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SYNOPSIS

The aim of this study is to assess the impact of systematic and random error in
precipitation data on the simulation accuracy and uncertainty of a distributed hydrological
model, and to determine the sensitivity of calibration to such errors. Firstly, a true model is
established and then the margin of error is applied to true precipitation. The uncertainty is
analyzed by means of a Monte Carlo approach. Finally, the impact of low precipitation is
assessed by neglecting different levels of low precipitation. The result of the study for a
Nepalese river basin shows that a systematic error exceeding +/-10% causes significant impact
on sinmlated flows. The impact of normally distributed random error with standard deviation is
equal to 10% of observed precipitation is not substantial. The calibration of parameters can
compensate for the low error, but the higher errors should not be compensated by just fitting the
curve. Precipitation of less than 0.5mm measured with some error does not affect the flood
discharge. :

INTRODUCTION

Due to the randomness in nature and the lack of complete knowledge of the hydrological
system, the results obtained from a hydrological model are always subjected to uncertainty. The
uncertainty in output of the hydrological model is a function of uncertainty in input data,
parameters and the structure of model. The uncertainty in model input occurs due to the
measurement errors and spatial and temporal sampling errors. There is uncertainty in parameters
due to the lack of accuracy with which the parameters can be estimated or due to a limited
understanding of the relationship between the parameters and the hydrological processes. The
model uncertainty is due to the inability of the model to truly represent a natural process. An
extensive review of the causes of uncertainty in hydrological model and various methods for
assessing the uncertainty can be found in the paper written by Melching (9).

In most of the hydrological modeling studies, parameter uncertainty is a major focus.
Parameter calibration in hydrological modeling reduces parameter uncertainty as well as
compensates data and model uncertainty to some extent. Besides calibration, additional
information on parameters, good quality data of sufficient resolution, and selection of an
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appropriate model for a particular situation are also instrumental in improving the model results.

Precipitation is the most important input of hydrological model as it is a major driver of
the hydrological process. Two causes of uncertainty influence the precipitation measured by a
rain gauge. Firstly, the uncertainty is due to the systematic error (bias) or random error in
measurement. The causes of systematic error include the following: human error, site error,
instrumental error, evaporation error, wind error, wetting error, splashing error, drifting error.
Random error occurs due to human error in observation, error in instrument and small variations
in meteorological conditions. Secondly, spatial interpolation of point data to areal data adds
uncertainty to the precipitation input. )

The performance of any hydrological model is highly dependent on the precipitation data.
For a model whose parameters have to be determined by calibration, the uncertainty in
precipitation also influences the model parameters. Although errors in other input data also
affect the output of hydrological model, precipitation is the main cause of uncertainty among
input data. In hydrological modeling studies, a few papers have dealt with- input data
uncertainty, especially precipitation as one of the dominant sources of uncertainty (e.g. Storm et
al. (12); Andreassian et al. (1); Maskey et al. (8)). Nandakumar and Mein (10) analyzed the
impact of input data (rainfall and pan evaporation coefficients) and parameters on model
predictions. Findings showed that systematic error on rainfall is the dominating error on
predicted flows. Carpenter and Georgakakos (5) analyzed parameter uncertainty, radar rainfall
uncertainty and combined parameter and radar rainfall uncertainty for basins of different scales
by means of a distributed hydrological model. They concluded that an increase of basin scale
decreases simulation uncertainty. Buits et al. (4) evaluated the performance of different model
structures within MIKE1I/MIKESHE modeling framework to analyze structural uncertainty
and compared this uncertainty to the uncertainty arising from rainfall, parameter and discharge
measurement. They found less impact of random uncertainty in precipitation than the parameter
uncertainty and the discharge measurement uncertainty, but they did not consider bias in
precipitation. Review of various papers mentioned above led us to conclude that research on
both the systematic and random errors in precipitation for a distributed hydrological model is
still inconclusive. Therefore, the objectives of this study are to analyze the impact of systematic
and random errors in precipitation on the modeling results for a distributed hydrological model
and to identify the extent of error beyond which it becomes more significant in modeling.

STUDY AREA
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Fig. 1 Location of the West Rapti River Basin and its detailed map

The study area for the research is the West Rapti River Basin (Fig. 1), which is located in
the mid-western region of Nepal. The catchment area of the basin is 5450 km® and the length of
main stream channel is 208 km. The basin elevation ranges from 205 m to 3437 m above mean
sea level. The river originates from the middle mountains of Nepal, then enters to the flat area
and finally drains to India to join the Ganges River. The source of runoff is due to the monsoon



rainfall and groundwater. Daily data from 5 rainfall stations and 3 discharge stations from 1980
to 1993 was available for the study. The average annual rainfall during this period is 1580mm
and the mean annual discharge at Jalkundi (the most downstream station) is 113.7m>/s. Land
use, topographic, soil and potential evaporation (PET) data were obtained from freely available
global data set such as topographic data from United States Geological Survey (GTOPO30),
land use data from International Geosphere-Biosphere Programme, soil data from Food and
Agricultural Organization, PET data from United Nations Environment Programme, Global
Resource Information Database. Rainfall and discharge data were obtained from the Department
of Hydrology and Meteorology, in Kathmandu, Nepal.

HYDROLOGICAL MODEL

BTOPMC

The hydrological model to be used for this study is BTOPMC (Version 1.0). BTOPMC
stands for “Blockwise use of TOPMODEL with Muskingum-Cunge routing”. This is a
distributed hydrological model developed at the University of Yamanashi, Japan (Takeuchi et
al. (13); Ao (2); Hapuarachchi et al. (7)). BTOPMC is an extension of TOPMODEL concepts
(Beven et al. (3)), which was developed in order to overcome the limitations of using the
TOPMODEL for large river basins. For large river basins, spatial heterogeneity and timing of
flow to outlet are the important factors. For representing spatial variability in BTOPMC, a basin
is composed of grid cells, which can be divided into sub-basins, where each sub-basin is
considered as a block or a unit. The runoff generation at each grid cell is based on TOPMODEL
concepts. To consider the timing of flow, the flow contributed from any grid cell is routed to the
outlet using the Muskingum-Cunge routing method.

The flow generation mechanism of BTOPMC is based on TOPMODEL concepts. .

TOPMODEL is based on a saturation-excess runoff mechanism, in which the saturation zone is
called the “contributing area.” The difference between TOPMODEL and BTOPMC is that in
the case of TOPMODEL the water table is spatially lumped over a basin, while in BTOPMC the
lumping is done for a grid scale.

In BTOPMC, the soil profile of a grid cell is divided into three layers (root, unsaturated
and saturated zones) as shown in Fig. 2. Rainfall on the i* grid cell is first received by the root
zone storage which is subjected to evaporation. The unsaturated zone receives the overflow
from the root zone storage and the saturated zone receives flow from the unsaturated zone. The
outflow from the saturated zone constitutes base flow. The overland flow is generated when the
unsaturated zone storage exceeds the local storage deficit. The discharge in each cell is
composed of both overland flow and base flow, and both are dependent on the local saturation
deficit.
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The basic equations describing the concept of BTOPMC are presented below:
Within sub-basins, groundwater is mutually shared and discharges to nearby streams within grid
cell i. The groundwater flow equation is expressed as

g, =Ty exp(~SD, / m)tan f, , o)

where ¢, = groundwater flow per unit contour length; T, = saturated transmissivity (m*/h),
namely the lateral transmissivity when the soil profile is just saturated at the ground surface;
SD, = local saturation deficit (m); m = decay factor of lateral transmissivity with respect to
saturation deficit (m); B = local slope angle; and tan 8, = hydraulic gradient.

For each grid cell i '

g, =req; @

where ¢, = groundwater flow per unit contour length; re = recharge rate (m/h); and g, =

upstream contributing area per unit contour length (m*m) that drains through point 7.
From egs. 1 and 2, the distribution of local saturation deficit, SD; is derived as

SD, =SD+mly-7,) 3)

where SD = average saturation deficit in the catchment; y, = soil-topographic index
(y, =In{a, /T, tan §,)); and y = catchment average of the soil-topographic index.

Parameters of BTOPMC

The following are the parameters of BTOPMC model:
Ty Tyis saturated soil transmissivity, which describes the potential rate of lateral flow for a
completely saturated soil for a given hydraulic gradient.
m: m is decay factor of transmissivity, which describes how the actual transmissivity decreases
when the soil is not saturated.
Spmax: Smax 15 the maximum root zone capacity, which represents the plant available soil
moisture capacity as well as the interception capacity of the canopy.
ny: ng is the roughness factor for a block, which is used as a scaling parameter to compute
Manning’s roughness for routing.

Parameters m and ny are specified for each sub-basin. For distributing #, value to each
river segment, the following expression is used in BTOPMC.

n, =y (Q)[tan, /tang, (sb)] > - @

where n, = equivalent Manning roughness coefficient of river segment #; tanf; = local
topographic gradient; and tanB, = topographic gradient at the outlet of sub-basin sb. T in

BTOPMC is based on soil types, where weighted soil texture is used to represent spatial
heterogeneity (Hapuarachchi et al. (6)).

Ty =T,CIxU, +T,SaxU,, +T,SixUy 3)

where T,Cl = saturated transmissivity for clay; 7ySa = saturated transmissivity for sand; 7,57 =
saturated transmissivity for silt; Uy = percentage of clay in each grid; U, = percentage of sand
in each grid; and U,; = percentage silt present in each grid. Calibrating T for clay, sand and silt
gives T, value of soil for each grid cell. S,,.q in BTOPMC is based on land use class.



METHODOLOGY

The approach used for uncertainty analysis is a Monte Carlo approach. The framework of the
approach is presented below:

Setting up of a True Model

A set of precipitation and discharge is selected and the best set of parameters is identified
by calibrating the BTOPMC model. The chosen set of precipitation is considered as true
precipitation (observed precipitation assumed to be free of measurement error); the optimized
parameters are considered as true parameters (error free parameters); and the simulated
discharge is considered as true discharge (discharge free of measurement error).

Form of Error Models

Error model for systematic error: To determine the effect of systematic error, perturbation
is applied to the observed precipitation using the following form of error model:

P, =P, +kP, =(1+k)P, , ‘ ©)

m

where P, = perturbed precipitation; P, = observed precipitation; and & = coefficient to

indicate how much bias is added or subtracted from the observed precipitation. This form of
equation is suitable for expressing systematic error because it is a fixed error and the equation
expresses the systematic error as a fixed percentage of measured value for all measurements.

Error model for random error: In BTOPMC, spatial distribution of precipitation is
obtained by means of the Thiessen polygon method, where all the grids within the polygon have
the same values of precipitation as the point gauge value of precipitation. To examine the
uncertainty in discharge due to the random error in precipitation, perturbation to precipitation is
introduced for each gauging station data using the following form of error model:

P =P, +oe; g=rP, )

where P, = perturbed precipitation, P, = observed precipitation; ¢ = assumed standard
deviation of additive random error relative to the measured precipitation; » = coefficient; and ¢ =
random error component assumed normally distributed with mean equals zero and standard
deviation equals one. In the above formulation, the error is assumed to be independent in time
and space. With this formulation if observed precipitation is zero, the error is also zero. Thus, a
zero precipitation event becomes unaffected.

Error model for very low precipitation: Trace precipitation, which is beyond the
resolution of rain gauge cannot be measured and is usually neglected in modeling. To
understand the effect of neglecting very low daily precipitation, the performance of BTOPMC
model is assessed by neglecting different levels of low precipitation.

Assessment of the Impact of Precipitation Uncertainty on Model Results

To analyze the impact of systematic error, different values of & are taken and BTOPMC
model is run keeping other inputs and parameters at true values. To examine the influence of
random error, a Monte Carlo simulation is performed by taking different values of » keeping
other inputs and parameters at true values. Then, uncertainty in discharge due to random error is
analyzed from the outputs of » number of Monte Carlo simulations. Finally, the impact of
neglecting very low precipitation is analyzed.

Assessment of the Capability of Parameters to Absorb Precipitation Uncertainty

81



82

The purpose of calibration is to bring model results as close as observed values by tuning
parameters. However, if the parameters of the model are determined by using erroncous
precipitation data, the parameter will also be affected. To understand to what extent the
parameter calibration can absorb precipitation uncertainty, the parameters of the BTOPMC
model are calibrated for different values of k and r, and the performance of the model with
calibrated parameter is compared to the true model.

RESULTS AND DISCUSSIONS

True model

Digital Elevation Map (DEM) data, soil type data, land use data, precipitation data,
potential evaporation data and flow data which are required for running BTOPMC, were
formatted as per the requirements of BTOPMC model. The land use data was reclassified into 4
classes in order to reduce equifinality and to increase the efficiency in computation. The basin
was divided into two sub basins (Fig. 3). Time series data from 1980 to 1987 was used for
calibration and from 1988 to 1993 was used for validation,
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Fig. 3 Sub-basin division of the West Rapti River

The calibrated parameters of the model are: m (sub-basin 1) = 0.06m, m (sub-basin 2) =
0.04m, ny (sub-basin 1) =0.02, ny (sub-basin 2) =0.01, S,,. (Deep rooted) = 0.05m, Spmex
(Shallow rooted) = 0.04m, S,.e (Shallow rooted & Trrigated) = 0.03m, S.pe (Impervious) =
0.0001m, T, (Clay) = 0.5m%h, T, (Sand) = 7m*/h, T, (Silt) = 3m*h.
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Fig. 4 Validation at Jalkundi

Nash-Sutcliffe coefficient of efficiency (NSE) at Jalkundi station is 61.55% for
calibration and 66.06% for validation. The NSE in the very high range could not be obtained
because there is uncertainty in the spatial and temporal distribution of precipitation (5 rainfall
stations for 5450 km?®) and uncertainty in manual parameter estimation as no automatic



optimization was implemented in BTOPMC. The simulated and observed hydrograph for
validation at Jalkundi station is shown in Fig. 4. Findings show that the performance of the
model is good for low flow as well as high flows, except some peak underestimation. For
uncertainty analysis, the observed precipitation data from 1980-1987 was considered as true
precipitation; the calibrated parameters were considered as true parameters; and the simulated
discharge for the period of 1980-1987 was considered as true discharge.

Assessment of Precipitation Uncertainty

The impact of precipitation on model results is analyzed by using Nash-Sutcliffe
coefficient of efficiency (NSE), Bias in runoff volume for overall time series and peak flow
events, Normalized Root Mean Square Error (NRMSE) for low flow and high flow (normalized
by average flow). Peak flow of magnitude greater than 500m>/s is considered and the threshold
value for separating low and high flow is set at 50m’/s. The results for the most downstream
station are discussed in the next section.

a) Impact of Systematic Error

The magnitudes of systematic error in precipitation from various factors are (Sevruk
(ID): wind error = 2%-10% for rain and 10%-50% for snow, wetting error = 2%-10%,
evaporation error = 0%-4%, splashing error = 1%-2%. Including other errors, the maximum
systematic error in precipitation is around 30% for rain and 70% for snow. In this study, the
maximum range of systematic error is kept at +/-50% of observed precipitation, i.e. & is varied
from -0.5 to 0.5.
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Fig. 5 Impact of systematic error on overall model performance using P, = (1 + k)Pm

The results of the analysis (Fig. 5) show that for ¥ = -0.1 and 0.1, the NSE decreases by
5.4% and 4.9% of the true model respectively. Bias in runoff volume (Fig. 6) for overall time
series for £=-0.1 and 0.1 is -15.2% and 15.6% respectively, and for peak flow events, the bias
is -19.1% and 19.6% respectively. Further increase of the error in either direction makes the
performance of the model deteriorate.

Next, for the different values of , the model parameters were calibrated. A comparison of
the model performance with true and calibrated parameters (Fig. 5) shows that for k = -0.5 to
0.5 in step of 0.1, the NSE is improved by 53.3%, 39%, 24.2%, 11.43%, 2.51%, 3.4%, 13.26%,
37.75%, 68.1%, 120.13% respectively. Though the performance of the calibrated model is
better than the performance of the true parameter case due to the curve fitting procedure, the
model performance becomes worse for higher errors, even for the calibrated model. Parameter
calibration can compensate for some amount of error in data, but we can not adjust any amount
of data. The greater the amount of error in data, the worse the performance of the model.
Therefore, the NSE for recalibrated case degraded systematically.
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Fig. 6 Bias in runoff volume using P, = (1 + k)P, with true parameters
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Fig. 7 Impact of systematic error on low and high flows using P, = (1 + k)Pm with true
parameters

The performance of the model for high flow and low flow is shown in Fig. 7. The result
shows that increasing error in rainfall during high flow makes the model performance worse.
This is evident because the high flow period, which is the monsoon period, is the main rainfall
period and any error on rainfall during this period propagates through the model, thus affecting
its performance. The impact of error on low flow is insignificant because during low flow
periods, there is no or very little rain.

It is seen from Fig. 5 that the performance curve for positive k¥ and negative k is
asymmetric. Similarly in Fig. 7, the trend of the curves is asymmetric. Increasing & in the
positive side degrades the model performance rapidly, while increasing k in the negative side
has less effect than the positive side. This implies that negative k is the safer side, while positive
k is the risky side. For a linear model, the same bias in either direction has the same impact.

However, as BTOPMC is a non-linear model, the same bias in positive direction has greater
impact.

b) Impact of Random Error

Though the exact amount of the random error can not be specified, its impact on
modeling results can be quantified by uncertainty analysis. Therefore, in this study we used the
Monte Carlo framework for this purpose by taking r values equals to 0.1, 0.3, 0.5 and 0.7. For
each case, 50 samples of precipitation data set were generated randomly according to eq. 2. If
the perturbed precipitation becomes negative due to the negative random number, then it is
taken as zero. The occurrence of negative values is usually low. An example of one realization
shows that negative values occurrence expressed as a percentage of the total number of rainy
days are: for r = 0.1, no negative value, for » = 0.3, less than 0.3%, for » = 0.5, 2%-3%, for r =



0.7, 6%-8%. For each case, the average performance indicator was computed from the
performance of 50 simulations.
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Fig. 8 Impact of random error on overall model performance using 2, = P, +o.e;0=r.P,

The results of the analysis (Fig. 8) show that the decrease in the NSE from the true model
for »=0.1, 0.3, 0.5 and 0.7 is 0.4%, 3.1%, 8.2% and 15.9% respectively. As shown in Table 1,
the bias in runoff volume for » = 0.1 and 0.3 is very low; 0.071% and 0.83% for overall time
series and 0.01% and 0.3% for peak flow events of value greater than 500m’/s. This finding
makes it clear that for » = 0.1, the impact is negligible and an increase in » beyond that decreases
the performance of model.

Table 1 Bias in runoff volume (%) due to random error

r 0.1 03] 05 0.7
For whole period 0.071 | 0.83 ] 3.24} 1031
For peak flow events 0.01 03] 2221 10.17

Next, the parameters of the model were calibrated for different values of . The
comparison of result with true parameters (Fig. 8) shows that the calibration improves the NSE
by 0.1%, 0.7%, 1.1% and 2.2% for »=0.1, 0.3, 0.5 and 0.7 respectively. As the impact of errors
on the model with true parameters is low, the difference in the performance of the calibrated
model and the model with true parameters with an increase in # is not large. Similar to the
systematic error case, the NSE is degraded systematically with the increase of errors even for
the recalibrated case.
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Fig. 9 Impact of random error on low and high flow using P, =P, + 0.e; o=r.P, withtrue

m

parameters

NRMSE for both high flows and low flows due to increasing standard deviation of
random error is shown in Fig. 9. As in the case of systematic error, the effect on low flow is
negligible because it is a period with no or very little rain. As for high flow, the performance
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decreases with increasing r due to the propagation of error imposed on rainfall,
¢) Very Low Precipitation

To assess the impact of neglecting low precipitation, precipitation less than 0.5mm, 1mm,
2mm, 3mm, 4mm and Smm were neglected respectively with other inputs and parameter same
as true model. As an example, the output hydrograph for a small period with a peak is shown in
Fig. 10.

Discharge (mm/day)

3 .

22 24 26

Aug 1986

Fig. 10 A sample plot of hydrograph neglecting low precipitation

The result shows that the peak magnitude decreases with neglecting higher values of
precipitation. In fact, for this peak, the peak magnitude is reduced by 1.1 mm/day for neglecting
precipitation less than S5mm/day. When precipitation of less than 0.5mm/day is neglected, the
peak is reduced by 0.24 mm/day. Very little rain, beyond the precision limit of the instrument
(0.1 mm in most cases), can not be measured well. This study concludes that even if there is
some error in measuring such low precipitation (0.5mm/day in this case), this kind of error does
not affect peak discharge as most of it is lost due to evaporation.

CONCLUSIONS

In general, the impact of input data error depends on the type of model, the type of basin
and the type of error model. In this study, we assessed the precipitation uncertainty for a basin
in Nepal using BTOPMC as an example of a distributed model. The conclusions of the study are
summarized below: '

L. For a systematic error of +10% and -10%, decrease in NSE from true model is 5.4% and 4.9%
respectively; bias in runoff volume is -15.2% and 15.6% respectively; and bias in runoff volume
for peak events is -19.1% and 19.6% respectively. If the systematic error is very small, the
effect is also small. Furthermore, if the error is very large, the effect is also very large. It was
found that a systematic error exceeding 10% of observed precipitation is significant in
modeling. Therefore, systematic error should be identified and reduced. The ways of reducing
systematic error are as follows: implementation of quality control measures, and application of
correction methodology.

II. For a random error with standard deviation that equals 10% of observed precipitation, the
decrease in NSE from true model is 0.4%; bias in runoff volume is 0.071%; and bias in runoff
volume for peak events is 0.01%. The random error, which is unpredictable and non-constant,



might be cither positive or negative, which has a long term expected value equivalent to zero. A
slight increase or decrease of precipitation due to random effect acts as a compensating
mechanism and hence the random errors have low impact on the model results than the
systematic error. However, if the random error is larger, with standard deviation greater than
10% of observed precipitation, then its effect is detrimental to the model results.

1. The calibration of the model with a systematic error of +10% and -10% in rainfall increases
NSE by 2.51% and 3.4% respectively. In case of random error in precipitation, NSE is
improved by 0.1% for » = 0.1. For larger error, though NSE is improved due to curve fitting, the
model performance is deteriorating with the increase of error. This suggests that calibration can
compensate for the error of low magnitude, but errors of higher magnitude cannot be just
ignored. Therefore, input data uncertainty has to be considered in hydrological modeling.

IV. The impact of neglecting precipitation of less than 0.Smm/day does not affect peak
discharge. This means the small error due to resolution limit is not very significant for flood
discharge.
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APPENDIX — NOTATION

The following symbols are used in this paper:

4q;

re
sb

S rmax

Vi

= upstream contributing area per unit contour length;

= normally distributed random error with zero mean and unit standard
deviation;

= grid cell;

= coefficient to indicate how much bias is added or subtracted from

_ the observed precipitation;

= decay factor of lateral transmissivity;

= roughness factor for a block;

= equivalent Manning roughness coefficient of river segment i;

= perturbed precipitation;

= observed precipitation;

= groundwater flow per unit contour length;

= coefficient;

= recharge rate;

= sub-basin;

= maximum root zone capacity;

= average saturation deficit;

= local saturation deficit;

= saturated transmissivity;

= saturated transmissivity for clay;
= saturated transmissivity for sand;
= saturated transmissivity for silt;
= percentage of clay;

= percentage of sand;

= percentage of silt;

= local slope angle;

= local slope angle at the outlet of sub-basin;

= local slope angle for a grid cell;

= catchment average of the soil-topographic index;

= soil-topographic index; and

= assumed standard deviation of additive random error relative to the

measured precipitation.
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