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SYNOPSIS

This paper proposes a new semi-analytical solution for a slug test performed in a partially penetrating well within a
confined aquifer system. A constant-flux solution, including well partial penetration and wellbore storage, is first derived
and then converted into the slug test solution by means of the formula of Peres et al. (12). The new solution in the cases
of well full penetration can be reduced to Cooper et al.’s solution (3) and coincides with the KGS model (Hyder et al. (7));
yet, in regard to well partial penetration, it differs from the KGS model (Hyder et al. (7)) due to the different assumption
on the well boundary condition. An example demonstrates the applicability of the new solution to a field problem. The
simulated results in a partially penetrating well reveal that a smaller screen length, anisotropic ratio, or specific storage can

result in a slower recovery rate of the normalized head.
INTRODUCTION

A slug test is a practical method of identifying aquifer parameters, e.g., hydraulic conductivity and storativity, in the
vicinity of test well. The method is performed by suddenly removing/ (adding) a small amount of water from/ (into) the
well and measuring the change of well water level simultaneously. Subsequently, the aquifer parameters are identified by
either numerical methods or graphical methods by matching the slug test data with an appropriate type curve. The slug

test is widely used to assess aquifer site characterization because of the advantages of low costs, being easy and rapid to
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perform the test, no demand in post-treatment of large contaminated water, and minor disturbances on the existing
ground-water system.

A slug test well usually partially penetrates the thickness of an aquifer. The flow toward a fully penetrating well is
expected to be horizontal, while the flux toward a partially penetrating well includes both the horizontal and vertical
components. The characteristics of a partially penetrating well, i.e., the length and position of well screen, can affect the
well water level. Thus, the presence of well partial penetration may lead to significant errors in the estimation results if
the mathematical model used for the test-data analysis is not able to describe the behavior of well partial penetration.

A number studies of mathematical models developed for analyzing slug test data have been published over the past
four decades. In the case of well full penetration, Cooper et al. (3) proposed an analytical solution and gave a
corresponding type-curve method considering a finite-diameter well in a confined aquifer system. However, the lack of
sensitivity in type-curve matching makes the determination of storage coefficient questionable. In the case of well partial
penetration in a confined aquifer, Dougherty and Babu (4) and Hyder et al. (7) both proposed a semi-analytical solution for
the slug test performed in a partially penetrating well and constructed in a double-porosity reservoir.

Unlike traditional type-curve approaches, Peres et al. (12) proposed a different concept of data analysis on the slug
test. They established a mathematical relationship between the solutions of slug test and constant-flux test. The
constant-flux test is referred to as a pumping test. Such a test is performed in an aquifer with a constant discharge and the
aquifer drawdown is recorded in the meantime. Furthermore, the constant-flux solution is referred to as the solution
describing the temporal and spatial drawdown distribution in response to the constant-flux test. In Peres et al. (12), these
two related solutions involve the effects of wellbore storage and well full penetration in a confined aquifer system. The
mathematical relationship shows clearly that the time derivative of the constant-flux solution is proportional to the slug test
solution. Based on Duhamel’s theorem, they showed that the derived relationship can be valid in any well and aquifer
constructions. Accordingly, the slug test data may be converted to the pumping test data and analyzed by means of a
corresponding pumping test model.

Based on the formula given by Peres et al. (12), the pumping test solution is used to find the slug test solution for a
confined aquifer with a partially penetrating well. Thus, the literature concerning the constant-flux pumping test is also
briefly reviewed hereinafter.  As for the well radius, the literature of the constant-flux pumping test may be classified into
two types. One type does not consider the well radius, that is, the well is treated as a line source (e.g., Streltsova and
McKinley (14) and Theis (15)). The other type considers the finite-radius well in a pumping test model (e.g., Ingersoll et
al. (9 and 10) and Papadopulos and Cooper (11)). As for the well partial penetration, Hantush (6) made a detailed
investigation of the problem in a confined aquifer system.

The purpose of this paper is to develop a new mathematical model to describe the response of well water level for a
slug test performed in a partially penetrating well of confined aquifers. This new model is indeed a Laplace-domain
solution derived from the pumping test solution based on the formula given by Peres et al. (12). The results of head
response versus time computed from our model are compared to those of Cooper et al. (3) and the KGS model (Hyder et al.
(7)). An example is presented to illustrate the applicability of the new solution for a field problem. In addition, the
influences of well partial penetration, aquifer anisotropy, and aquifer specific storage on the slug test results are examined

by means of this new model.



METHODOLOGY

This section includes two parts. In the first part, we develop a mathematical model for a constant-flux pumping test
performed in the confined aquifer and partially penetrating well when considering the effect of wellbore storage. The
constant-flux solution is derived by a series of integral transformations. In the second part, the constant-flux solution is

converted into the slug test solution based on the formula given by Peres et al. (12).

Model of Constant-Flix Pumping Test

Figure 1 represents the well and aquifer configurations. The assumptions of the constant-flux pumping test model
are as follows: (1) the aquifer is confined, homogenecous, anisotropic, infinite lateral extent, and with a constant thickness;
(2) the finite-radius well is partially penetrated with the effect of wellbore storage; and (3) the initial hydraulic head is
uniform throughout the entire aquifer. It should be noted that the gray vertical strips shown in Fig. 1 represent the filter

pack, not the skin zone. The governing equation of the ground-water flow can be described as
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where k. (or h{r, z, 1)) = hydraulic head during a constant-flux pumping test, » = radial distance from the centerline of well,
z = vertical direction, ¢ = time from the start of test, Sy = specific storage, &, = radial component of hydraulic conductivity,

and k. = vertical component of hydraulic conductivity.
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Fig. 1 Schematic representation of a partially penetrating well and aquifer configurations.
The initial hydraulic head for the whole aquifer equals zero, that is,
h.(r,z,0)=0 2

Equation (1) is subject to two boundary conditions in r-direction. One of the boundary conditions presents at infinity and

the hydraulic head is equal to zero, that is

hr(oc,:-:,f)=0 3)
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The other condition describes the conservation of the mass flux along the well screen:

(0-m 2Ny (- 5)- UG- B 2k (5, - 2L2) g

r=r,

where Q = constant discharge rate pumped from the test well, 7. = radius of the casing, r, = effective radius of the well, B,
and B, are the length from the top of aquifer to the top and bottom of screen, respectively, and U (z - B)) is the unit step
function which equals one when z 2 B;, and equals zero when 0<z<B; for i =1 or 2. It should be noted that the
second term on the left-hand side (LHS) of equation (4) reflects the effect of wellbore storage and the term on the
right-hand side (RHS) represents the total flux flows across the wellbore screen. In short, equation (4) states that the rate
of constant-flux pumping is equal to the sum of the rate of flow into the well and the rate of decrease in the volume of

water within the well.

For a confined aquifer system, the upper and lower boundaries are impermeable, i.e.,

Ohe(r,0,0) _ dh,(r, L,1)
> oz

=0 ®)

where L denotes the aquifer thickness.

The solution of the constant-flux pumping test described by equations (1) to (5) can be derived via the Laplace
transform and finite Fourier cosine transformation. Thus, a Fourier-domain solution can be easily obtained.
Furthermore, by using the inverse finite Fourier cosine transformation, the Laplace-domain solution of the constant-flux

pumping test model can be expressed as

[%)(Bz - B)K,o(eyr)

m'cszo(al’w)"' Z’kar(Bz - Bl)alKl(alrw)

~ 1
h(r,z,p) = 7

)
\ (Lptsferreasons)
2 P

+—
L nz=|: w2 pKolayn, ) + 2,k (B, - By)ey K (ayr,)

where Zc (r,z, p) = Laplace-domain solution of hydraulic head; p = Laplace-transform parameter; X, and K, respectively

represent the modified Bessel functions of the second kind of order zero and one; and

w, = ﬂL’i n=1,2,3,. %)
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w,



a = [—")p , forn=0 &)

with
o= (i]“[k_z)w,.’ . n=123,. (10)

The detailed derivation of equation (6) is shown in Appendix 1.
Solution of Slug Test

Peres et al. (12) express the following relationship between the slug test and constant-flux solutions in the Laplace

domain as
7 ﬂrczHop g
h(hz,P)=———Q h.(r,z,p) an

where H, = well water level at the beginning of slug test, and P (r,z, p)= hydraulic head of slug test in the Laplace
domain. Combining equation (11) with the constant-flux solution, i.¢., equation (6), yields the slug test solution. Thus,

the Laplace-domain solution of slug test in an arbitrary point is described as
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In addition, the water level in the test well can be obtained by averaging the hydraulic heads of equation (12) along the

screened interval, that is,
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Thus, the average of well water level for an observation well can be described precisely as
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where B; and B, denote the length from the top of aquifer to the top and bottom of the screen, respectively.

Since equations (12) to (14) are complicated; the inversions of these equations to the time domain analytically may
not be tractable. The routine of DINLAP of IMSL (8) is thus utilized to perform the numerical Laplace inversion, and
the results are accurate to the fifth decimal place. The routine DINLAP is a FORTRAN code of modified Crump
algorithm and IMSL is an acronym for the International Mathematical and Statistical Library provided by Visual Numerics

Inc.
RESULTS AND DISCUSSION

In this section, we first compare our model with two existing slug test models and a field example. Then the
influences of well partial penetration, aquifer anisotropy, and aquifer specific storage on the slug test data are investigated

by using our model.
Model Comparisons

The new model which we derived is compared to two existing slug test models. One is Cooper et al.’s model (3),
which was performed on condition that a finite-diameter and full-penetration well is constructed in a confined aquifer
system. The other is Hyder et al.’s model (7), also known as the KGS model, which was derived for a partially
penetrating well constructed in a confined or unconfined aquifer system with or without the effect of wellbore skin.

To compare our slug test model with that of Cooper et al. (3), the effect of well partial penetration in our solution
should be disregarded. That is, the solution is independent of z. Hence, when removing the second term on the RHS of

equation (12), the equation can be reduced to
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where 7'= transmissivity and S = storativity. Notice that equation (16) is the same as the solution of Cooper et al. (3) in
the Laplace domain.
The KGS model (Hyder et al. (7)) was developed for slug tests performed in a partially penetrating well. Their

boundary conditions for describing the flux at the interface between the screen and aquifer were represented as (Hyder et



al. (7))
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The notations defined in Hyder et al.’s equations are as follows: 4 = hydraulic head of slug test in the formation; / =
depth-averaging head in the well. Equation (17) represents that the rate of flow out/in of the well equals the rate of water
volume decrease/increase within the well. The RHS of equation (17) is independent of depth; however, the LHS of
equation (17) is depth-dependent. Obviously, the derivation of equation (1) with the boundary conditions of equations
(17) and (18) resulted in an approximate solution.

Our model is compared to Cooper et al.’s model (3) and the KGS model (Hyder et al. (7)) by means of an aquifer-test
analysis software known as AQTESOLV (Duffield (5)). Assume that slug test is performed in a 10 m thick aquifer. The
aquifer is confined and isotropic with k, = 10 m/sec and Ss= 10" m™.  The test well has r, and r. of 0.0915 m and 0.0508
m, respectively. The initial water level H, in the test well is 1 m.  Figure 2 illustrates that our model exactly matches that
the model of Cooper et al. (3) for the case of well full penetration, i.e., B, and B, are respectively set to 0 m and 10 m.
Figure 3 illustrates the comparison between our model and the KGS model (Hyder et al. (7)). Note that the normalized
head used in the figure is a dimensionless variable defined as the well water level in a test or observation well divided by
the initial water level in the test well. Figure 3(a) shows the normalized heads predicted by these two models at radial
distances 0.0915, 0.305 and 0.914 m when B, =B;= 4.5 m and B, =B,=5.5m. Figure 3(b) illustrates the normalized
head responses observed in a fully penetrating observation well for a slug test performed in a partially penetrating well.
The screen of the test well is situated at the center of the confined aquifer with a penetration ratio such as 1.0, 0.75, 0.5 or
0.1. The observation well is located at a radial distance 0.305 m from the center of the test well. Figure 3(c) shows the
normalized head differences for various penetration ratios shown in Fig. 3(b).

As shown in Fig. 3, the differences in the head response of a slug test become insignificant as the radial distance
increases. On the other hand, the head responses computed by our model are obviously lower than those computed by
the KGS model (Hyder et al. (7)) at intermediate time but are slightly higher than those at late time. The differences
between the results computed from our model and the KGS model (Hyder et al. (7)) diminish when the penetration ratio
increases. The results of our model also coincide with those of the KGS model (Hyder et al. (7)) when the test well is
fully penetrated. Such differences are due to the fact that the KGS model (Hyder et al. (7)) used the derivative of
depth-averaging hydraulic head with respect to time to produce the flow for the flux boundary condition whereas our
model did not take into account the depth-averaging work for constructing the related boundary condition. Physically,
the boundary condition used in our model is more realistic to represent the flux across the well screen. Therefore, the
hydraulic conductivity may be underestimated if the KGS model is chosen to identify the aquifer parameters when the

well is partially penetrating.
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Fig. 2 A plot of normalized head responses versus logarithm time predicted by our solution and Cooper et al.’s (3) solution

for a slug test performed in a fully penetrating well.
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Fig. 3 The normalized head responses depicted by our solution and the KGS model (Hyder et al. (7)) for the cases of (a) an
observation well located at radial distance 0.0915, 0.305 or 0.914 m and the penetration ratio of the test and observation
wells are both 0.1; (b) a fully penetrating observation well at radial distance 0.305 m and the penetration ratio of test well
is 1.0, 0.75, 0.5 or 0.1; and (c) the normalized head differences of case (b).

Field Example

An example is used to illustrate the applicability of our solution in characterizing the hydraulic behavior during a field
slug test. The test data were collected in well 3 at the Pratt County site, Kansas in October 1993 (Butler (1), Table 5.4).
At this site, the aquifer was 47.87 m thick with interbedded clays and consisted mostly of sands and gravels. The well
partially penetrated the aquifer with well screen opened from B,=35.37 to B, = 36.89 m. The values of r,, and r, of the
well were 0.125 m and 0.064 m, respectively. Figure 4 shows that there is a close match between the normalized field
data plot and the normalized head curve produced by our model with k. = 3.1x10"* m/sec, &, = 9.3x10" m/sec, and S, =
10° m™. At the early stage of testing, the normalized data had considerable fluctuations due to the test initiation.
Therefore, the fluctuated data should not be used for evaluating the matching quality of a theoretical model (Butler (1)).
Furthermore, the data were also analyzed by using Cooper et al.’s model (3) and the KGS model (Hyder et al. (7)) with the
results both presented in Butler (1). The estimated &, = 4.9x10™ m/sec and S, = 3.3x10° m™ while using Cooper et al.’s
model (3) (Butler (1), Fig. 5.14). In addition, by assuming that the aquifer is isotropic, the KGS model (Hyder et al. (7))



gives the following results: &, = 2.0x10* m/sec, k, = 2.0x10™ m/sec, and S, = 3.4x10® m™ (Butler (1), Fig. 5.18). The

normalized head curve predicted by our model is very similar to that of the KGS model.
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Fig. 4 Plots of the normalized data for the Pratt County test in Kansas (Butler (1)) and the normalized head curve drawn

based on our model.

Effect of Well Partial Penetration

Two issues concerning well partial penetration, i.e., the penetration ratio and position of well screen, are discussed
in this section. Assume that a slug test operates in a 10 m thick confined and isotropic aquifer with k, = 10 m/sec and S5
=10"m™. The values of », and r. are 0.0915 m and 0.0508 m, respectively. The initial water level Hj in the test well is
1 m. Six cases, with the penetration ratios of 0.9, 0.5 or 0.1 and the screen opens at the top or the center of isotropic
aquifer, were designed to investigate the effects of well partial penetration on the normalized head responses. Figure 5
plots the six curves of the normalized head responses and the head differences versus dimensionless time. The
dimensionless time is defined as the elapse time multiplied by the radial hydraulic conductivity and is divided by the
radius of well casing.

Figure 5(a) shows the recovery rate of the normalized head decreases with the screen length. Thus, in a small
penetration ratio case, disregarding the well partial penetration in the slug test data amalysis will cause a notable
underestimation of the hydraulic conductivity. In regard to the location of well screen, the recovery rate for a well screen
situated at the top of confined aquifer is slower than that situated at the center, especially in the case of small penetration
ratio.

The normalized head difference in Fig. 5(b) represents the difference in normalized heads between the discussed
case and a fully penetrating well case. Accordingly, Fig. 5(b) shows the influences when one simply employs the model
of full-penetration well for analyzing a set of test data with a partially penetrating well.  As illustrated in Fig. 5(b), it is
apparent that the normalized head difference increases as the penetration ratio decreases. For instance, the largest
difference in normalized head between a fully penetrating well and a well with a penetration ratio of 0.9 is about 0.02
occurring at the dimensionless time of 0.006. However, the largest normalized head differences between a fully
penetrating well and the wells with a penetration ratio of 0.5 and 0.1 are respectively around 0.20 happened at the

dimensionless time 0.01 and 0.55 appeared at the dimensionless time 0.02.
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Fig. 5 Plots for the screen situated at the top or center of isotropic confined aquifer when the penetration ratios equal to 0.9,
0.5 or 0.1. (a) Curves of normalized head responses versus dimensionless time. (b) Curves of normalized head

differences versus dimensionless time.
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Fig. 6 Curves of normalized head responses versus dimensionless time for the penetration ratio of 1.0 or 0.2 when the

anisotropic ratio (, /k,) equals to 1.00, 0.10 or 0.01.

Effect of Anisotropic Ratio

The flow toward a partially penetrating well contains not only the horizontal flow but also the vertical flow. Hence,
the aquifer anisotropic ratio, /., is also an important factor on the slug test response under the anisotropic condition.
We assume that two well screens centered in an aquifer have the penetration ratios of 0.9 and 0.1. Three different values
for the anisotropic ratios of 1, 0.1 and 0.01 are considered, and the effect of aquifer anisotropy is presented in Fig. 6. A
smaller anisotropic ratio results in a definitely slower head response in small penetration-ratio cases as indicated in the Fig.

6. However, in large penetration-ratio cases, the normalized-head curves which represent different anisotropic ratios are
difficult to differentiate.

Effect.of Aquifer Specific Storage

Generally speaking, the value of storativity in a confined aquifer ranges from 10” to 10 (Schwartz and Zhang (13)).

Thus, three different values of Ss, 10 m™, 10 m™ and 10°m™, are considered for a hypothetical aquifer of 10 m thick.



In addition, two conditions of well construction are chosen; one is a fully penetrating well and the other is a partially
penetrating well with B, and B, of 4 m and 6 m, respectively. Figure 7 illustrates the influence of aquifer specific storage
on the slug test data. Under the same penetration ratio, smaller specific storage results in a slower head response. The
normalized head distributions between different values of specific storage, though significantly different in a fully
penetrating well, are similar to the penetration ratio of 0.2 as indicated in Fig. 7. This evidence suggests that the

normalized head distribution is not sensitive to the change of the specific storage for a small penetration ratio case.
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Fig. 7 Curves of normalized head responses versus dimensionless time for the penetration ratio of 1.0 or 0.2 when the

aquifer specific storage equals to 10, 10 or 10°m™.
CONCLUSIONS

A new slug test solution for the head response was developed based on the formula given by Peres et al. (12) when
considering a partially penetrating well constructed in a confined aquifer system. A significant difference of head
response was observed between our model and the KGS model (Hyder et al. (7)) by virtue of these models with different
flux boundary conditions along the wellbore. Nevertheless, the new solution can coincide with that of Cooper et al. (3)
and the KGS model (Hyder et al. (7)) if the test well is fully penetrated. Moreover, an example at the Pratt County site
provides evidence of the applicability of our solution to analyze a set of field slug test data collected from a partially
penetrating well.

Our solution was adopted to explore the influences of well partial penetration, aquifer anisotropy, and aquifer
specific storage on the slug test data analysis. When a slug test is performed in a partially penetrating well, a smaller
screen length, anisotropic ratio, or specific storage can result in a slower recovery rate of the normalized head. In
addition, in regard to the screen location, the recovery rate for a well screen situated at the top of aquifer is significantly
slower than that situated at the center for a well of small penetration ratio. Thus, in a small penetration ratio case,
disregarding the well partial penetration or aquifer anisotropy on the test-data analysis, can cause an apparent
underestimation on the hydraulic conductivity. Yet, the normalized head distribution is not sensitive to the change of

specific storage in a well of small penetration ratio.
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APPENDIX 1 —DERIVATIONS OF EQUATION (6)

To solve equation (1), we apply the Laplace and finite Fourier cosine transforms to the goveming equation and

related boundary conditions. The Laplace transform of function f(/) is defined as (Carslaw and Jaeger (2))

©

Ty = [ roya V)

o

Thus, applying the Laplace transform to equation (1) results in
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aznc(r,z, P) 1 a“‘.(l‘,z, P) kz aznc(‘ ,Z,p) Ss
+ + ==p h ,Z, A2
ar2 r or k, azz kr C(r p) ( )

where Fc (r,z, p)= hydraulic head in the Laplace domain. In addition, the boundary conditions are rewritten as follows
he(,2,p) =0 (A3)

oh,(r0,p) oh(r,L,p) _

~ = 0 (Ad)

and

(- m2phin 2 |0 - 2)- U - Bl -2t 5 - [ 2L22))

r=r,

The finite Fourier cosine transform is defined as (Carslaw and Jaeger (2))
- L ~—
Fown) = [F(@)costw,2)ee 46
0

Applying the finite Fourier cosine transform to equation (A2) gives

3%k (r, W, p) 1 O, (r, w,, D)

arz ; o =a;c(r) Wps P) (A-,)
with
a= (i]pi-(k—')w"z ,n=0,1,2... (A8)
kl‘ kl’

where }TC (7, w,, p) = hydraulic head in the Fourier-Laplace domain. The transformed boundary equations are

r‘c (oo, Wns P) =0 (A9)

and
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- oh \r,w,,
(%wl —”rczphc(rw:wn’p)]=_zmwkr(BZ _Bl(Lar_p-)) (Alo)
The general solution of equation (A7) can be obtained as
b (r,was )= Cilolar) + C: Ko o) (Al1)

where /, = modified Bessel function of the first kind of order zero. In addition, C; and C;can be obtained by substituting
equations (A9) and (A10) into equation (A11). One finds

oo (Al12)
and
&)
o Al3
P w2 pKylar, )+ 21k, (B, - B )oK, (ar,) "

where

W, = WL[Sin(w,.Bz) - sin(w, B,)] o
Hence,

) (ij,xo(w)

h(r,w,,p)= . -

mcszD(ww ) + mekr(BZ - BI )’Kl (wn)

Further, employing the inverse finite Fourier cosine transform on equation (A15), the hydraulic head of constant-flux

pumping test can be expressed as

s (%](Bz - B)Kolarr)

L|m.?pKolayr, )+ 2.k, (B, - B )y K (i)

;;c('a z,p)=

(A16)
. (g)w.xo(a,r)cos(wnz)
2 P

L 5 | w2 pKolayr, ) + 27m,k, (B, - B))a K, (ayr,)




where

and
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a = [ﬁ)p (A17)
k’
@, = (i—:)p+(i—:)w,,z, n=1,273.. (A18)

APPENDIX 2 —NOTATION

The following symbols are used in this paper:

B
B,

= distance from the top of aquifer to the top of test-well screen;

= distance from the top of aquifer to the bottom of test-well screen;

= distance from the top of aquifer to the top of observation-well screen;

= distance from the top of aquifer to the bottom of observation-well screen;
= hydraulic head of constant-flux pumping test;

= hydraulic head of slug test in the Laplace domain;

= hydraulic head of constant-flux pumping test in the Laplace and Fourier-Laplace domains,
respectively;

= well water level of slug test in the Laplace domain;

= initial water level in a test well;

= modified Bessel functions of the first kind of order zero;

= radial and vertical component of hydraulic conductivity, respectively;

= modified Bessel functions of the second kind of order zero and one, respectively;
= thickness of aquifer;

= Laplace variable;

= constant-flux rate through the wellbore;

= radial distance from the centerline of well;

= radius of casing;

= effective radius of test well;

= storativity of aquifer;

= specific storage;

= time since the start of test;

= transmissivity of aquifer;

= unit step function



74

]

@,

n

n

—E, n=1,2,..;
L

=L(sinw,,Bz —sinw, B,);
W,

=l(sinw,,82' —sinw,,Bl');
W,

= vertical direction;

k

f
=2 [ ),,,n 0,1,2,...;
\
= || Bs d
]}k)p an
S_Jp+["),,z,n 1,2,3,...
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