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SYNOPSIS

This research incorporates the cross interference between the modes of double-row bars and alternate bars into a
weakly nonlinear analysis, and aims at clarifying the degree of the cross interference between the modes. The rate
of linear amplification is introduced into this model so that the same order can examine alternate bars and double-
row bars. Hydraulic conditions of this analysis were set at a large width-depth ratio in which double-row bars
were generated. The results of this analysis did not reproduce the results of hydraulic experiments quantitatively.
However, it reproduced the qualitative characteristics of bar mode decrease process. Findings revealed that neither

modes (alternate bars and double-row bars) do not grow up at the same time.
INTRODUCTION

To improve flood control, studies have been conducted on the behavior of bar formation on a riverbed, because
once such sand waves form, they start to cause local scouring and make a river channel meander, promoting riverbank
erosion. Conventionally, the initial growth rate during sandbar development is used to classify the meso-scale riverbed
configuration. Theoretical studies on bar formation have been conducted by several researchers. Colombini et al. (1),
Schielen et al. (5) and Izumi & Pornprommin (4) conducted weakly non-linear stability analysis on bar developments in
straight channels. They clarified the bar formation process. However, these analyses did not consider an interaction of
two modes (alternate bars and double-row bars). Various hydraulic tests (Fujita (2), Fujita et al. (3)) and numerical
simulations (Takebayashi et al. (7), Teramoto & Tsujimoto (8)) have reported that under the condition in which
sandbars of higher mode form during the initial period, mode reduction occurs with time. This means that there may
be the situation in which a sandbar mode differs from the mode predicted by an initial growth rate for that riverbed
configuration. In fact, there are river sections with hydraulic conditions under which double-row bars are thought to
form but where mode reduction occurs or has occurred. This difference between the theoretical, initially predicted
mode and the reduced mode that occurs with time must be addressed in planning flood control revetments and river
conservation, since these are greatly influenced by riverbed micro-topography.

Watanabe & Kuwamura (9) experimented with sandbar formations by setting several hydraulic conditions
under which either alternate bars or double-row bars formed. They applied a weakly nonlinear analysis to describe
the sandbar development which was established by Colombini et al. (1) and tried to explain a mode reduction process
of double-row bars (Watanabe & Kuwamura (10)). In this experiment, alternate bars and double-row bars were

examined separately, and the analysis was simplified by neglecting any cross interference between the two modes.
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Table 1: Hydraulic conditions of experiments and initial conditions of analysis

Run Q D() Tf Iy Ib Cj ;5 ds 8 Bed Lb Zb A Zb
cm®/s | em | min. forms m cm
S-10-20 1660 | 0.59 20 1/86 | 1/80 | 0.0069 | 76 | 0.13 | 0.055 D 242 121 [ 117 | 3.56
S-10-40. 1660 0.62 40 1/82 | 1/80 | 0.0084 73 | 0.12 | 0.060 D 2.66 | 2.1 | 1.06 | 3.39
S-10-60 1660 0.46 60 1/83 | 1/80 | 0.0034 98 | 0.17 | 0.044 D 2.56 | 2.2 | 1.10 | 4.78
S-10-80 1660 0.36 80 1/84 11/80 | 0.0016 | 125 | 0.21 | 0.034 | D+A | 3.76 | 25 | 0.75 | 6.94
S-10-120 1660 0.61 120 | 1/83 | 1/80 | 0.0079 74 0.12 | 0.059 | D+A | 583 | 2.6 | 0.48 | 4.26
S-10-240 1660 0.49 | 240 | 1/84 | 1/79 | 0.0040 | 92 0.16 | 0.047 A 3.30 | 4.8 | 0.86 | 9.80
S-10-480 1660 0.50 | 480 1/84 1 1/79 | 0.0043 | 90 0.15 | 0.047 A 6.60 | 5.2 | 0.43 | 10.40
S-10-960 | 1660 | 0.60 | 960 | 1/80 | 1/78 | 0.0078 | 75 | 0.13 | 0.060 A 4.88 | 43 ] 058 [ 7.17
S-20-20 3250 1.15 20 1/84 | 1/80 | 0.0136 39 0.07 | 0.109 D 2.70 | 21 | 1.05 1.83
S5-20-40 3250 0.96 40 1/85 | 1/80 | 0.0078 47 | 0.08 | 0.080 | D+A | 268 | 2.4 | 1.06 | 2.50
S-20-60 3250 0.86 60 1/84 | 1/79 | 0.0057 52 0.09 | 0.082 | D+A | 353 |37 {080 | 430
S-20-80 3250 1.10 80 1/85 | 1/80 | 0.0118 41 0.07 | 0.103 | D+A | 589 | 3.4 | 0.48 | 3.09
S-20-120 | 3250 | 0.96 | 120 | 1/84 1 1/80 | 0.0079 | 47 | 0.08 | 0.091 5.41 | 4.3 | 0.52 | 4.48
S-20-240 | 3250 | 0.91 | 240 | 1/84 | 1/79 | 0.0067 | 49 | 0.08 | 0.086 7.50 | 5.6 | 0.38 | 6.15
S-20-360 | 3250 | 0.96 | 360 | 1/83 | 1/79 | 0.0080 | 47 | 0.08 | 0.092 6.83 | 4.5 | 041 | 4.69
S-20-840 3250 1.00 | 840 1/82 | 1/80 | 0.0092 45 0.08 | 0.097 8.18 | 5.5 | 0.35 5.50
S-30-20 5270 j 1.20 20 1/83 1 1/80 | 0.0060 | 38 | 0.06 | 0.115 465 | 2.8 | 0.61 | 233
S-30-40 5270 1.37 40 1/85 | 1/79 ] 0.0086 | 33 | 0.06 | 0.120 | D+A | 540 | 6.1 | 0.52 | 4.45
S-30-60 5270 | 1.27 60 1/84 1 1/78 1 0.0070 | 35 | 0.06 | 0.121 6.00 | 5.2 | 047 | 4.09
S-30-80 5270 1.39 80 1/85 1 1/81 1 0.0090 | 32 | 0.05 | 0.130 6.30 | 5.2 | 045 | 3.74
S-30-120 | 5270 | 1.20 | 120 | 1/83 | 1/79 | 0.0060 | 38 | 0.06 { 0.115 548 | 47 | 0.52 | 3.92
S-30-240 5270 1.15 | 240 1/86 | 1/81 | 0.0051 39 | 0.07 | 0.107 578 | 5.3 | 049 | 4.61
S-30-600 | 5270 | 1.20 | 600 | 1/85 ] 1/76 | 0.0058 | 38 | 0.06 | 0.113 840 | 6.1 | 0.34 | 5.08
S-40-20 7600 1.64 20 1/84 | 1/80 | 0.0072 27 | 0.05 | 0.156 2.87 | 2.1 | 0.99 1.28
S-40-40 7600 | 1.78 40 1/85 | 1/81 | 0.0091 | 25 | 0.04 | 0.167 570 | 6.3 | 0.50 | 3.54
S-40-60 7600 1.80 60 1/85 | 1/80 | 0.0094 25 0.04 | 0.169 439 1 36 | 064 | 2.00
S-40-80 7600 1.84 80 1/84 | 1/80 | 0.0102 24 1004 | 0.175 578 1 5.1 | 049 | 2.77
S-40-120 7600 1.63 120 1/86 | 1/80 | 0.0069 | 28 | 0.05 | 0.151 7.80 | 54 | 0.36 | 3.31
S-40-180 | 7600 | 1.60 | 180 | 1/87 | 1/81 [ 0.0065 | 28 | 0.05 | 0.147 9.45 | 5.2 | 0.30 | 3.25
S-40-330 7600 1.50 | 330 1/83 1 1/83 ] 0.0056-] 30 | 0.05 | 0.144 6.80 | 5.8 | 0.42 | 3.87
S-50-20 10350 | 2.02 20 1/85 1 1/80 | 0.0072 22 | 0.04 | 0.190 4.80 { 3.1 | 0.59 1.53
S-50-40 10350 | 2.03 40 1/86 | 1/79 | 0.0072 ] 22 | 0.04 | 0.188 4.20 | 2.6 | 0.67 1.28
S-50-60 10350 | 2.10 60 1/83 1 1/80 | 0.0083 | 21 0.04 | 0.202 5.03 1 40 | 0.56 1.90
S-50-80 10350 | 1.91 80 1/86 | 1/82 | 0.0060 | 24 | 0.04 | 0.177 6.38 | 5.1 | 0.44 | 2.67
S-50-120 | 10350 | 1.82 120 | 1/84 | 1/81 | 0.0053 25 | 0.04 | 0173 593 1 5.5 1 0.48 | 3.02
S-50-240 | 10350 | 1.80 | 240 | 1/79 | 1/82 | 0.0055 | 25 | 0.04 | 0.182 6.68 | 5.6 | 0.42 | 3.11
D: Double-row bars, A: Alternate bars .
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The experiment showed that reduction from double-row bar mode to alternate bar mode could be explained even from
experiments in which the two types of bars were examined separately.
This present study incorporates the cross interference between modes into nonlinear analysis to clarify the

mutual influence of the modes in the mode reduction process.
OUTLINE OF HYDRAULIC EXPERIMENTS

Watanabe & Kuwamura (9) conducted hydraulic experiments on sandbar mode reduction from double-row bars
to alternate bars. Table 1 shows the hydraulic conditions and the sandbar morphologies in the experiments. In Table
1, @ = discharge; 5;) = average water depth; 77 = duration; [,, = water surface gradient; I, = bed slope; Cy = drag
coefficient of riverbed; g = 1§/ 136; B = half the channel width (=45cm); dg = Js/f);); d: == diameter of bed material
(0.76mm); 6 = dimensionless shear stress; A = 27r1~3/ig; and Zp = Z/Dvo Ij;, Z; = the average wavelength and
wave height of sandbars in the observed section of channel. After reaching an equilibrium as double-row bars, the
bars transform into alternate bars during a transition period. Both double-row bars and alternate bars formed in the
tests S-10-80, S-10-120, S-20-40, S-20-60, S-20-80, and S-30-40. Therefore, the average wavelengths and wave heights
in these tests are the average for double-row bars and alternate bars. The last number of each test name indicates a
duration of water flow in minutes. The sand bars of all the experiments submerged except Run S-10. Since S-10 has
shallow water depth and emerged bars form, one needs to consider the characteristics of bar forms which differ from

the other experiments. Figure 1 and 2 show the observed bed topographies of Run S-20 and Run S-40.
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Figure 1: Observed bed topographies of Run S-20: Figure 2: Observed bed topographies of Run S-40:
changes in bed elevation from the initial state. changes in bed elevation from the initial state.

GROWTH RATE EXPANSION METHOD CONSIDERING MODE CROSS INTERFERENCE

Basic equations end dimensionless forms

Basic equations and dimensionless forms are set in the same form as Colombini et al. (1). Equations 1, 2, 3 and
4, respectively, are two steady two-dimensional shallow-water flow equations where the diffusion terms are omitted, the
continuity equation, and the continuity equation of bedload, for a straight channel (width:ZE) under the coordinate
system shown in Figure 3.
ﬁaff ~oU  _8H 7
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Figure 3: Definitions of coordinate system of the flow model.

Tt ()
where { = time; T = longitudinal coordinate; § = transverse coordinate; U = flow velocity in the Z coordinate direction;
V = flow velocity in the ¥ coordinate direction; H = water surface level; D = flow depth; 77 = riverbed elevation
(= H — D); 73 = shear stress in the & coordinate direction; 7, = shear stress in the § coordinate direction; Qpy =
bedload transport rate per unit width in the Z coordinate direction; é;;, = bedload transport rate per unit width in
the § coordinate direction; 5 = density of water; § = acceleration of gravity; and P = porosity of bed. Variables
capped with~are dimensional.
Equations 1, 2, 3 and 4 are made dimensionless by using the parameters of uniform flow on a flat riverbed:

(U,V) = (U,V)/Us; D = D/Do; H = H/(Fa’Da); (Qva, Q) = (@b, Qo)/ (650, )/ (ay7y) = (7o 75) /(700 );
(#,9) = (&,9)/B; t = 1/(B/Uo); and Fy = Uo/(§Do)"/? .

Here, the suffix 0 indicates a value for uniform flow. 4 = submerged specific gravity of a riverbed material. The

resultant equations are as follows:

5U oU 8H
333 V'a— '*I- + ﬁ (5)

v OV 8H .,

aUD) 8(VD)
*“5;‘"‘!- £y =0 (7)
an Qs |, 0Quy _

+Q0< s ayy)_o ®)

where Qo = (8d,°)1/2/[Fp(1 — P)].
Conventional perturbation method (Colombini et al. (1))

When alternate bars and double-row bars are considered separately, (U,V, H, D) in these equations are substi-

tuted by their expansions whose perturbation parameters are £*/2, as shown by Equations 9, 10, 11, 12 and 13.

(U,V,H,D) = (1,0,Hy,1)+eY?(Uy, Vi, Hi,Dy)
+&%2 (Us, Va, Ha, D2) + %2 (Us, Vs, H3, D3) (9)



(U1, V1, H1,Dy) =

Ary (S1u111, Crvna, S1har, Sidin) By + e for mode = 1
(10)
Acry (Couzay, Spvio1, Cahior, Cadint) By + c.c. for mode = 2
(Uz, Vo, Hz, Dy) =
Ary* B3 [(Couana, Savana, Cohasa, Cadana) + (202, V202, haos, dao2)] + c.c.
+ A1) Ar) [(Cauano, Savaze, Cohasg, Coadazg) + (4200, ¥200, h200, d20o)]
+ (0,0, Hago, 0) for mode = 1
A1y 2B [(Sausaz, Cavada, Sahoss, Sadpaz) + (202, va02, haoz, daga)] + c.c.
+A A7y [(Sauzso, Cavao, Sahaso, Sadzan) + (w200, V200, haoo, daoo)]
+ (0,0, Hapo, 0) for mode = 2
(11)
(U3v V3>, H31 DS) =
Ay Ay (S1usir, Crvain, Sihair, S1dsiy) By + c.c. + huh. for mode = 1
_ (12)
A(T)2A(T) (Cgl&321, Sovsag, Cahsa, Cadaoy) By + c.c. + h.h. for mode = 2
. 1 1 .
(S, Cony Ep) = (sm ('j”my) , 08 (§7rmy) ,exp [ni (Az -—wt)}) (13)

where, c.c. = complex conjugates of the immediately preceding term; h.h. = terms of the higher order; m = the mode
number for transverse direction of bar formation; n = the mode number for longitudinal direction of bar formation;
w = angular frequency; and A7y = the amplitude of small perturbation at time T. 7T is a time scale introduced to
express the variation of small perturbation. The leftmost number of the three-digit suffix in Equations 10, 11 and 12
is the order, the middle number is the wave mode of small perturbation in the transverse direction, and the rightmost
number is the wave mode of small perturbation in a longitudinal direction. Its relation to the time scale of flow, ¢, is

given by Equation 14. K(T) is the complex conjugate of A(ry.

T=c¢t (14)

The time scale necessary for expressing development of sandbars is much greater than that for changes of water flow.
On the order of £%/2, a modified Landau-Stuart equation shown as Equation 15 is obtained for alternate bars and

double-row bars.

T

) + a1l + CtzA(T)ZZ(T) =0 (15)

where, c; and oy are complex coefficients expressed in terms of the amplitude of perturbations.

Equation 16 is the solution of Equation 15:

111



112

% f in hydraulic experiment

40 .

30 AN NV RV NP U SR S ——— Jnp—

o
20 5
Pe for double-row bar
10p = ]
S-40 Je for alternate bar

025 05 075 1 125 15 175 2
A

Figure 4: Neutral curves of initial growth rates calculated by the linear stability analysis.

—Re (04)
= 16
4] \/R)e (a2) — aoRe (o) exp [—2Re (en) T (16)
where, |A|g = assumed to be the initial amplitude of small perturbation; and ag = expressed by Equation 17.

1 Re{a2)
|Alg*  Re(a)

- (17)

‘When the growth rate expansion method is applied to the nonlinear analysis of sandbar development, the perturbation

2

parameter €1/2 is used. ¢ is expressed as Equation 18:

B=p:(1+¢) (18)

where, 3 = actual width/depth ratio; and 8, = the minimum width/depth ratio for which the initial perturbation is
neutral, i.e., whose initial growth rate is 0 in linear stability analysis.

For application of a nonlinear analysis, a width/depth ratio @ needs to be close to 8.. ‘A wavenumber of
sandbar A is given by Equation 19. To perform this analysis, however, here we assume that X\; = 0, because it does

not greatly affect the results of the analysis.

A=A +eh (19)

Mode cross interference method

The growth rate expansion method was used to examine the development process of alternate bars and double-
row bars on the same order. As shown in Figure 4, the critical width/depth ratio ., or the minimum width/depth
ratio when the initial growth rate {2y of a sandbar is 0, differ between alternate bar and double-row bar. In the growth
rate expansion method, which describes sandbar development in a channel whose width/depth ratio is close to the
critical width/depth ratio, it is theoretically impossible to simultaneously examine the growth of sandbars in channels
that have different critical width/depth ratios. In addressing the mode change from double-row bar to alternate bar,
one must consider the cross interference between the two modes. Thus, the alternate bar and the double-row bar
need to be considered under conditions in which there is the same order of perturbation. To solve this problem, some

preconditions are set as follows.
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Figure 5: Changes in wavenumber of bars in hydraulic tests.

‘When perturbation expansion is applied to more than one type of sandbar under the condition of the same order
of perturbation, a uniform perturbation parameter is required. The region in which alternate bars and double-row
bars can be considered is the region that is conventionally classified as the region for double-row bars. Therefore, the
analysis is applied to the case in which the critical width/depth ratio, or the minimum width/depth ratio, is 3. when
the initial growth rate of a double-row bar € is 0, and a uniform perturbation parameter is used. In this case, the
critical width/depth ratio differs from that of an alternate bar, and the alternate bar has an initial growth rate that
exceeds 0.

Figure 5 shows the changes in wavenumber of sand bars obtained in the previous hydraulic test on the process
of reduction from double-row bar mode to alternate bar mode. The figure also contains the wavenumber A, at 3.
obtained by linear stability analysis and the wavenumber Ag at 3 obtained in the experiments. - The suffix refers to the
mode number. In Figure 5, the wavenumber for the alternate bar mode becomes roughly half that for the double-row
bar mode as the mode reduction progresses. Thus, the wavenumber for the alternate bar mode will be assumed to
have the fixed value of half that for the double-row bar mode.

When the above conditions are applied, it is impossible to satisfy equations on the first order for both the
alternate bars and the double-row bars. Thus, the amplitude of the double-row bar continues to be Bz, a function
of T, but for the alternate bar W), a function of ¢ is used to adjust its growth rate in addition to A(ry, a function of
T, because the alternate bar mode has an initial growth rate much greater than that of double row bar in this case.
This is also equivalent to changing the time scale of development in the mode 1 and the mode 2.

Accordingly, Equations 20, 21 and 22 replace Equations 9, 10, 11 and 12.

(Uh, Vi, Hy, Dh) = Ay Wiy (S1uan; Crvaag, S1han, Sidin) Er + cc
+B(r) (Cauiz2, S2v122, Cohyze, Codiaz) Ea + c.c. (20)
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(Us, Va, Ha, D3) = A1y’ W(y)*Ez [(Cauasa, Sava22, Cahaze, Cadass) + {u202, V202, hao2, dao2)] + c.c.

+AT AT Wiy W (1) [(Cauizzo, Szvaz0, Cahano, C2d22o) + (12000, V2008 B200a, d200a)]
+B) 2By [(Cyuzas, Sqvnas, Cahoas, Cadasa) + (w204, V204, hoos, daos)] + c.c.

+B1)B(1) [(Csu2s0, Ssv240, Cahaso, Cadaao) + (U2006, V2006s P2006, d200b)]

+AyByW (1 E1 [(S1ua11, Crvars, Sihaty, Sidonn) + (Sauaat, Cavaar, Sshasi, Ssdasy )] + c.c.

+ATyBryW) Es [(S1uas, Crvais, S1hois, S1da13) + (Ssuzss, Cavass, S3hoss, Sadeas)] + c.c.
-+ (0,0, Hygo,0)

(1)

(Us, V3, Hs, D) = (Airy* Ay Wiy 2W(g> + Ay By BryWy) Er (S1usin, Civain, Sihain, Sidsy) + c.c.

+(Bay’ By + By Ay Ay Wiy W sy) Bz (Causaa, Savsza, Cohazs, Cadaas) + c.c.

+h.h.

(22)

where, the leftmost number of the three-digit suffix in Equations 21 and 22 is the order, the middle number is the

wave mode of small perturbation in the transverse direction, and the rightmost number is the wave mode of small .

perturbation in the longitudinal direction. By substituting them into Equations 5, 6, 7 and 8, Equations 23 and 24

are obtained on the order of £'/2 (the first order):

Puii
P111,21
Pi11,31

P111,41

-

P122,11
P122,21

P122,31

P122,41

For Equations 23 and 24 to have solutions, Determinants 25 and 26 are derived:

Pii1,11
P111,21
Pi11,31

P14

Pi22,11
P122,21

D122,31

D122,41

Pi11,12
P111,22
P111,32

Pi11,42

P122,12
P122,22
P122,32

P122,42

P1i1,12
P111,22
P111,32

Pi11,42

P122,12
P122,22
P122,32

P122,42

P111,13
P111,23
P111,33

P111,43

P122,13
P122,23
P122,33

P122,43

P111,13
P111,23
P111,33

P111,43

P122,13
P122,23
P122,33

P122,43

Pi11,14
P111,24
P111,34
P111,44_

D122,14
P122,24

P122,34

P122,44

P111,14
Pi11,24
P111,34

Pi11,44

P122,14
P122,24

P122,34

D122,44

U1
V111
hin
Eny

Ui22
V122

hize

diag

= flll(W(f,)ﬁc,)\c»W) )

= fio(se,2ew)

= 0

(23)

(24

(25)

(26)

By adding the condition that £, A. and w be real numbers in Equation 26, the values of 3., A. and w are determined



for given values of # and d;. By substituting them into Equation 25, W) is obtained. The value of Wy at t = 0is L.
That is, W(;) will be determined by linear analysis. When dj1; = 1 and dygs = 1 in Equations 23 and 24, amplitudes
on the first order, namely wj11, v111, h111, U122, Vise and hige are calculated for each wave.

Regarding the order £%/2 (the second order), equations in the same form as Equations 23 and 24 are obtained
for the components of waves which have transverse and longitudinal numbers of wave modes (1, 1), (1, 3), (2, 2), (3,

1), (3,3), (4, 4), (2, 0), (4, 0), (0, 2), (0, 4) and (0, 0) respectively.

P2ig11 DP2ij12 P13 P2ijl4 U245
P2ij21 P2ij22  P2:5,23  P2ij24 V2ij
= qaij (@7
P2ij31 P2ij32  P2ij33  P2ij,34 haij

P2ija1  P2ija2  P2ij43  D2ij 44 de'j

where, ¢, j = the transverse and longitudinal wave mode of small perturbation. These equations, however, are
nonhomogenous, which means that the right-hand side of each equation exceeds zero. Thus, amplitudes on the
second order can be obtained for ug1; and other values of the second order by using the values obtained on the first
order.

The same order can i)e applied to the waves of (1, 1) and (2, 2), which represent an alternate bar and a double-
row bar, respectively. Therefore, when the perturbation parameter for nonlinear analysis is e, it is theoretically
possible to determine A(ry and B(r), which represent bar formation processes on the second order, and Equations 28

and 29 are obtained.

dA — '

dg >+ o1 Acr) + 2B Ay = 0 (28)
dB, . .

dg) + OL4B(T) + OZ{,A(T)Z =0 (29)

However, each equatidn diverges over time when they are used for calculation under the conditions of hydraulic tests
described below. Therefore, nonlinear analysis was repeated with a perturbation parameter of £1/2. When waves
which have the transverse and longitudinal modes of (1, 1) and (2, 2) are subjected to the above on the order of £3/2

(the third order), then Equations 30 and 31 are obtained.

dA _ —
— + Ay +aa Ay *Am) + a3 Ay By Bry = 0 (30)
dB(r _ _

S +0sBin) + 5By Bn) + a6Bery Ay ey = 0 (31)

If these equations are solved simultaneously, the values Aty and B(r) are obtained. Analytical solutions, however,
are impossible, and thus numerical calculation is used. Wy are included in the coefficients a1 to ag. The fourth
term on the left side of Equations 30 and 31 represents cross interference and these equations have the same form as

Equation 15 when the fourth term is omitted.
A COMPARISON BETWEEN NONLINEAR ANALYSIS RESULTS AND HYDRAULIC TEST RESULTS

The bedload and the coefficient of riverbed resistance used for analysis are represented by Equations 32 and 33

below, which are respectively the equations of Meyer-Peter & Miiller, and of FEngelund & Hansen.

¢=8(0—-0.)"2 (32)
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Table 2: Hydraulic conditions of experiments, initial conditions of analysis and calculated results of amplitude.

Run | 8 ds 4 Ao By | Be |77 ] Fo'hin —diy | Fo'hags — daao
S-30 | 37.5 1 0.063 | 0.12 | 0.0065 | 0.0010 | 17.5 | 1.07 | -0.853 - 0.0814 i | -0.859 - 0.0426 i
S-40 | 30.0 [ 0.051 | 0.15 | 0.0020 | 0.0010 | 18.5 | 0.79 | -0.853 - 0.0823 i | -0.860 - 0.0431 1
S50 | 25.0 | 0.042 [ 0.18 | 0.0010 | 0.0010 | 19.2 | 0.55 | -0.855 - 0.0807 i | -0.862 - 0.0423 i

1
[6 +25In (ng—) 2}

where, ¢ = dimensionless bedload transport rate for & unit width; and 8., = dimensionless critical shear stress. Both

= (33)

equations reproduce the test results accurately and thus can be used for analysis without problems (Watanabe &
Kuwamura (10)).

In solving Equations 30 and 31, the values shown in Table 2 were used as the initial values for A¢ry and B(ry.
These initial values are discussed in detail in the next section.

In Figure 6, the observed amplitudes a1 a,hd g9 are compared with the calculated amplitudes. The calculated

amplitude a1 and agy are obtained by Equations 34 and 35.

og1 = [A@yWy) (FoPhanr — din1)| (34)

Qg = | Biry (Folhiza — di22)| (35)

The amplitude oy is for the wave that has the wave mode of 1 in the transverse and longitudinal directions; (1,1),
and a9 is the amplitude of the wave that has the wave mode of 2 in the transverse and longitudinal directions; (2,2).
The observed amplitude was obtained by a wavenumber analysis applied to the riverbed configuration identified in the
hydraulic tests. |AmW (Fo®ha11 — di11)] is a calculated amplitude of the wave that has a wave mode (1,1) and
|B(T) (F02h122 - dmz) i is a calculated amplitude of the wave that has the wave mode (2,2). The calculated amplitude
was obtained by the weakly nonlinear analysis. The calculated values of amplitude are larger than the experimental
values. However, as the width/depth ratio increases, the amplitude tends to become smaller, and the general tendency
of transition from double-row bars to alternate bars is represented well, especially after the initial increase in amplitude
of both types of bars. These amplitudes are expressed in values relative to the observed equilibrium amplitude of
i1, Qie, for confirming the chénges with time clearly. Then, Figure 6 is rewritten as Figure 7. Particularly well
represented is the attenuation with time in the components of double-row bars, whose wave mode is (2,2).

In the analysis on the second order, waves which have the longitudinal and transverse wave modes of 1 and 2,
expressed as | AWy By (Fo’hai1 — déll)l for wave mode (1,1) and Ay *Wy* (Fo?hazs ~ doaa)| for wave mode
(2,2), appear. - These waves should be taken into consideration, and the calculated heights of sandbars are compared
with the hydraulic test results in Figure 8. It can be observed that solutions oscillate wiﬁh time as the perturbation
parameter £'/2 grows. This may suggest, as Pornprommin et al. (6) propose, that the oscillation of the amplitude
increases when the width/depth ratio becomes large. But the time change in the value of [W(t)l for 5-40 shown in
Figure 9 suggests that [W(t)[ tends to diverge with time. It is possible that this oscillation results from the method
used in this study. Moreover, although the method is originally formulated for phenomena that take place near the
growth rate of 0, the linear growth rate W) was applied in this study. At the same time, a discrepancy might arise
as a result of applying the method to a region which has a relatively large growth rate. - It is also shown that each
wave expressed in the equation does not diverge but instead maintains a steady value, despite W(;) having a relatively

large value. The discrepancy found in this study needs to be addressed.
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Figure 6: Experimental values and calculated solutions on the first order: temporal changes in the components of
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Figure 7: Experimental values and calculated solutions on the first order: temporal changes in the standardized

components of alternate bars and double-row bars by the observed equilibrium amplitude of a1, a11e
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Figure 8: Experimental values and calculated solutions (on the first order and the second order): temporal changes
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Figure 10: Influence of cross interference to bar amplitude in case of S-40.

While the above irregularity needs to be solved, a comparison between the results of Figure 6, Figure 7 and
Figure 8 shows that the analysis results conform to test results (Watanabe & Kuwamura (9)). Even when the
amplitude AWy (Fo®haar — diny)| of the wave which has a wave mode (1,1) on the fist order increases and
the amplitude |B(zy (Fo>hiz — di22)| of the wave which has a wave mode (2,2) on the first order decreases, the
amplitude |A()*Wiy® (Fo?hago — dons)| of the wave which has the wave mode (2,2) on the second order grows and

the characteristics of a double-row bar are maintained.
DISCUSSION ON MODE DECREASE PROCESS

The characteristics of the transition from double-row bars to alternate bars are reproduced satisfactorily by
this weakly nonlinear analysis. The mode cross interference working in a process of mode reduction from double-row
bars to alternate bars is examined on the basis of the results of this analysis. ‘

The results of hydraulic test S-40 are used, because in S-40 the mode reduction from double-row bars to alternate
bars is clearly shown and a perturbation parameter £1/2 is the smallest in the experiments which the mode reduction

was generated.
Cross Interference to Bar Amplitude

Figure 10 shows the influence of cross interference to the amplitude of bars. The solid lines show the developing
processes of | A(yWy)| and | B(z)| considering with the cross interference. The dashed lines show the results without
cross interference. There is evidence that the development process of IA(T)W@” and ‘B(T)] is strongly influenced
bf cross interference when these lines are compared. fB(T)[ is decreased to O after progressed to some extent, and
|A(T> W(i)] reaches at an equilibrium height as same that without cross interference, although rather late because of

the cross interference. The mode cross interference controls the development process of each wave.
Difference in time change of each amplitude by the initial value

Figure 11(a) shows the temporal changes in }A(T)W(t)l, ]B(T)!, JK(T)_W_(,)B(T)] and lA(T)ZW(t)Z‘ when the
initial values of A¢ry and B(g) are given 0.002 and 0.001, respectively. This means that A(ry exceeds B(r) in the
early stages of development process. While [B(T)[ grows in the early stages of water flow just as IA(T) W(t){ does, it

begins to attenuate when fA(T)W(t)[ grows to some level. This is in line with the results of the hydraulic tests.
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Table 3: Initial conditions of A(T') and B(T') of analysis

Case | A(0) B(0) Case | A(0) B(0)
I-1 | 0.000022 | 0.00001 || II-1 | 0.000021 | 0.00001
1-2 ] 0.001 0.00001 || II-2 | 0.00001 | 0.0001

I-3 0.01 0.00001 1I-3 | 0.00001 0.01
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Figure 11: Difference in temporal changes in amplitude by different initial values: (a) A(o) = 0.002 and By = 0.001;
{b) Aoy = 0.001 and By =0.001.
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Figure 12: the development processes of W(¢t)A(T) and B(T) by the different initial values

Figure 11(b) shows the results when the initial value is set at 0.001 for both Ay and B(ry. In this case, the.
results of our analysis differ from the hydraulic test results: [A(T) W(t)1 attenuates, but IB(T)| keeps on growing.

Thus, the results shown in Figure 11(a) and (b) indicate that different initial values result in different tendencies.
The same figures show that on the first order only one mode can grow. This can also be interpreted to mean that
the mode cross interference is almost unilateral and that one mode cannot grow when the other mode is predominant.
In Figure 11(b), [A(T)W(t)} and {B(T){ have a tendency to decrease or increase, respectively. As a time proceeds,
[A(T) W(t)l goes to 0 and fB(T)} changes to a constant value.

The developing processes of |AryW(y| and |B(ry| with the combination of various initial conditions are in-
vestigated. The initial conditions of each case are summarized in Table 3. Figure 12 (a) is the parametric plot on
‘A(T)W(t)l and fB(T)f using hydraulic condition of S-40.  Figure 12 (b) is transformed into logarithmic axes using
the same data. These figures show that either of ]A(T}W<t)| and ’B(T)’ can survive at the equilibrium stage. When
the initial values are in Area I, the equilibrium stage is shown as Point I and only |A(T) W@l survives, and when these
are in Area I, the equilibrium stage is shown as Point IT and only [ B(T)] survives. Arrows in the figures show the
direction of the development process. In the case of $-40, Area I is larger than Area II. This result reveals that

only the phenomenon which shifts to alternate bars from double-row bars can be confirmed. However, a different
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result from the actual phenomenon is predicted when the initial values of A(T) and B(T) are made too small. It is

necessary to use suitable initial values for this theory.
CONCLUSIONS

In this study, a weakly nonlinear analysis, which can represent mode cross interference, was conducted to
understand phenomena in reduction of mode from double-row bars to alternate bars. - Although there are some
problems in terms of quantitative evaluations and basis for setting initial values of perturbation, the characteristics of
the mode reduction process are qualitatively reproduced. The following findings were obtained from our theoretical
analysis. The development process of bars is strongly influenced of the mode cross interference. Findings show that
when the two modes are on the same order, the mode cross interference controls development process of each wave and
they cannot grow simultaneously. In order to reproduce the mode decrease process of bars by the weakly nonlinear
analysis, it is necessary to use the suitable initial values of perturbation. Evidence shows that the solutions bifurcate
by the initial values. However, the stability of each solutions has to be considered and further study on the stability

is needed.
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APPENDIX - NOTATION

The following symbols are used in this paper:

A
Ay
B

c.C.

=+

i

I

the amplitude of small perturbation at time T

the complex conjugate of A(r);

half the channel width;

the complex conjugate of the immediately preceding term;
drag coeflicient of riverbed;

d, /136 ( dimensionless grain size );

diameter of bed material;

local water depth;

average water depth;

acceleration of gravity;

a term of high order;

water level;

bed slope;

water gradient;

the average wavelength;

the mode number for transverse direction of bar formation;
the mode number for longitudinal direction of bar formation;
element of matrix and determinant;

porosity of bed;

discharge;

bedload transport rate in the Z coordinate direction;
bedload transport rate in the ¥ coordinate direction;

the time scale of flow;

time;

a time scale introduced to express the variation of small perturbation;

duration;
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U = flow velocity in the Z coordinate direction;

v = flow velocity in the ¥ coordinate direction;

T = longitudinal coordinate;

7 = transverse coordinate;

Zy = Z/ Do;

Z, = wave height of sandbars;

B = B/Dy

Be = the critical width/depth ratio for generating bars;

s = the submerged specific gravity of the riverbed material;
€/2 = perturbation parameter;

7 = riverbed elevation (= H — D);

6 = dimensionless shear stress;

(7. = the dimensionless critical shear stress;

A = 2B / LNb

] the dimensionless bedload transport rate for a unit width;
7 = density of water;

T = shear stress in the # coordinate direction; and

Ty = shear stress in the ¥ coordinate direction.
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