.

Because the ANN model is built on a group of empirical and nonlinear relations among input, hidden and output
neurons, it is difficult to express it with a simple equation of explicit form. However, it is possible to examine its
response characteristics by supplying artificial data, which are arranged to change systematically, into the ANN model.
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Fig. 5 Examination of the ANN models of COD, TP and TN of the Koise River
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Fig. 6 Time series of pollutant fluxes of the Koise River estimated by the ANN models

Fig. 5 shows the results of the examination for the case of Koise River. COD (Fig. 5(a)) has positive correlations
with Chl-a and Tb, and becomes a monotonous function at high Chl-a. TP (Fig. 5(b)) has the same tendency as COD,
probably because particulate components are dominant for these two items during flood events. On the other hand, the
tesponse of the ANN model for TN (Fig. 5(c)) has a complicated tendency. In general, the response of ANN is not
always possible to interpret because it is an empirical expression of peculiar correlations.

The time series of the pollutant fluxes of COD, TP and TN estimated by the ANN models are shown in Fig. 6.
The solid lines are values estimated by the ANN models, and the dots show the results of chemical analysis. In spite of
slight discrepancies in some parts, the general agreement seems to be good even though they were deduced from a model
that was calibrated only by the data of the year 2005,

The detailed variations of the same data during four flood events are enlarged in Fig. 7. On the other hand, Fig. 8
compares the pbsewed and estimated water qualities (concentrations) for the same flood events. The broken lines show
river flow rate. The scales and patterns of the hydrograph and pollute-graph in the figures varied from one flood to
another.. The peak of river flow rate was preceded by the peak of pollutant concentration in most cases as shown in Fig.
8. Such phenomena cannot be described by the conventional Z-Q method. This fact showed the possibility that the
introduction of the proposed measurement method can improve the estimation accuracy of pollutant load remarkably.

Nevertheless, every field measurement 'based on peculiar relations will fail if site conditions change. Therefore,
the ANN models should be inspected with new data at some intervals. As is shown in Fig. 6 the model trained with the
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Fig. 7 Enlarged figures of pollutant fluxes of four flood events of the Koise River
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Fig. 8 Enlarged figures of pollutant concentration of four flood events of the Koise River

data obtained in the year 2005 was still effective for the years 2006 and 2007, making very frequent calibration
unnecessary. However, the criterion of its frequency is a matter to be examined in the future. k

Practicality for application to river basins of different characteristics

ANN models were constructed for the seven rivers listed in Table 1 in order to assess the model practicality to the
river basins with different characteristics. The areas and land use classifications of these river basins are very different.
The field experiment in these rivers was carried out from September, 2006 except for the Sonobe River where the period
was same as the Koise River. The data were also divided into two parts: the data obtained in the year 2006 for training
the ANN model and the data of the year 2007 for evaluating the model performance. For the Sonobe River, the data of
the year 2005 were used for training and the data of the years 2006 and 2007 were used for evaluating,

Time series of COD, TP and TN fluxes estimated by means of the ANN models are shown in Fig. 9. To save the
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Fig. 9 Time series of pollutant fluxes of three rivers estimated by the ANN models and enlarged figures of one flood
event. (a) Sonobe River; (b) Sakura River; (c) Ono River

space only results of the Sonobe River, the Sakura River and the Ono River are shown here. The detailed variations of
the same data during one flood event are enlarged.  The solid lines show the results estimated by the ANN models, and
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the dots are observed results of chemical analysis. The close agreements of estimated and observed results in the figures
suggest that the ANN model can learn the peculiar correlations in river basins where the land use conditions are different




from the Koise River when the ficld data are supplied for its training.
Probability of applying the Koise River model to other rivers

In principle, an ANN model is applicable only to rivers where the training data were collected because the
correlation that ANN produces is peculiar to each river. In practice, however, we want to apply the model to different
rivers where much field data has not been collected in order to reduce costs and labor for data collection. It might be
possible if the land use conditions are similar between the river watersheds. In this section, the ANN model for the
Koise River is applied to some nearby rivers in order to test the possibility. The results of applications to three rivers for
some flood events are shown in Fig. 10. The black lines indicate the prediction by ANN models of the Koise River and
the gray lines represent the estimation by ANN models constructed for each of the three target rivers, respectively. The
dots show the results of the chemical analysis of water samples obtained from each river.

The performance of the ANN models trained with the data of the target river is better than the ANN models of the
Koise River, of course. However, the difference between the two kind results was not very significant for the Sonobe
River and the Sakura River. On the other hand, the agreement was worse in the case of the Ono River, especially for
COD and TN. Reasons for this difference are not clear but it might be explained by looking at the data of land use. As
is shown in Table 1, the percentage of “urban areas” and “other use (including wasteland)” is the largest in the Ono River
among the seven rivers; the total of these two in the river basin is almost as twice large as others. In this study, the ANN
model is used to express peculiar correlations between optical signals and pollutant concentration. The pollutants from
the above mentioned types of lands might have different optical characteristics from those from other kinds of lands with
vegetation and surface soils such as forests and farm lands.

This fact suggests the possibility that an ANN model constructed in a river basin can be tentatively applied to other
river basins where data of water sampling analysis are not enough to calibrate the ANN model if the land use conditions
are similar to some extent. It might be useful to make groups of land use in a view point of ANN modeling in order to
reduce costs and labor for water sample analysis in flood events.

CONCLUSIONS

The correlations between the optical characteristics of river water and the eutrophication indices which are peculiar
to each river are formulated by using the Artificial Neural Network in order to estimate the pollutant loads. The major
conclusions are listed below:

(1) The ANN model can reproduce the peculiar correlation between the optical characteristics of river water and the
cutrophication indices such as COD, TP and 7TN.

(2) The ANN model trained by the data obtained in one year can estimate the eutrophication indices in the successive
two years with a high accuracy in the Koise River. .

(3) The monitoring method introduced in this work is applicable to other six river basins in the watershed of Lake
Kasumigaura where the land use conditions are different from the Koise River.

(4) Findings in this research indicate that an ANN model constructed in a river basin can be applied tentatively to
other river basins where data of water sampling analysis are not enough to calibrate the ANN model if the land
use conditions are similar to some extent.
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APPENDIX —~ NOTATION

The following symbols are used in this paper:

C = concentration;
Chl-a = chlorophyll-a;

= load;
Q = river flow rate;
T = turbidity;
X = input index; and

aand f = water quality items.
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