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SYNOPSIS

The formation process of depositional landforms on a one-dimensional permeable flat plain is investigated
numerically in this paper. In this process, it is important that a water exchange between a surface flow and a
subsurface flow to be taken into account. The governing equations of the flows are one-dimensional shallow water
equations for surface flow and the two-dimensional Richards’ equation for subsurface flow. It is found from this
study that there exist the following two processes: (a) a front of surface flow migrates a little in the downstream
direction due to a loss of surface flow discharge, and the thickness of depositional landforms increases; (b) the front
migrates relatively rapidly due to the recovery of surface flow discharge, and the depositional landforms spread in the
downstream direction. The influence of the hydraulic conductivity in the permeable layer on the formation process

of depositional landforms is also investigated.
INTRODUCTION

Depositional landforms are developed when a sediment-laden flow of sand or gravel moves onto a wide plain
or a permeable plain. An alluvial fan is a typical example of these landforms. When we discuss the formation
mechanism, it is important to investigate the water exchange through a ground surface between a surface flow and a
subsurface flow.

Studies have been conducted experimentally on the formation process of alluvial fans over four decades (for
example, Hooke (2) and Schumm (4)). In these studies, depositional landforms on a laboratory scale were studied
and valuable information was reported although further discussion about the scale effect is necessary. The second
author of this paper also studied experimentally the formation process of depositional landforms on a permeable
flat plain (Sekine et al. (5)). It was reported by Sekine et al. (5) that the pattern of sediment deposition and channel
expansion on the formed landforms was chaotic due to a loss of water discharge. Referring to the literature, we

found some other research on the related topics concerning water exchange between a surface flow and a subsurface
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Fig. 1 Illustration of computational domain Fig. 2 Computational grid system of flow field

flow in rivers. The work by Harada (1) and Sumi, Ebara and Tsujimoto (7) are typical. However, they did not focus
on the fluvial process of landforms.

The purpose of this study is to develop a numerical model which enables us kto simulate the formation process
of depositional landforms. To understand the mechanism of this process more precisely is another purpose of this
study. A one-dimensional numerical model was constructed here as a first attempt. In this computation, the target
to be analyzed is the phenomenon occurring in a flume where the bottom of the upstream half reach is impermeable
and that of the downstream half reach is permeable. In the latter reach, a relatively deep “permeable layer” similar
to an aquifer is located, This permeable layer is constituted of gravel. And a thin “sand layer” is also present in the
entire reach, that is, on both the permeable layer and the bottom of the upstream reach. The water is supplied at the
upstream end and flows downstream on the surface of this sand layer. As time passes, the front of water migrates
downstream, and it reaches the downstream half reach. After that, some amount of water inflows into the permeable
layer and sediment carried by the flow deposits. Finally, depositional landforms develop. Sekine et al. (5) conducted
such an experiment although it was two-dimensional instead of one-dimensional. The computation here was the
first attempt to simulate such a phenomenon observed by them. Furthermore, we investigated the influence of the

hydraulic conductivity in the permeable layer on the formation process of depositional landforms.
NUMERICAL SIMULATION MODEL
Summary of conditions

In this study, the computational condition was set by referring to the experiment conducted by Sekine et al. (5).
Fig. 1 shows an illustration of the computational domain. The area of BCDE in Fig. 1 is defined as the “permeable
layer.” As shown in Fig. 1, the length and the thickness of this layer were 2 m and 0.25 m, and the gradient of it
was 0.01. This layer was constituted of gravel whose grain size was 5 mm in Case 1, and 2 mm in Case 2. An
impermeable reach was connected to a permeable layer at the point labeled B. The length of the reach was 2 m,
and the gradient of the bottom was the same as that of the permeable layer. That is, a permeable layer was located
between two points at x = 2 and 4 (m). Both the bottom of the impermeable reach and the permeable layer were
covered with sand whose grain size was 0.48 mm. As seen in Fig. I, there existed a “sand layer” whose initial
thickness ds was 0.005 m. And J, can vary in time and space due to deposition or erosion. Under the condition of
this numerical computation, sand can be transported as bed load. The gravel which constituted a permeable layer was
not exposed to a surface flow and did not move at all.

Boundary conditions are as follows. No inflow or outflow occurs through the lines of AB, BE, ED and DC in Fig. 1.
At the upstream end of this computational domain, a constant discharge of water was supplied, and the discharge per

unit width was 0.002 m’/s/m. Sand was also supplied there by an amount estimated by substituting a dimensionless

tractive force at the upstream end into a bed load function.



Table 1 Hydraulic parameters of a permeable layer and a sand layer

grain size (m) | 85 9, Wo(m) | Ks(m/s) | m | Ss(m™)
permeable layer (Casel) 5.0x 107 0,05 5.0x 107 10%
permeable layer (Case2) 20x10° | 040 | 107 ) 2.0x 107 | 3.0
sand layer 0.48 x 10° -0.15 | 0.1x107 10°

Initial conditions are as follows. A dry bed condition was given for surface flow, The free surface of water in the
permeable layer was made horizontal, and its elevation was set to be 0.05 m at x = 4(m) (see Fig. 3(a)). The initial
velocity of subsurface flow was zero.

In Table 1, the hydraulic parameters of porous media in a permeable layer and a sand layer are shown. The
exponent m in Eq. 5 was 3.0, which was estimated theoretically by Irmay (3). Moreover, the value of Manning’s

coefficient was 0.03, and the value of dimensionless critical tractive force for sand was 0.032.
Surface flow

In this study, the depth of surface flow is so small (less than 13 mm) that the so-called “shallow water assumption”

is effective. Therefore, the governing equations of surface flow are one-dimensional shallow water equations:
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where 4 is a flow depth, u is a depth-averaged velbcity, g is gravitational acceleration, ¢ is the angle between the
x-axis and a horizontal line, # is a bed elevation and v, is a turbulent diffusion coefficient, respectively. w;is a flux
(volumetric flow rate per unit area) through the interface between a surface flow and a subsurface flow. If the inflow
from a surface flow to a subsurface flow occurs, w, takes a negative value. If the outflow from a subsurface flow to
a surface flow occurs, on the other hand, w, takes a positive value. C;is a friction coefficient and in this study was

evaluated by Manning’s law.
Subsurface flow

A flow of water in unsaturated porous media is governed by both a continuity equation and the equations of flow
velocity which is a modified Darcy’s law. Substituting the equations of flow velocity into the continuity equation,
the so-called Richards’ equation is derived. We can evaluate the flow field in both an unsaturated and a saturated
porous media by this equation. In this étudy, the phenomenon in a vertical x-z plain was analyzed and the following

two-dimensional version of Richards’ equation was solved numerically:
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where § is volumetric water content, y is a pressure head, Sy is a specific storage coefficient and K is hydraulic
conductivity, respectively. The x and z coordinates are taken as is seen in Fig. 1. And the coefficient f§ in this
equation is defined as follows: f=1 if the value of  is positive or zero, and =0 if the value of y is negative.

In order to solve Eq. 3, we need to determine the relationships among the parameters y, 6 and K. The relationship

between y and 8 derived by Tani (8) was adopted:
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and the relationship between 8 and K used by Tani (8) was adopted in this study:
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where 6 is saturated water content, 8, is residual water content, y, is a pressure head giving the maximum value of

80/0y, K; is saturated hydraulic conductivity and m is an exponent in Eq. 5.
Modeling of a water exchange

In this computation, the following vertical structure is assumed: (a) a permeable layer constituted of gravel, (b) a
sand layer on it, and (c) the space for surface flow above the sand layer. Therefore, the subsurface flow in the two
layers of (a) and (b) was calculated. Water exchange through the interfaces between (a) and (b) and between (b) and (¢)
were evaluated in a following manner,

The flux through the upper surface of the sand layer, which corresponds to the interface between (b) and (c), is

defined as w, in Eqs. 1 and 2. This flux is evaluated on the basis of the so-called Darcy’s law and is calculated by

~Ks(———~——-w"_% +cosa}; if h>0
w, = A

Zr

6
0; if h=0 ‘

In Eq. 6, Ks is saturated hydraulic conductivity of the sand layer, y, is the pressure head evaluated by hydrostatic
pressure distribution in the flow depth of surface flow, y, is the pressure head in the sand layer, and Az, is the
distance in the z direction between these two points (see Fig. 2).

The flux through the interface between a sand layer and a permeable layer, which corresponds to the interface
between (a) and (b), was evaluated in the same manner as aforementioned. The hydraulic conductivity at the

interface is evaluated as a smaller value of the two, that is, the value of either the sand layer or the permeable layer.
Sediment transport

Bed load is only considered here as a type of sediment transport. The bed load transport rate was evaluated
by Meyer-Peter and Miiller’s formula. The “slope collapse model” by Sekine (6) was introduced to evaluate an
additional sediment transport rate. The local angle of depositional landforms grows larger as it develops, and then
the angle reaches tentatively an angle of repose of sediment in this computation. In fact, such a steep slope collapses
before the above condition is satisfied. We can calculate such an event reasonably by this slope collapse model,
and a local angle is maintained not to exceed the angle of repose. The sediment volume yielded by this collapse is
treated as an additional sediment transport. The bed elevation at each grid point is calculated by solving Exner’s
equation, and the additional sediment transport rate as well as that evaluated by Meyer-Peter and Miiller’s formula is

considered. For further details, the reader may refer to the original paper by Sekine (6).
Summary of computation

The procedures of this computation are as follows: (1) a subsurface flow is analyzed first; (2) a surface flow is

analyzed by considering the value of w, which is estimated by using a latest value of pressure head of subsurface
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Fig. 3 Summary of the numerical results (Case 1) : (a) water surface elevation of surface flow H and free surface
elevation of subsurface flow H,,;, (b) the flux through the interface between surface flow and subsurface
flow w,, (c) the discharge of surface flow. The number in each figure denotes the time from the beginning of
computation. The permeable layer is located between x=2 and 4 (m).

flow; (3) after such computations of the flow, the deformation of bed elevation is evaluated. These are the
computations every single time step. The time interval At was set to be 0.0005 s in this analysis. Moreover, the
distances between each node of the computational grids in the x and z direction Ax and Az were set to be 0.01 m.

In solving governing Egs. 1 and 2 for surface flow, the following individual solution techniques were adopted: (a)
the staggered grid system, (b) the explicit scheme, and (c) the CIP scheme for a convective term. In solving Egs. 3-5
for subsurface flow, on the other hand, the fully implicit scheme and the successive over relaxation (SOR) method
were adopted.

RESULTS
Formation process of depositional landforms

The formation process of depositional landforms is discussed in this section with referring to the numerical results
of Case 1.
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Fig. 4 Velocity vectors of subsurface flow (Case 1) : (a) 15 s, (b) 30 s, (¢) 45 s and (d) 60 s from the beginning of
computation.

Fig. 3(a) shows a time series of water surface profiles. The upper lines correspond to the profiles of surface flow,
and the lower lines correspond to the free surface profiles of subsurface flow. We can see from this figure that a
water front of surface flow migrates downstream, but the movement is not continuous. The pattern of surface flow
migration can be described briefly as follows: (1) A front of surface flow migrates downstream with almost constant
speed until the front reaches the point x = 2 (m) at which there exists an upstream boundary of the permeable layer.
The reason for the migration is that a water discharge keeps constant and no net loss of water discharge occurs due
to the impermeability of the upstream half reach. (2) The front reaches the point x = 2 (m) at about 10 s, and then
it migrates with its speed slowed down till about 15 s. (3) The front migrates by a small distance approximately
from 15 s till 30 s. It looks as if it stops during this period. (4) After that, the front starts to migrate again relatively
rapidly.

Fig. 3(b) denotes temporal and spatial variations of the flux w, through the interface between a surface flow and
a subsurface flow. Fig. 3(c) shows the variations of surface flow discharge. In Fig. 4, the velocity vector maps
of subsurface flow are seen. It is obvious from both Fig. 3(b) and Fig. 4 that the influx from a surface flow to a
subsurface flow is dominant and causes an increase of moisture in the permeable layer. This results in the rise
of the free surface in this layer. Fig. 3(c) shows, on the other hand, that discharge of surface flow decreases in
the downstream direction on the permeable bed due to this influx. Moreover, we can see from Fig. 3(c) that the
surface flow discharge on the permeable bed increases as the magnitude of the flux w, in Fig. 3(b) decreases. As
we expected, it is recognized from both Fig. 3(b) and Fig. 3(c) that the flux w, and the discharge of surface flow are
closely related.

In Fig. 5, the profiles of the amount of bed deformation An are seen. In this study, a bed is equivalent to the
surface of landforms. Fig. 5 shows that depositional landforms develop on the permeable bed after the front
of surface flow reaches the upstream end of the bed (x=2(m)). The discharge of surface flow decreases on the

permeable bed, as was explained above. Therefore, the reach appeared where a tractive force decreases in the
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Fig. 5 Profiles of the amount of bed deformation An from initial bed (Case 1). Each number in this figure denotes the
time from the beginning of computation.
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Fig. 6 Temporal variation of discharges (Case 1) : (a) the discharge of surface flow at x = 2.0 (m), (b) the inflow
discharge from a surface flow to a subsurface flow and (c) the difference between the above two discharges.

downstream direction on the permeable bed due to the decrease of surface flow diécharge. Sediment deposition
occurs in this reach. Erosion occurs, on the other hand, in the reach where a tractive force increases. The pattern of
landform development can be described briefly as follows: (1) The deposited area extends further in the downstream
direction and the landforms migrate downstream. (2) In the upstream reach the landforms are eroded and they
become thinner. Such a phenomenon became evident after approximately 30 s, when the water front of surface flow
started to migrate again.

From the findings explained above, we found that there are two stages in the development of depositional
landforms, especially in the one-dimensional case. One is the initial stage, and the water front of surface flow
almost stays still and does not migrate considerably in the downstream direction due to the discharge loss of surface
flow. At this stage, depositional landforms develop in a restricted area, but they grow thicker as time passes. In this
computation, this stage corresponds to the period between 15 s and 30 s approximately. Fig. 6 shows the tempéral
variations of discharge. Line (a) in this figure denotes a surface flow discharge at the upstream end of the permeable
bed (x=2(m)), and line (b) is the inflow discharge from a surface flow to a subsurface flow. The difference between
the above two discharges is denoted as line (¢) in this figure. If the difference between two discharges is equal to
zero, the front of surface flow stops completely except when a slope collapse occurs. In this computation, the front
of surface flow did not stop completely and migrated by a small distance because the surface flow discharge at the
point of x=2(m) was always larger than that of the inflow by a small amount. At the second stage, the water front
continues migrating downstream. As is seen in Fig. 6, the discharge of surface flow is much larger than inflow
discharge into a permeable layer at this stage, and the depositional landforms continue to expand. In the case of the
present computation, this stage began at about 30 s. Therefore, the migrating speed of surface flow tends to increase.

Under the conditions of this study, the above two sub-processes including a transition from one to the other were
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Fig. 7 Profiles of the amount of bed deformation An : Fig. 8 Water surface profiles of surface
(a) 15 s, (b) 30 s, (¢) 45 s and (d) 60 s from the flow and the free surface profiles
beginning of computation. of subsurface flow at 45 s.

observed. According to the results of the computations under different conditions, we found that only one of the two
sub-processes appeared. For example, if the vertical walls at both upstream and downstream ends of the permeable
layer (lines BE and CD in Fig. 1) are replaced by a permeable one, a free surface of subsurface flow can rise so little
that the process in the initial stage only appears. If the initial elevation of free surface of subsurface flow is close
to the upper end of permeable layer, on the other hand, the discharge loss of surface flow is so little that the process
in the second stage only appears, and depositional landforms do not develop significantly. In addition to the above
two sub-processes, some other processes were observed. For example, a “return flow” occurred from a certain point
toward the downstream direction. The so-called “wadi” or “dried-up river” also appeared in the upstream reach of
the point.

Influence of the hydraulic conductivity in the permeable layer on the formation process of depositional landforms

In this section, the influence of the hydraulic conductivity in the permeable layer on the formation process of
depositional landforms is discussed. Numerical conditions are explained in Table 1. Hydraulic conductivity in the
permeable layer of Case 1 is larger than that of Case 2. In Figs. 7 and 8, the numerical results of both Case 1 and
Case 2 are shown. The thick lines in these figures denote the results of Case 1, and the thin lines, on the other hand,
denote the ones of Case 2. Fig. 7 shows the profiles of the amount of bed deformation An at each time. It can be
seen from this figure that the thickness of depositional landforms of Case 1 is larger than that of Case 2. And the
migrating distance of the landforms of Case 1 is smaller than that of Case 2. The reason why such differences occur
in the formation process of depositional landforms is discussed here. If the hydraulic conductivity is smaller and a
downward flux in the upper part of the permeable layer is smaller than the inflow from the surface flow, a moisture
rise in the upper part occurs more quickly. Therefore, the free surface of subsurface flow in Case 2 rose earlier than
that in Case 1. Fig. 8 shows both the water surface profiles of surface flow and the free surface profiles of subsurface
flow at 45 s from the beginning of the computation. We can see from Fig. 8 that a sand layer as well as a permeable
layer were completely saturated in the upstream reach of x = 2.2 (m) in Case 2, but there was no such saturation

zone in Case 1. This indicates that the reduction in the water discharge of surface flow grows moderate earlier,



and the recovery of the discharge arises more dominantly in Case 2. Therefore, the front of surface flow migrates
further in Case 2 than in Case 1. As a result, it can be concluded that the depositional landforms can extend further

downstream and their thickness grows smaller as the hydraulic conductivity takes a smaller value.
CONCLUSION

The formation process of depositional landforms on a permeable flat plain was investigated in this study. A
numerical simulation model was developed to simulate the process on a one-dimensional plain as a first attempt. In
conclusion, it was verified qualitatively that the numerical model worked well and that the mechanism of the process
was understood to some extent. From the numerical simulation, the following conclusions are obtained:

(1) We found the following two sub-processes in the formation of landforms. At the initial stage, a front of surface
flow migrates a little in the downstream direction due to the discharge loss of surface flow, and the thickness of
depositional landforms increases. After that, the front migrates relatively rapidly due to the recovery of surface
flow discharge, and the depositional landforms spread in the downstream direction. This is the second stage.

(2) The landforms grow larger in scale in the downstream direction and thinner as the hydraulic conductivity of
porous media in permeable layer is smaller.

The numerical model will be extended to a two-dimensional one in order to simulate an alluvial fan formation,
just as in the experiment conducted by Sekine et al. (5). Verification of the numerical model quantitatively will
be also conducted by comparing the results with that of experiment. These matters will be the subject of our next

investigation though there still remain some problems for us to overcome.
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APPENDIX-NOTATION

The following symbols are used in this paper:

Ks

Ss

s
Vils
Ax
Az

Az,

6

~

s

]

= friction coefficient;

= gravitational acceleration;

= flow depth;

= hydraulic conductivity;

= saturated hydraulic conductivity;

= exponent in Eq. 5;

= gpecific storage coefficient;

= time;

= depth averaged velocity;

= flux through the interface between a surface flow and a subsurface flow;
= the angle between the x-axis and a horizontal line;
= coefficient in Eq. 3;

= thickness of sand layer;

= time interval;

= grid size in the x direction; v

= grid size of the permeable layer in the z direction;
= distance in Eq. 6;

= bed elevation;

= volumetric water content;

= residual water content;

= saturated water content;

= turbulent diffusion coefficient;

= pressure head;

= pressure head which gives the maximum value of 60/dy;
= pressure head in the sand layer in Eq. 6; and

= pressure head evaluated by flow depth of surface flow in Eq. 6.
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