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SYNOPSIS

Rainfall-runoff modeling using process models attempts to simulate the complex processes that
rainfall affects runoff, whereas artificial neural network (ANN) modeling can simulate the non-
linear relationship between rainfall and runoff without requiring any understanding of the rainfall-
runoff process. In this study, an ANN model was used to estimate runoff by using a short period of
rainfall data as inputs. The accuracy of runoff estimation improves significantly when the soil
moisture content (represented as an antecedent precipitation index or API) is provided as an additional
input. The ANN model with AP] simulates the peak flows and the overall runoff hydrograph more
accurately than a traditional conceptual rainfall-runoff model (NAM), however the NAM model
simulates the baseflows more accurately.

INTRODUCTION

Rainfall-runoff processes are non-linear complex systems involving several contributing factors
such as rainfall depth, rainfall distribution, land use, soil type, soil moisture content, etc. The variety
of models that have been developed and applied to simulate these processes can be classified into
black-box models, conceptual models, and physically-based models. Normally, conceptual models.
and physically-based models are based on numerical representations of the complex processes
affecting rainfall-runoff and theoretically these models should be more accurate. However, they do
require large amounts of observational data, and are time consuming and difficult to calibrate. Due to
process and model complexity, these models are often fitted without serious consideration of para-
meter values, resulting in poor performance during verification (8). Another problem with both
conceptual and physically-based models is that empirical regularities or periodicities are not always
evident and can often be masked by noise (18). Black-box models using artificial neural networks
(ANNSs) have been proposed as a feasible alternative approach because they are more flexible and can
capture the non-linearity in rainfall-runoff processes ((9), (16)).

Modeling and forecasting water resources variables, including rainfall-runoff processes by ANNs,
have been mainly performed by multi-layer feedforward networks with a back propagation algorithm
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developed by Rumelhart ez al. ((15), (11)). An ANN was used to systematically formulate the
rainfall-runoff process by Dawson and Wilby (4). Usually, ANN models consist of three layers - an
input layer, a hidden layer, and an output layer. In runoff estimation, the input layer is usually
composed of nodes that indicate information that influences runoff occurrence, such as rainfall and
climatic data. However, short period rainfall data alone was insufficient to estimate runoff '
satisfactorily ((12), (14)). Several researchers have introduced other variables to improve runoff
estimation. These variables include rainfall index (17), historical discharge ((9), (12)) and the
observed soil moisture (8). A study using observations of soil moisture together with historical
rainfall data showed satisfactory runoff estimation. However, in many cases, observations of soil
moisture are either limited or unavailable.

Historical discharge has been used as the sole input for flood forecasting, with promising results
((2), (18)). However, a runoff estimation model is normally a cause-and-effect model, so historical
discharge records should not be used as inputs for runoff estimation. In particular, this type of model
cannot be applied when historical discharge data are unavailable.

In this study, an ANN model was used to estimate runoff using historical rainfall data, evaporation
and a representation of the catchment soil moisture content (the antecedent precipitation index (API))
as inputs. A conceptual rainfall-runoff model (the NAM model) was also tested by using the same
input data, and the results from the two models were compared.

ARTIFICIAL NEURAL NETWORKS

ANNSs are mathematical models with a highly connected structure inspired by the structure of the
brain and nervous systems. ANN processes operate in parallel, which differentiates them from
conventional computational methods. ANNs consist of multiple layers - an input layer, an output
layer and one or more hidden layers - as shown in Fig. 1. Each layer consists of a number of nodes or
neurons which are inter-connected by sets of correlation weights. The input nodes receive input
information that is processed through a non-linear transfer function to produce outputs to nodes in the
next layer. These processes are carried out in a forward manner hence the term multi-layer feed-
forward model is used. A learning or training process uses a supervised learning algorithm that
compares the model output to the target output and then adjusts the weight of the connections in a
backward manner. The process can be summarized in mathematical form as follows.

L ‘
net; = Z'Wini 4y

i=0

where X, and W,; are the bias (X, = 1) and its bias weight, respectively. N represents the number of
input nodes. Each hidden node input (net;) is then transformed through the non-linear transfer
function to produce a hidden node output, Y;. The most common form of the transfer function is a
sigmoid function and is expressed as follows:

YJ' = f(netj) = 1+ e“m" (2)
Similarly, the output values between the hidden layer and the output layer are defined by
o 1 ‘ ,
net, = ijij s Zy =flnety) = ——- ; 3)
P I+e ;

‘where M = the number of hidden nodes; Wy, = the connection weight from the j-th hidden node to the
k-th output node; and Z = the value of the k-th output node. ‘ o ‘
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A CONCEPTUAL RAINFALL-RUNOFF MODEL

The rainfall-runoff process was calibrated and verified by using the NAM model (5), which is a
conceptual rainfall-runoff model. The model is a lumped type, i.e. the basin is considered as a whole.
The NAM model represents various components of the rainfall-runoff process by continuously
account-ing for the moisture content in four different but interrelated storages, which represent
physical elements of the basin. These storages are snow storage, surface storage, lower zone storage
and groundwater storage. The meteorological input data are precipitation and potential evapo-
transpiration and the result is catchment runoff. The resulting runoff is split conceptually into over-
land flow, interflow and baseflow components. More details of the NAM model can be found in DHI

-(5) or Madsen (10).

METHODS
Study area and data set

The study area is the Mae Ngat River basin in northern Thailand as shown in Fig. 2.  The data used
in this study was daily river discharge at station P.28 with the catchment area of 1,261 square kilo-
metres and daily evaporation and rainfall data from two stations located in the basin. All data were
collected over a period of six years (1973- 1978)

The ANN model runs were performed by using a split-sample technique with an early stopped
training approach (3). Accordingly, the data were split into three sets: a training set, a validation set,
and a testing set. The training data set was three years (1974-1976). A one year validation data set
from 1973 was used to stop the training to avoid underfitting or overfitting on training, and to
enhance the generalization ability of the models. The testing data set (from 1977-1978) was used to
verify the effectiveness of the trained model in non-trained events. - ,

The antecedent precipitation index (API) used in this study was defined by (6)

API, = (API P_)e™ ~ ' 4)

where API; = an antecedent precipitation index at time t; Py; = rainfall amount at time t-1; At = a time
step (daily basis); and o = a constant. In this study, o was taken as 0.01.
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@  Rainfal stations

Fig. 2 Location of the Mae Ngat River basin and rainfall stations

For ANN simulations, all data were normalized in the range 0.05 and 0.95 to decrease the effect of
the magnitude of the different variables, and to enable the use of a sigmoid function as a transfer
function.

ANN formulation

Four different ANN models were formulated and the ability of each to represent the rainfall-runoff
process was tested.  The basic model (Rain model) used only a short period of historical rainfall data
as input. The Rain-E model was the Rain model, with evaporation data as an additional input. The
API model was the same as the Rain model, with API as an additional input. The API-E model was
the same as the Rain model, with API and evaporation data as additional inputs. All models produced
discharge as the output.

The determination of appropriate lags for rainfall data can be performed by a prior knowledge of
the rainfall-runoff process in conjunction with inspections of correlation plots between potential
inputs and outputs (11). Dolling and Varas (7) recommended that to select the adequate group of
input variables, a sensitivity analysis and a multivariate analysis should be used. However, in this
study, the contribution of weights from potential inputs to an output of an ANN model without a
hidden layer was used to determine the appropriate lags. The relation between weights and potential
inputs was determined based on the data collected during the year of 1973. The result was shown in
Fig. 3. Therefore, the proposed ANN models can mathematically be written as:

Rain model : Q, = f(R1,,R1,_,R1_,,R1_;,R1_,,Rl_,,R2,,R2 ,R2,,) )
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Rain-E model : Q, = f(E,,R1,,R1,,,R1_,,R1_,,R1,,,R],,,R2,R2,,R2,,) 6)
APImodel : Q, = f{(API,,RI,,RI_,,R1_,,R1,,Rl,,,Rl,_,,R2,,R2 ) @)
API-E model : Q, = f(E,,API ,R1,,R1_,RI_,,R1,_,,R1_,,R1,,,R2 ,R2 ) 8)

where Q, = discharge at time t; R1, = rainfall data from station one at time t; R2; = rainfall data from
station two at time t; E; = evaporation data at time t; and API; = an antecedent precipitation index at
time t. The subscripts t-1, t-2, --, t-n represent the time at the previous 1, 2, --, and n days, respec-
tively. , , ;

The Stuttgart Neural Network Simulator, SNNS (19), was selected to perform the ANN simula-
tions. Training was based on back-propagation with a momentum algorithm. A network with only
three layers was selected for all models. For each model, the initial network structure was set so that
the number of hidden nodes was equal to the number of input nodes. Afterwards, the model was
subjected to hidden node pruning using a skeletonization algorithm, which eliminated unwanted
nodes (1). The skeletonization prunes nodes by estimating a change in the error function when a node
isremoved. If the change is within an acceptable limit, the node is removed. For each node, an
attentional strength is introduced into the net input (Eq. 3) to form a different equation as follows:

M
net, = Z Wi, Y, )

=0

where oy = an attentional strength of the unit Y;. When the unit is removed, the change in the error
function can be defined as:

L

o= 10
pJ aaj ( )

where p; = the change in the error function after the unit is removed and E is the linear error function.
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Calibration of the NAM model

Nine parameters of the NAM model were calibrated for the Mae Ngat River basin using the same
data sets as for the ANN models. The training data set (1974-1976) was used for calibration and the
testing data set (1977-1978) was used for verification.

Assessment of the model performance

To assess the accuracy of a rainfall-runoff model, more than one criterion should be used. Madsen
(10) recommended four criteria for successful calibration of a rainfall-runoff model. These criteria
were good agreement in terms of: (1) water balance, (2) overall shape of the hydrograph, (3) peak
flows, and (4) low flows. Therefore, six different goodness-of-fit measures were used to test the
agreement between observed and simulated discharges. The details of each criterion are as follows:

1. Correlation coefficient (r)

N
Z Qobs,i - Qsimi
il

N N
2 2
Z Qobs,i Z Qsim,i
i=1 )

i=1

r= (an

The correlation coefficient is described in Eq. 11, where Qops = the observed discharge; Qg = the
simulated discharge; and N = the number of observations. The correlation coefficient measures how
well each observed discharge value correlates with the simulated discharge. The value is between -1
and 1. The value of one means perfect correlation, whereas zero means that there is no correlation.
This criterion can be used to measure the agreement between the overall shape of the observed and
simulated hydrographs.

2. Root mean square error (RMSE)

> (Quus = Q) |

RMSE = | = 12)
N , (

The root mean square error as shown in Eq. 12 measures the average error between the observed
and simulated discharges. The closer the RMSE value is to zero, the better the performance of the
model. The RMSE can be used to measure the agreement between the observed and simulated water
balance. ‘

3. Efficiency index (ED)

Z (Qobs,i - Qsim,i }2

El=]-|& ‘ (13)

N

2 (Qobs,i - aobs )2

i=l

The efficiency index or Nash-Sutcliffe criterion (13) as shown in Eq. 13 is often used to measure
the performance of a hydrological model. The value is in the range of [-o0, 1]. The zero value means
that the model performs equal to a naive prediction; that is, a prediction using an average observed
value. The value less than zero means the model performs worse than the average observed value. A
value of one is a perfect fit.

4. Water balance error (WBE)
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Z Qobs,i z stm i

WBE=4l—— =L x100 ' , - (14)

ZQObS]

The water balance error as descrlbed in Eq. 14 measures the agreement in water ba]ance The
closer the WBE is to zero, the better is the simulated discharge.
5. Root mean square error of peak flows (Peakruise)

P MP

| 1
PeakRMS‘E - P JZII:MP ;(Qobs,l qunl)z} (15)

The root mean square error of peak flows is defined by Eq. 15, where P = the number of peak flow
events; MP = the number of observations in those events, where the observed discharge was greater
than or equal to QT; and QT = the threshold value for peak flow at 98% probability of exceedance.
The threshold value for peak flow for the data set used in this study was 98.0 m*/s. This criterion
measures model performance in simulating peak flows. The closer the PeakRMgE is to zero, the better
the model simulates peak flows. : ~

6. Root mean square error of baseflows (BFrumsg)

B MB

BFosse =5 2| 175 2 Qo = Quesf g o | (16)
RMSE B p MB cor obs,i sim, i j |

The root mean square error of baseflows is shown in Eq. 16, where B = the number of baseflow
events; MB = the number of occurrences where the observed discharge was less than or equal to QB;
and QB = the threshold value for baseflow at 20% probability of exceedance. The threshold value for
baseflow for the data set used in this study was 1.86 m’/s. This criterion measures model perfor-
mance in simulating baseflows. The closer BFruysg i8 to zero, the better the model simulates
baseflows.

RESULTS AND DISCUSSION

The six goodness-of-fit statistics are summarized in Table 1 for the ANN models and the NAM-
model. The ANN model with API and evaporation data (API-E model) performs best, except for
baseflow simulation. The Rain-E model performs better than the Rain model and the API-E model
performs slightly better than the APT model. This indicates that the inclusion of evaporation data can
improve the performance of the ANN rainfall-runoff models.

Table 1 clearly shows that the performance of the API model is significantly better than the Rain
model. To examine the effects in more detail, the observed and simulated discharges from both
models are plotted (Fig. 4). The hydrograph from the API model shows more acceptable simulation
of peak flows than the Rain model. From Table 1, the values of the root mean square error of peak
flows (Peakrmse) of the API model for both training and testing periods are the lowest, which are
31.71 m*/s for the training period and 50.56 m®/s for the testing period. Without the antecedent
precipitation index, the Rain model generated the same runoff value when there was no rainfall,
resulting in non-realistic hydrograph shape (Fig. 4). This is due to the fact that without API data,
when rainfall data are zero, the input nodes of the Rain model are zero. When input information does
not vary, the ANN model will generate the same result.
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Table 1 Comparison of the model performance

Model Training Testing

Criteria | Rain |E-Rain| API | API-E |NAM | Rain |E-Rain| API [API-E|MNA
model | model | model| Model | model | model| model | model |Model| model

r 0.759; 0.806] 0.894| 0.895| 0.859] 0.668, 0.610{ 0.796; 0.776] 0.673
EI 0521 0.62) 0.67] 075/ 0.71] 0.43] 0.36] 057, 0.58 041
RMSE 16.72f 14.82) 13.75{ 12.15| 13.02} 13.17) 13.95] 11.41] 11.29| 13.39
WBE -26.70| -19.35] 45.24| 35.14] 4.25|-16.44| -16.30; 16.74| 12.64|-27.88

Peakrmse | 79.13] 55.66] 31.71] 37.54] 40.70] 60.42) 85.95] 50.56| 62.93|128.66
BFrvse 3.56] -3.42f 3.10] 3.58] 0.96] 4.92] 4.69) 3.55 4.11} 0.61

The Rain and Rain-E models underestimate basin runoff, whilst the API and API-E models
overestimate basin runoff. The water balance error (WBE) values for the Rain model are -26.70%
and -16.44% for training and testing, respectively, and those for the Rain-E model are -19.35% and
-16.30% for training and testing, respectively. Whereas, the WBE values for the API and API-E
models are 45.24% and 35.14% for training, and 16.74% and 12.64% for testing, respectively.

For further analysis of the ANN model performance, the results of the API-E model were
compared with those of the conceptual rainfall-runoff model (the NAM model). The simulated
discharges from both models are plotted with the observed discharge in Fig. 5. In general, the API-E
model performs better than the NAM model. However, the API-E model is more effective in
simulateing peak flows than baseflows. The Peakrsme vaiues for the API-E model are 37.54 m’/s for
training and 62.93 m*/s for testing, compared to 53.91 m*/s for training and 128.66 m’/s for testing for
the NAM model (Table 1). The BFgrgume values for the API-E model are 3.58 m’/s for training and
4.11 m?/s for testing, compared to 0.96 m’/s for training and 0.61 m*/s for testing for the NAM model.
It is also interesting to note that all four ANN models show similar performance in simulating base-
flows, with the BFrsmg values in the range of 3.10-3.58 m 3/s for training and 3.55-4.92 m’/s for
testing. These results clearly confirm the finding that the rainfall-runoff neural network models are
less effective in simulating baseflows than the NAM model. The results obtained in this study for the
API-E model contradicts the work of Zealand er al. (18), who found that the ANN model performed
better in simulating baseflows than peak flows. However, the results of this study agree with the
work of Coulibaly et al. (3), who also found that the ANN model was more effective in forecasting
peak flows than baseflows.

In our view, one of the reasons for this is the underlying theory of the back-propagation algorlthm
that minimizes the error by adjusting weights. The error function is the mean square error (MSE)
between model outputs and targets. One of the advantages of using the MSE function is that it
penalizes large errors. However, by doing this the model tends to adjust towards high values, in this
case, peak flows.

To further investigate these effects, the testing results of the API-E model at each 100 epochs
between 100-4,000 epochs were analyzed for RMSE, Peakrvse and BFrymsg. The validation results
and the training results were subjected to the same analysis to show the effects of using the early
stopped training approach. Fig. 6 shows plots of BFrmse, Peakruse and RMSE from training, testing
and validation. The BFrmse graph (Fig. 6 (a)) shows the same pattern in all three data sets. This
indicates that the mapping function between inputs and the baseflow output of the API-E model is the

“same for all the data sets. This result also suggests that baseflow has little effect on early stopped
training.

The Peakgryse graph of training (Fig. 6 (b)) shows the same pattern as BFryvse. But the testing and
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validation graphs for Peakgysg differ. They clearly show minimum points, at epoch 2,100 for
validation and at epoch 1,800 for testing. This means that the mapping function between inputs and
the peak flow output for the training set is different from the one for the validation and testing sets.
The results also show that the API-E model can be overfitted to the peak flow training set if it is
overtraining. This result implies that peak flows have strong effects when the early stopped training
approach is applied. The RMSE graph (Fig. 6(c)) shows almost the same pattern as the Peakrumsg
graph. This indicates that peak flows are more dominant than baseflows even though there are fewer
data points, i.e. the peak flow threshold value is 98% probability of exceedance whereas the baseflow
threshold value is 20% probability of exceedance.

CONCLUSION

In this study, four ANN models were trained using the early stopped training approach for rainfall-
runoff modeling. The differences between the four models are the inclusion or exclusion of evapora-
tion and antecedent precipitation index data. The results showed that the ANN models with evapora-
tion data performed slightly better than the ANN models without evaporation data. The inclusion of
API data significantly improved model performance.

The performance of the ANN models was compared with a conceptual rainfall-runoff model, the
NAM model. The ANN models were more effective in simulating peak flows, whereas the concep-
tual model was more effective in simulating baseflows. In general, the ANN models perform better
than the conceptual model.

This study provides evidence that artificial neural network modeling of rainfall-runoff can be a
valid alternative to conventional modeling, especially where internal processes are not c]early
understood.
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APPENDIX — NOTATION

The following symbols are used in this paper:

APL = an antecedent precipitation index at time t;
B = number of baseflow events;

BFruise = root mean square error of baseflows;

E = the linear error function;

EI = efficiency index;

MB = number of observations in baseflow events;
MP = number of observations ixi peak flow events;
net;, nety = hidden node and output node input;

N = the number of discharge observations;

P = number of peak flow events;

Py ‘ = rainfall amount at time t-1;

Peakrmse = root mean square error of peak flows;

Qobs,i = observed discharge;

Qsimyi ‘ = simulated discharge;
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Q¢ = discharge at time t; ~

QB - = threshold value for baseflow at 20% probability of exceedénce;
QT = threshold value for peak flow at 98% probability of exceédance;
r » "= correlation coefficient; ' '

Riy, R2 = rainfall data from station one énd station two at time t;

RMSE = 100t mean square error;

t = time;

Wi = connection weight from the i-th node to the j-th node;

WBE = water balance error; :

X; = the i-th input node;

Y; = the j-th hidden node output;

y/m = the k-th output node output;

o = a constant; ;

o = an attentional strength of the j-th hidden unit;

At = atime step;

pi = the change in the error funcﬁon after the hidden unit is removed.
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