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SYNOPSIS

A basic study is carried out to investigate the performance and accuracy of two particle methods; namely the MPS
and the Incompressible SPH (ISPH) methods, in comparison to a VOF-type grid-based model. Such methods are applied to
simulate a plunging wave breaking and resultant splash-up. Qualitative and quantitative comparisons of simulation results
with experimental data highlight the superiority of the MPS method to the ISPH and VOF methods for the simulation of
plunging wave breaking and post-breaking.

INTRODUCTION

Wave breaking is a complex yet important process as it plays a significant role in transferring mass and momentum
in coastal zones. Because of the importance of wave breaking, extensive research is being carried out on this process or the
related processes in the surf zone.

Although a variety of numerical approaches have been applied to the study of breaking waves, the most direct and
reliable one is to solve the Navier-Stokes equation. Based on two different numerical points of view, namely, the
Lagrangian and Eulerian view points, different numerical algorithms have been developed to solve the Navier-Stokes
equation and to simulate the breaking waves. Most Eulerian solvers of the Navier-Stokes equation use grids; hence, they -
should be coupled with a mathematical treatment of the water surface. Reconstructing volume tracking methods, among
which is the VOF method (Hirt and Nichols (10)), are the most popular and robust water surface tracking methods
incorporated in Eulerian grid-based solvers of Navier-Stokes equation. The VOF method has been extensively used and
modified to study the breaking waves (e.g. Lemos (17), Lin and Liu(21)). Despite their popularity and large range of
applicability, the VOF-based models have a drawback because of numerical diffusion arising from the successive
interpolation of the advection terms in both the VOF function transport equation and the Navier-Stokes momentum
equation. The numerical diffusion becomes more significant when the free surface undergoes large deformations (as in the
case of plunging breaking waves) and especially when fragmentation and coalescence of water exist (as in the process of
splash-up at post-breaking stage). )

A recent point of interest has been on the development of the next generation computational methods, namely, the
mesh-free methods. The Lagrangian mesh-free methods or the particle methods are classified into those based on field
approximations, as the Element-Free Galerkin (EFG) method, and those based on kernel approximations, as the Smoothed
Particle Hydrodynamics (SPH; Lucy (22) and Gingold and Monaghan (4)) or Moving Particle Semi-implicit (MPS;
Koshizuka and Oka (15)) methods. In contrast to the conventional grid-based methods, particle methods are free of
numerical diffusion as the advection terms are directly calculated by moving particles. Moreover, particle methods do not
require an additional water-surface tracker as the free surface particles can be efficiently detected by a simple condition.

In this paper, a basic study is performed to evaluate the capability and the accuracy of two particle methods; namely,
the MPS and the Incompressible SPH (ISPH) (Shao and Lo (27)) methods, in comparison to an Eulerian VOF-type model
(Khayyer et al. (12)). Followed by a brief explanation of basic concepts, the standard codes are applied to plunging wave
breaking and post-breaking on a uniform slope. The results of simulations are compared to the experimental data by Li and
Raichlen(18,19). The deficiencies and capabilities of each method and the essential future works are discussed.

NUMERICAL MODELS
MPS Method

Since the MPS method was developed by Koshizuka et al: (16), it has been applied in a wide variety of problems
such as elastic structures (Koshizuka et ol (13)), nuclear reactor safety (Koshizuka ez al (14)) or blood flow simulation



(Tsubota et al. (28)). The MPS method has been improved and also adopted in coastal engineering to study wave breaking
(Gotoh and Sakai(7); Gotoh e al.(5)) and two-phase sediment-water interactions (Gotoh ef al.(8)). In the MPS method,
fluid is modeled as an assembly of interacting particles, the motion of which is calculated through the interactions with
neighboring particles. The governing equations are the continuity equation and the Navier-Stokes equation describing the
motion of a viscous incompressible flow:
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where u=particle velocity vector, r=time, p=density of fluid, p=pressure, v=kinematic viscosity, and g = gravitational
acceleration vector. The above equations are discretized by the particle interaction models, namely the gradient and
Laplacian operators defined as (Koshizuka and Oka(15)):

(Vaf),=P£Z(¢’—éz)(r,»—riW([rj—n[) 3)
My i l'; —r,.I .
(v8), =225 8, - dyljr, 1)) )

where ¢ =an arbitrary physical quantity at particle 7 (=¢,) or its neighboring particle j (=¢,), Do=number of spdce
dimensions, r=coordinate vector of fluid particle, w(r)=the kernel function, n,=the constant particle number density, and
A=a coefficient defined as:
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The particle number density is calculated as follows:
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The iterative prediction-correction process of the MPS method involves two steps. The first prediction step is an
explicit integration in time without enforcing incompressibility, while, the second correction step is an implicit computation
of a divergence free velocity field. In the first process, intermediate temporal particle velocities and positions are obtained
without considering the pressure term. In this process the mass conservation or the incompressibility of fluid is not
satisfied; in other words, the number densities n* that are calculated at the end of first process deviate from the constant n;
therefore, a second corrective process is required to adjust the number densities to initial constant values prior to the time
step. In the second process, the intermediate particle velocities are updated by solving the Poisson equation of pressure
(Koshizuka ef al. (16)): )
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where At =the calculation time step; and the subscript k shows the step of calculation. When the MPS method as well as the
ISPH method are applied, the particle number density at the free surface drops sharply; thus, the free surface particles can
be effectively detected. In the particle-based simulations of the present study, a particle is regarded as a surface particle if
the temporal particle number density for that particle is over 3% below the initial one.

Incompressible SPH Method

As one of the earliest particle methods, the SPH method was originally developed by Lucy (22) and Gingold and
Monaghan (4) for astrophysical applications but has also been applied to simulate a wide range of engineering applications
including the incompressible free-surface flows. The SPH-based simulation of incompressible flows consist of those which
treat the fluid as weakly compressible or those which strictly enforce the incompressibility by applying a two step
projection method by solving a Poisson pressure equation similar to the Eq. 7 in MPS method. From this view point, the
strictly incompressible SPH methods are analogues to the MPS method. ‘

Another categorization of SPH-based methods can be made on the basis of viscosity treatment. While in many SPH
calculations the effect of viscosity is represented by a so-called artificial viscosity term (e.g. Monaghan (23) and Dalrymple
and Rogers (3)) several attempts have been made to apply a tensor-type strain-based viscosity which can model the



viscosity in a realistic manner (e.g. Watkins e al.(29), Shao (26)) In the current paper, a stnctly mcompressmle SPH
calculation is carried out, while, tensor-type strain-based viscosity is treated.

The governing equation and the equation solution process are the same for both the MPS and the ISPH methods; yet,
the discretization of the terms is quite different. The basis of all kernel-based particle methods is a reproducing kernel
approximation of an arbitrary function f(x) in terms of a kernel function W (x,h):
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in which 4 is the smoothing length taken slightly larger than particle diameter (5=1.2d in this study). Computationally, the
above integration is evaluated in a discrete manner as follows:
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where M is the number of neighboring particles of particle i and m;, gy and V; are the mass, the density and the tributary (or
statistical) volume associated with particle j, respectively. V; is defined as:
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The integration is calculated for each particle in a circular domain or the influence circle of particle i, the radius of which is
usually 24 as in cubic B-Spline kernel (e.g. Monaghan (24)) or 3/ as in Quintic-Spline kernel (e.g. Morris et al.(25)). The
main difference between the MPS and SPH-based methods arise in the derivative of the function fx). In SPH-based
methods the derivative of a function is expressed as:
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Nevertheless, in the MPS method, the derivative of a field variable is obtained by local weighted averaging of the variable
derivatives estimated between a pair of particle i and its neighboring particle j (as in Eq. 3). For this reason, a kernel
gradient is not calculated in the MPS method.

From equation (11), the SPH-based velocity divergence of particle i can be formulated as:
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With the density placed inside operators (Monaghan (24)):
V-u=[V-(pu)~u-Vpl/p (13)
Eq. 12 is rewritten as:
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The pressure gradient and the viscous stress terms are derived in a similar manner and are written in symmetrical forms as
(Shao (26)):
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where T is the viscous stress tensor which can be written in terms of the rate of strain tensor. The Laplacian for pressure is
formulated as a hybrid of a standard SPH first derivative with a finite difference approximation for the first derivative and
represented also in a symmetrical form as (Shao (26)):
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Fig. 1 Sketch of the computational domain for (a) VOF (b) MPS and ISPH calculations
VOF Method

The VOF method (Hirt and Nichols (10)) has been frequently applied for the grid-based simulation of interfacial
flows. In the VOF methodology, the characteristic function F denotes the fraction of a cell filled with a fluid. Away from
the interface F=0 or 1; in cells cut by the interface F has a value between zero and unity. Detailed interface information
cannot be extracted from the discrete volume data F until an interface is reconstructed. Hence, the first major step in all
volume tracking algorithms involves reconstructing the interface geometry according to some approximations. The
approximation used for the interface reconstruction in the original VOF method (10) is the piecewise constant/stair stepped
scheme. Once an interface is reconstructed at one time step, the fluid volumes are advected in cells by solving an advection
equation for F written in a conservative form as:
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where u and v= components of the fluid velocity in x and y directions, respectively. Since the F function is discontinuous, it
is necessary to devise appropriate methods for the time integration of F advection equation that preserve a sharp interface
definition. One popular and reliable method is the Donor-Acceptor algorithm (Chorin (2)). In the current study, the original
VOF method of Hirt and Nichols(10) is applied together with the Donor-Acceptor algorithm of Chorin (2) (Khayyer ef al.
(12)).

BREAKING AND POST-BREAKING OF SOLITARY WAVES ON A PLANE SLOPE
Qualitative Comparison

In this section, the numerical models described earlier are applied to simulate the breaking and post-breaking of a
solitary wave over a slope (=s) of 1:15. The incident relative wave height; which is defined as the ratio of offshore wave
height (=Hy) to offshore water depth (=ho), is Ho/he=0.40. The computational domains corresponding to the grid-based
calculation (VOF) and particle-based calculations (MPS and ISPH) are shown in Fig. 1. The difference in computational
domains arises from the different wave generators applied in grid-based and particle-based computations. In the VOF-type
model, the solitary wave is generated by means of a mass source function (Lin and Liu (20)) located inside the
computational domain, while, in particle-based models the solitary waves are generated by use of a moving wall. The initial
offshore water depth is 0.200 m for all the models. In the VOF simulation, the entire domain is discretized by means of a
finely square mesh composed of 2000x 90 cells the size of each is 0.005 m being exactly equal to the particle size in

“particle-based simulations. About 20000 particles are jocated inside the particle-based computational domains. In both
MPS and ISPH calculations, the waves are generated by a moving wall (which initially moves backward) and a constant
number of particles are employed. The incident wave height and the offshore water depth for particle-based simulations are
0.075 m and 0.187 m, respectively. For all the grid-based and particle-based calculations, the increment of the calculation
time step is set according to the Courant stability condition and a time resolution of 0.0005 s. The territory area (or the
influence circle) of one particle is the same (r.=24=2.4d) in both MPS and ISPH calculations.

The conditions of H,/h;=0.40 and s=1:15 cause a strong plunging breaking in which the plunging jet hits the still
water ahead of the wave (and not the dry slope); consequently a secondary shoreward-directed jet is generated followed by
the plunging jet impact. The splash of water in the form of a secondary jet, which is known as the splash-up, is due to the
penetration of plunging jet and the momentum exchange between the plunging jet and the wedge shape still water at the toe
of the wave. Although the splash-up is very complex, it is an important process as it is responsible for the generation of
large-scale vortices and plays a significant role in the dissipation of wave energy and momentum transfer. The simulation
of a highly non-linear process such as the splash-up requires accurate numerical solution of the governing equation.

In grid-based methods, the convective flux of momentum is combined with the momentum already present in each
cell; thus, an average value of momentum is obtained through a sort of interpolation for each cell at each time step. When
advanced in time, this interpolated value is passed on to the next cell in the direction of flow. Repetition of the simplified
interpolations contributes to a “diffusion” of momentum in the direction of flow. The conventional grid-based methods
usually apply a linear interpolation for the time and spatial discretization; for this reason, the computation of a highly
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Fig. 2 MPS, ISPH and VOF snapshots illustrating (a) breaking (b) plunging jet development (c) splash-up initiation
and (d) splash-up formation for a strong plunging breaker (Hy/he=0.40)

non-linear process with such numerical models result in considerable numerical errors. The Constrained Interpolation
Profile (CIP) method (Yabe et al.(30)) is one of the approaches that has been introduced to minimize the numerical
diffusion in grid-based calculations. In the CIP method, the spatial profile within each grid is interpolated with a cubic
polynomial rather than a linear one, accordingly the results show higher accuracy, yet the computational effort seems to be
considerably higher too. In contrast to the conventional grid-based methods, particle methods are free of numerical
diffusion as the discretization of advection terms is accomplished by moving particles rather than fixed computational
grids. In addition, due to the discrete nature of moving particles, particle methods prove to have a substantial potential for
the simulation of problems characterized by large deformations and fragmentations such as the splash-up.

Fig. 2 shows MPS, ISPH and VOF snapshots of water profile representing the initiation of breaking, development of
the plunging jet, initiation of the resultant splash-up and the splash-up formation. A general image of the breaking process
can be illustrated by all the three numerical models, although ISPH computation of wave breaking is accompanied by
considerable particle scattering. Compared to the MPS and ISPH methods, the VOF method overestimates the breaking
point (=the place where the front face of the wave becomes vertical=xg), as for each method, the x-axis zero point is set at
the breaking point. corresponding to the results of that method. The overestimation of the breaking point by the VOF
method is probably due to the excessive energy dissipation as a result of numerical diffusion. Such excessive energy
dissipation causes the wave energy, height and propagation speed to be lower than reality during the breaking process. Fig.
3 is constructed from laboratory photographs (Li and Raichlen(18)) and the typical MPS, ISPH and VOF snapshots. From
Fig. 3(b-c), compared to the ISPH and VOF methods, the MPS method has finely reproduced the plunging jet and its
impingement with less particle scattering as seen in corresponding ISPH snapshots. The geometrical shape of the plunging
jet and the air chamber beneath it are in line with the laboratory photographs. On the other hand, in VOF snapshots the
thickness of the jet is far greater than what is observed in the laboratory photographs. Accordingly, the air chamber beneath
the plunging jet is not simulated well by the VOF method. The ISPH method can not either portray a clear image of the
plunging jet as the particles forming the jet tend to become considerably scattered during the development of the plunging
jet.

The initiation and the formation of the splash-up are better reproduced by the MPS method (Fig. 3(d-¢)) than by the
ISPH or VOF methods. The VOF method can also reproduce the initiation of splash-up; however, the formation of
splash-up does not well match the laboratory photograph as the reflected jet angel is much less than the experiment. A clear
reproduction of the splash-up initiation and formation cannot be seen in case of the ISPH snapshots. From Fig. 3(f), the
development of the splash-up is moderately well simulated by the MPS method. Although a rough image of the splash-up is
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Fig. 3 A strong plunging breaker and the resultant splash-up (Hy/h:=0.40) - qualitative comparison of
laboratory photographs (18) with MPS, ISPH and VOF snapshots

ISPH. (f)

depicted by the MPS snapshot, details and the exact conditions of the splash-up are not well simulated. The ISPH snapshot
cannot even illustrate a rough image of the splash-up process as most of the particles in the vicinity of the wave front
become fully dispersed. The splash-up is reproduced by the VOF method, yet, its height is noticeably underestimated.
Moreover, the fragmented splash of water is simply reproduced by a single continuous jet. As the splash-up proceeds, the
reflected jet curls back toward the incident jet and eventually becomes nearly vertical, This phenomenon is moderately
simulated by the VOF method in Fig. 3(g). From Figs. 2 and 3, the MPS results are superior to those of ISPH and VOF in
the reproduction of a plunging wave breaking and formation of splash-up.

Quantitative Comparison

The accuracy of the numerical models in the tracking of water surface during a plunging breaking should be further
investigated through a quantitative comparison of simulation results with the experimental data. Hence, in this section
another case of solitary plunging breaking with Hy/h;=0.45 is simulated over a slope of 1:15. Fig. 4 shows a comparison of
the variation in wave height H/H, among the MPS, ISPH and VOF methods and the experimental data (Li and Raichlen
(19)). In the figure x, is the starting location of the slope. The wave height in MPS and ISPH methods is determined as the
distance between the wave crest particles and the still water. A fully-isolated particle (an isolated particle for which there is
no neighboring particle) is not taken into account for the determination of wave height. From Fig. 4, one can conclude that
both VOF and ISPH methods do not provide an accurate estimation of the wave height during breaking and post-breaking.
The ISPH prediction of wave height works quite well prior to the impact point of the plunging jet. Nevertheless, near the
impact point an abrupt change is present in the trend of the wave height variation leading to inaccurate results. The VOF
method significantly overestimates the breaking point and results in a wave height variation curve which does not well
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Fig. 4. Comparison of variation in wave height during breaking and post-breaking (Hy/h=0.45)
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agree with the experiment. On the other hand, the MPS method accurately predicts the wave height during the entire
processes of breaking and post-breaking.

CONCLUDING REMARKS AND FUTURE WORKS

A basic study is carried out to investigate the performance and the accuracy of two particle methods, namely the
MPS and ISPH methods, in comparison to a VOF-type grid-based model. The three methods are applied to the simulation
of plunging breaking and post-breaking of solitary waves on a plane slope and are compared to the experimental data. The
processes of plunging breaking and splash-up formation are well reproduced by the MPS method. On the other hand, both
the ISPH and the VOF methods could not portray a precise image of the plunging breaking and resultant splash-up. The
MPS method accurately predicted the variation of wave height during breaking and post-breaking. In contrast, neither the
ISPH nor the VOF methods could provide an accurate estimation of wave height variation through the breaking process. In
addition to providing accurate results, the MPS method is conceptually simpler than both the ISPH method and VOF-type
models. As a consequence, MPS-based code writing, modification and extension are easier. In conclusion, the MPS method
is a reliable and an easy-to-implement technique for calculating hydrodynamic free surface flows such as the breaking
waves.

Because the ISPH applies a tensor-type viscosity, which produces anisotropic interacting viscous stresses {or forces),
the conservation of angular momentum can not be guaranteed in discretization of ISPH. This fact may lead to an excessive
dispersiveness of secondary jet in ISPH. The exact conservation of momentum can be guaranteed by the introduction of
corrective terms that modify the kernel or its gradient (Bonet and Lok(1)). The development of Corrected Incompressible
SPH has been carried out by the authors (Khayyer e# ol (11)). In addition to the momentum conservation several other
issues such as modeling of Sub-Particle-Scale turbulence (Gotoh et ¢l.(9)), modeling of gas-liquid behaviour and the 3D
model should be considered in a particle-based simulation of breaking waves (Gotoh and Sakai (6)).
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APPENDIX - NOTATION

The following symbols are used in this paper:

d = particle diameter;

Dy - =number of space dimensions;

F = YVOF function;

g = gravitational acceleration vector;
h = smoothing length in ISPH method;

hg = offshore water depth;
H  =wave height;
H, = offshore wave height;

m = mass of a particle;
n, ny = particle number density and its initial constant value;
n* = temporal particle number density;

r = pressure;



r = coordinate vector of fluid particle;

s = beach slope;

T = viscous stress tensor;

u = particle velocity vector;

14 = statistical volume of fluid particle;

w = kernel function in MPS method;

W  =kernel function in ISPH method;

x,y = Cartesian coordinates of fluid particle;
xg, X = breaking point and slope starting location;

At =time step of calculation;

é = an arbitrary physical quantity;

A =coefficient in MPS Laplacian model;
v = kinematic viscosity; and

P = density of fluid.
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