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SYNOPSIS

To understand the effects of heterogeneity on rainfall infiltration and seepage, the governing
equations of two-phase flow through porous medium are employed and the finite element-formulation
is carried out. The 1/f ¢ model is introduced as a geostatistical model of hydraulic conductivity.
Findings showed that when ground surface was under ponded condition, infiltrated water reached the
groundwater table faster because of heterogeneity. However, when ground surface was under rainfall
condition, the influence of heterogeneity depended on the size of domain analyzed. Moreover, the
distribution of pore water pressure was strongly affected by spatial distribution of saturated hydraulic

conductivity near the ground surface.

INTRODUCTION

It is important to understand rainfall infiltration process for slope stability or irrigations.
Saturated-unsaturated seepage analysis (Neuman (4),(5)) has been commonly used for that purpose.
However, previous studies report that the role of pore air flow cannot be ignored in rainfall infiltration
process (Sato (8), Takagi & Morishita (9), Saito and Kawatani (7)). Moreover, in reality, the hydraulic
properties of flow domain such as hydraulic conductivity are so heterogeneous that their aspects of
whole flow domains are hardly described.

In this study, the governing equations of two-phase flow through porous medium are employed
and the finite element formulation is carried out in order to ascertain the influence of pore air flow on

rainfall infiltration and seepage. The 1/f° model is introduced as a geostatistical model of hydraulic
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conductivity.

NUMERICAL SIMULATION
Governing Equations

The following equations for two-phase flow of air and water through porous medium (Meiri (1))

are used for generating the finite element model.
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where Ky, = the hydraulic conductivity at saturation; Ky = the air permeability; kpy, krg = the
relative permeabilities of water and air, respectively; pg, py = the pressure heads of air and water,
respectively; p. = the capillary pressure; Sy, = the saturation of water; ¢ = the porosity; 5, = the
formation volume factor of air; ¢ = the time; and x; = the Cartesian coordinates (x 3 being the vertical

coordinate oriented positive upward). The boundary conditions are described as the prescribed

pressure and/or the prescribed flux.

Soil Water Retention Curve

The expressions proposed by van Genuchten (11) are used to describe the relationships between

the capillary pressure, the degree of saturation and the relative permeabilities to the two fluids.
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where S, = the effective saturation; S, = the residual saturation; ¢, n, m = parameters; & y=parameters

which describe the connectivity of pores (Mualem(2)). dSy,/dp,. is given by Eq.6.
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Viscosity of Air and Water

The viscosity of water is the function of temperature given by Eq.7.

HEw
Ly(ty) = (M
Y 1+3.368x10721, +2.2099%107 42,2

where f,,= the temperature of water in centigrade; fhyo = the viscosity of water at ty,=0 C and 1
atm(=1.78x10" Pa * s).

The viscosity of air is the function of the absolute temperature given by Eq.8.

T 2/3
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where p1,0 = the viscosity of air at 7,=273.2 (K) and 1 atm(=1.72x10° Pa - s); T, =the absolute

temperature of air; T, =273.2 (K). Pressure dependency of viscosity for air and water is ignored.

Geostatistical Model of Hydraulic Conductivity

The covariance function or the semi-variogram is often used to approximate the geostatistical
aspect of spatial distribution of hydraulic conductivity though its theoretical background is not clear.
On the other hand, Saito and Kawatani (6) proposed the 1/f ¢ model based on stochastic fractal
approach, and they verified that the model could simulate the statistical characteristics of natural flow
field such as the scale dependency of the integral scale.

In this model, the spectral density of the hydraulic conductivity in the logarithmic scale,
Y(xy)=log (Kyfx.y)), is defined as

Sy( £ el £TP ©)

where Sy = the spectral density; f= the wavenumber vector; D = the space dimension.

The variance of Y is proportional to the logarithmic value of the resolution.

o? = Alogig N (10)

where o2 = the variance of ¥; 4 = the constant; N = the resolution.
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Spatial Distribution of van Genuchten Parameters

According to laboratory-test results reported by Taninaka and Ishida (10) and Nakagawa et al.

(3)(Figure 1), the relationship between K, and the parameter 1/ can be expressed as follows:
1/a=—-37.35><10g10 K. -16.22 (11)

where o= the van Genuchten parameter(1/cm); Ky, = the hydraulic conductivity at saturation(cmy/s).

The other parameters (n and §}.) are assumed to remain constant.
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Fig. 1 The relationship between K, and the parameter 1/«

Simulation Model

Figure 2 depicts the flow domain for this study. The conditions for simulation are listed in Table
1. The simulations are performed in cases of both a ponded condition and a rainfall condition. In each
case, a comparison is made between the results for uniform field and non-uniform field. Figure 3

shows an example of the distributions of the logarithmic value of hydraulic conductivity K,y The

average value of Ky is 10 cm/s.
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Table 1 Properties and conditions of analysis

Uniform/Non-uniform Ground surface Domain size
Case-1A Uniform Ponded 20m x5 m
Case-1B Non-Uniform Ponded 20m x5m
Case-2A Uniform Rainfall 20mxSm
Case-2B Non-uniform Rainfall 20mx5m
Case-3A Uniform Rainfall 40mx10m
Case-3B Non-uniform Rainfall 40m x10m
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log (Kws) mE
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Fig. 3 The example of distribution of log(Ks)
RESULTS AND DISCUSSION
Ponded Condition
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Two cases are simulated for the ponded conditions (Case-1A: uniform field, Case-1B:

non-uniform field). The pressure heads of air and water on the ground surface are 0(m). In Case-1B,

100 Monte Carlo runs are carried out. Figure 4 shows the ensemble mean of discharge from drain

(=0) in Case-1A and Case-1B. The increase of discharge begins earlier in the non-uniform field than

in the uniform field, because water infiltrated from ground surface reaches groundwater table earlier

in the former case. On the other hand, there is no difference in the discharge between these two cases

at =6 days. Figure 5 shows an example of the distributions of both saturation and velocity of water at

=3 days. In Case-1B, they spatial variation of velocity is very large and a greater velocity is observed
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in the central zone. A comparison made between these two cases indicates that when the model is
assumed to be a uniform field such as Case-1A, the time for the infiltrated water to reach groundwater

table could be overestimated.
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Fig. 5 Distribution of degree of saturation and velocity of water at #=3.0 days.
(a) Case-1A, (b) Case-1B

Rainfall Condition

Four cases (i.c., Case-2A, Case-2B, Case-3A and Case-3B listed in Table 1) are simulated for
the rainfall conditions. Figure 6 shows the rainfall condition employed for the simulations. In Case-2B
and Case-3B, 100 Monte Carlo runs are carried out. Figure 7 shows an ehsemble mean of the
discharge from drain. The results suggest that the influence of heterogeneity depends on the domain

size. Figure 8 shows the distribution of the unsaturated hydraulic conductivity in a Iogarithmic scale.
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The variation of hydraulic conductivity in the horizontal direction is less in Case-3B than in Case-2B.
In the large domain, since the infiltration process is governed by the unsaturated hydraulic

conductivity whose variation is quite small in general, the effect of heterogeneity appears to decrease.
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Fig. 7 Discharge from drain (a) Case-2A, 2B, (b) Case-3A, 3B
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Fig. 8 Distribution of log unsaturated hydraulic conductivity (a) Case-2B, (b) Case-3B
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Influence of Heterogeneity on Pore Pressure Distribution

It is generally thought that discharge from drain reflects the average properties of the domain
while the pore pressure distribution directly reflects the distributions of hydraulic properties.
Furthermore, the influence of heterogeneity on pore water pressure distribution is investigated in the
domain shown in Figure 3. Figure 10 depicts the change of pore water pressure with time in Case-2

and Case-3 at the points shown in Figure 9. Figure 11 shows an example of the distributions of water
pressure head at /=6 days.
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Fig. 10 Change of pore pressure (a) Case-2, (b) Case-3
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Fig. 11 Distribution of pressure head at 1=6 days (a) Case-2A, (b) Case-2B



Findings reveal that the distribution of pore water pressure is non-symmetric even though there
is no difference between the mean values of Y=( log (Kys)) in the left zone and the right zone as far as
the whole flow field is concerned. This non-symmetrical distribution is due to the fact that the mean
value of the saturated hydraulic conductivity near the ground surface is larger in the left zone than in
the right zone.

These results indicate that the distribution of pore water pressure strongly depends on the

distribution of hydraulic conductivity near ground surface.

CONCLUSIONS

Findings of this study can be summarized in the following statements:
1. When ground surface was under the ponded condition, surface water reached the water table
faster because of heterogeneity.
2. When ground surface was in non-ponded condition, the influence of heterogeneity depended on
analysis scale.
3. Distribution of pore water pressure was closely related to distribution of saturated hydraulic

conductivity of ground surface.
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