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SYNOPSIS

The objective of this paper is to present a methodology of using an implicit
two-step split-operator approach (IM model) for solving the two-dimensional (2D)
shallow water flow equations in terms of an orthogonal curvilinear coordinate system.
The split-operator procedure involves two steps based on a decomposition of the
momerntum equations. The first step, dispersion step, is to compute the provisional
velocity in the momentum equations without the pressure gradient and bed friction. In
the second step, propagation step, the pressure, bed friction and the velocity fields are
corrected to satisfy the continuity equation. To demonstrate the need for an implicit
scheme for practical use, an explicit type two-step model (EX model) has also been
developed herein for comparison. Four cases, including gradually-varied flow, bend
flow, shallow recirculating flow and dam-break flow, have been demonstrated to show
the accuracy and practical applicability of IM model. A comparison between IM and
EX models reveals that the implicit two-step split-operator approach enables the model
to be more flexible and efficient for various open-channel problems. The Friedrichs-
Courant constraint is relaxed, and hence large time steps can be used to gain
computational times with very less numerical instability problems during the
simulation.

KEY WORDS: implicit; two-step split-operator approach; shallow water flow equations;
depth-averaged model

1. INTRODUCTION
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For many hydraulic engineering problems, the analysis of flow in open channels is
a fundamental prerequisite. Depth-averaged 2D models are frequently applied to such
problems because of their efficiency and considerable accuracy. Typical
depth-averaged models have been presented by many researchers such as, McGrirk and
Rodi [1], Molls and Chaudhry [2], Ye and McCorquodale [3], and Lien ef al. [4] etc.

The split-operator (fractional-step or projection) approach is a widely used solution
algorithm for solving the incompressible Navier-Stokes equations with primitive
variables. The major concept in this approach is that the solution is advanced one time
stage in two (or more) steps. Usually, the first step is to compute the provisional
velocity in the momentum equations without the pressure gradient. In the second step,
i.e., propagation step, the pressure and the velocity fields are corrected to satisfy the
continuity equation. Rosenfeld ez al. [5] used the fractional-step method to solve the
unsteady incompressible Navier-Stokes equations in: generalized cooridinate systems.
Ye and McCorquodale [3] presented a fractional two-step implicit algorithm to the
computation of shallow water flows in curvilinear collocated grids.

For order of magnitude analysis, the bed friction is a dominating shear stress in the
shallow water flow equations. In order to increase the flexibility of numerical
simulation for various hydraulic problems, the propagation step should consider not
only the pressure gradient but also the bed friction. Benque er a/l. [6] were the first to
use this concept for the computation of 2D tidal current flow in the bay or estuary.
Lien et al. [4] have showed that when the effect of first step was weak, propagation step
model, neglecting the first step, could handle the case well and reduce the CPU time as
compared with the complete model.

One of the drawbacks of the split-operator approach for solving the provisional
velocity is that it is hard to specify the values of provisional velocity at the boundaries
in the incomplete momentum equations [7]. Therefore, reducing the multi- step
procedure to the two-step and using an explicit scheme for solving provisional velocity
in the first step are the feasible ways to avoid this deficiency [8,4]. However, since the
provisional velocity is computed by an explicit scheme, it suffers from the requirement
of small computation time steps which depend on the condition of the numerical
stability. To relax the time step restriction, one should consider the implicit methods
that can allow the use of large time steps.

‘The purpose of this paper is to present an implicit two-step split-operator approach
for solving the shallow water flow equations, in which the provisional velocity is
computed implicitly in the first step, then the incomplete momentum equation, which
contains the pressure gradient and bed friction, is coupled with the continuity equation
in the propagation step to calculate the corrected velocity and the flow depth.
Meanwhile, the velocity boundary conditions needed for the dispersion steps adopt the
corresponding values from the previous step. In order to examine the stability of the
newly-developed implicit two-step split-operator approach model (IM model), an
explicit two-step split-operator approach model (EX model) is also developed for
comparison, in which the provisional velocity is computed explicitly in the first step.
Various hydraulic problems, including gradually-varied flow, bend flow, shallow
recirculating flow and dam-break flow have been studied by the proposed IM model.
The simulated results are compared with experimental data, analytical solutions and
those from EX model to show its practical applicability.

2. GOVERNING EQUATIONS



2.1 Mathematical Formulation

The following assumptions are made: (1) incompressible Newtonian fluid; (2)
hydrostatic pressure distribution; (3) negligible wind shear at the water surface; (4)
negligible Coriolis acceleration. The governing equations in 3D form are integrated
over the depth to obtain the 2D conservative depth-averaged equatlons in orthogonal

curvilinear coordmates as follows:
Continuity equation
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in which
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where £ and 7 = orthogonal curvilinear coordinates in the streamwise axis and
transverse axis, respectively; %, and %, =metric coefficients in &-and 7- directions,
respectively; # and v = velocity components in &- and 7- direction, respectively;
p = fluid density; g = gravitational acceleration; ¢ = the time; d = depth; z, =
bed elevation; z, = water surface elevation; overbar (_) = time average; double

overbar (=) = depth average; prime (') = fluctuating component; and subscripts s and
b indicate the dependent variables at the water surface and channel bed, respectively.
The effective stresses (7;,,7;,,7T,,) act tangentially to the vertical sides of a fluid

element and consist of laminar viscous stresses, turbulent stresses, and dispersion
stresses due to depth-averaged operations.

2.2 Closure Model —Quantifying Stress Terms

To solve (1)-(3) as a closed system, the stress terms on the right-hand side of (2)
and (3) have to be expressed as explicit functions of the depth-averaged velocities and
the depth.

The bottom shear stresses 7,,7,, are modeled according to the following
formulas [9]

/2
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where C, = g/c* = friction factor; and ¢ = Chezy factor.

The laminar viscous stresses and turbulent stresses will be quantified in accordance
with the Boussinesq eddy-viscosity concept, which can be expressed as
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where v=uv,+v,; v, = laminar kinematic viscosity; v, = turbulent kinematic
viscosity =kU.d/6 [10]; U.=(r,/p)’* = shear velocity; k¥ = von Karman’s
constant (about 0.4).

Integrals along the vertical direction of velocity deviations from depth-averaged
values represent the dispersion stress terms. In the present study, only the secondary
current effect is considered in the dispersion stress terms. The velocity profiles in the
streamwise and transverse directions proposed by de Vriend [11] are adopted in the

present study
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where ¢ =(z~2z,)/d = dimensionless distance from the bed; and » = radius of
curvature.

3. NUMERICAL ALGORITHM
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The two-step split-operator approach involves two steps based on a decomposition
of the momentum equations. The first step (called the dispersion step) is to compute
the provisional velocity in the momentum equation without the pressure gradient and
bed friction. In the second step-the propagation step-the pressure, bed friction and the
velocity fields are corrected to satisfy the continuity equation. The only difference
between the IM and the EX models is the treatment of numerical scheme in the
dispersion step. IM model uses the implicit scheme and EX model uses the explicit
scheme. They can be expressed sequentially in the vector form as follows:

Dispersion step

For IM model
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For EX model
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Propagation step
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where the superscript #+1 denotes the unknown variables at time level (n+1)Ar; the
superscript n denotes the known variables at time level #n; the superscript n+1

denotes the unknown variables at intermediate time level between steps.
One can express the above equations again in the following forms and drop the
double overbar to simplify the notation of depth-averaging for velocity variables.

Dispersion step
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Using a Taylor series expansion for water depth, d"*', and retaining the first-order
terms only, one can easily obtain the linearized expressions of (24) as follows:
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Fig. 1 Control volume in: (a) physical plane; (b) computational plane
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where Ad =d"" —d" ; At=¢""—¢",
3.1 Discretized Equations

The working equations of each step are discretized by using the finite-volume
method. A typical control volume for node P for both physical and computational
plane is shown in Fig. 1, where the capital letters E, W, N and S denote the neighboring
nodes; and the lowercase letters €, w, n and s denote the control volume faces. The
discretized forms of the governing equations are given in the following paragraphs.

The general form of the governing equations is integrated over the control volume
AéAn ofnode P.  The present study uses the forward difference scheme to discretize
the time derivatives.  All of the spatial derivatives are estimated with central difference
of second-order accuracy, except the advection terms whose face values represented in
terms of nodal values can be obtained by the Hybrid scheme [12] which combines the
central difference and the upwind scheme to catch the direction of fluid flow.

The central difference scheme used here can be written as follows:
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Y =0.5-(Wy +¥5)=05-CF", +¥") (33)

PP =05 (¥F + 7Y =05 (] + ¥]) (34)

where ¥ could stand for u, v, h, h,, d, z, and z,; in the dispersion step,

superscript m represents n for EX model and n+%1 for IM model;

propagation step, superscript m represents n+1.

The Hybrid scheme is used herein for calculating the advection terms which can be
written as follows:

in the
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where @ could stand for u or v; u is the fluid dynamic viscosity; superscript d

represents » for EX model and the velocity values from the prekus iteration are
adopted to correct the nonlinear terms in IM model .

The mesh Reynolds number (R, or R,) is introduced in the algorithm to help

select the proper finite difference mode for computing the advection terms. The
central difference is used in the low mesh Reynolds number and the upwind scheme is
used in the high mesh Reynolds number. The upwind scheme uses backward
difference when the velocity is positive and uses forward difference when the velocity is
negative. The hybrid scheme provides the first order accuracy against upwind scheme
and second order accuracy against the central difference in the space.
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124

3.2 Boundary Conditions

Three types of boundaries, namely, inlet, outlet and solid walls are considered. In
general, the unit discharge hydrograph per unit width can be specified at the inlet
section and water-surface elevation can be specified at the outlet section. These types
of boundary conditions can be easily transformed into the function with the dependent
variables in terms of the depth-increment as in (25). At the solid boundaries, the law
of the wall is applied outside the viscous sublayer and transition layer. The wall shear
stress is used as the wall boundary condition and is substituted into the momentum
equation in the wall region to solve for the velocity component parallel to the wall.

The extra velocity boundary conditions needed for dispersion step, u! and v¢
must be specified when an implicit scheme is used. For the sake of simplicity, the
previous time- step values u{ =u/ and v{ =v; are adopted as the boundary.

3.3 Overall Solution Procedure

The solution procedures for solving shallow water flow equations can be listed as
follows:

1. Calculate the provisional velocities explicitly (for EX model) or implicitly (for IM

model) from the momentum equations (20) and (21) without the pressure gradient

terms to complete the dispersion step.

Compute Equation (25) implicitly to obtain depth increment by the ADI method.

The unknown velocities are calculated by correcting the provisional velocities with

the pressure gradient and bed friction from Equations (22) and (23) to complete the

propagation step.

4. For IM model, 1-3 steps are required to compute repeatedly until successive
predictions of velocities and depth increment no longer change along the flow
domain. ‘

5. Return to step 1 and proceed to the next time step.

6. Repeat the above procedures until a steady state solution is reached (for steady state
flows) or the specific time period is completed (for unsteady flows).

7. The flow chart shown in Fig. 2 explains the sequence of tasks performed by EX and
IM models.

W

4. APPLICATIONS

In order to verify the capability of the IM model, four cases, including gradually-

‘varied flow, bend flow, shallow recirculating flow and dam-break flow, are studied

herein. The simulated results are compared with experimental data or analytical
solution to show the accuracy of the model. Moreover, the numerical stability for both
IM and EX models are examined to show the practical applicability of IM model. In
all cases, the grid systems are designed to be fine enough to meet the requirement of
sufficient accuracy. With regard to the model’s convergence, the following criteria
should be satisfied: '



max[(Q -7 ) <1.0x107 (39)
where O could stand for u,or v,or d ateach grid point,

4.1 Gradually-Varied Flow Case

The computation of gradually-varied flow (GVF) is one of the standard tests to
examine the proposed model for the shallow water flow. The present study considers a’
hypothetical GVF case for a 8000-m-long straight, rectangular channel with the
following parameters: a width of 100 m, a slope of 0.0005, and Manning's roughness of
0.035. The steady unit discharge 3.987 m?/s was specified at the channel inlet. The
water depth was raised to 4.5 m by means of a low weir at the channel outlet. The
normal depth and critical depth of this flow is 3.0 m and 1.175 m, respectively. The
uniform mesh of 8111 are used in the present simulation.

The simulated variations of flow depth and longitudinal velocity obtained from IM
- model (A¢r = 100 s) show that the flow depth gradually varies from 4.5 m at the weir
site to 3.05 m at the upstream end, which is close to the normal depth, and this
water-surface profile can be described as an A7, curve. Consequently, the velocity

varies from 0.886 m/s to 1.307 m/s correspondmg to the variation of flow depth from
downstream to upstream.

Table 1 CPU time needed by IM and EX models for GVF case with various At

At(sec) 5 10 50 100 112 1x10° 1x10°

ModelType EX M EX IM EX M EX IM EBEX IM ™ ™M

CPUTIme 1767 5310 2307 2666 482 533 237 267 214 238 271 27
(sec)

MaxCFL 007 0.13 065 C1m 146 1300 12838
CFL 0.05 0.09 047 094 106 9.36 458.1

Various time steps were selected to examine the stability of IM and EX models.
The CPU time for 10 days’ simulation, Max CFL, and CFI, for each case are shown in
Tablel, in which CFL (Courant-Friedichs-Lewy number) at a grid point can be defined

o CFL, = (u,|/ax,; +|v,,|/Av,,) 6r5 Max CFL = Max(CFL,,), whete Max
represent the maximum value for all the grid points; and CFL = g‘JCFLi ; / N, where
- .

N represents the total grid numbers. The computations presented in the present paper
were all executed on an IBM SP2 SMP machine. In order to examine the accuracy of
the simulated results, three reliability parameters, including root mean square error,
E geometric reliability index, kg; and statistical reliability index, k,, are defined

below:
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.; denotes the

observed result at comparative point; N, denotes the total numbers of point

o}
compared.
E . represents the averaged error between the simulated results and the observed

”

results. k, and k  were proposed by Leggett and Williams [13] as a criteria to

determine the reliability of a model or to select the appropriate model.  As pointed out
by Leggett and Williams [13], the model predicts the observed results reasonably well
when the value of the ratio kg /k, lies between 0.989 and 1.027. In the present study,

the influence on the flow field by the transverse velocity is not significant since the
orthogonal curvilinear coordinates system is used. Therefore, the use of these indexes
will only focus on the depth and the longitudinal velocity.

For this simple backwater computation case, it is possible to arbitrarily pick up any
results from model as the observed results. Here, the results from IM model with As
= 100 s are taken as the observed results for the calculation of reliability parameters.
From the results, it has been found that the values of E,. almost approach to zero (say
less than 1.5%x10™) and the ratio k, / k, all lie between the reliable range as indicated
by Leggett and Williams [13] for each case studied here. From Table 1, one can observe
that the maximum time step allowed for EX model is 112 s; for this case the Max CFL
is 1.46 and CFI is 1.06. Meanwhile, the use of IM model allows very large Max
CFL and CF[ values and almost achieves unconditionally stable. Though the
dispersion step plays almost no role in the GVF case, as pointed out by Lien ez al. [4],
the main disadvantage of EX model that lies in the restriction on the time step is still
obvious. Furthermore, if the maximum allowable A; = 112 s is used for EX model

and Ar = 1x10*s is used for IM model, the CPU time needed for IM model is almost
80 times less than that for EX model.
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" 4.2 Bend Flow Case

One of the riddles of nature is the meandering of rivers. Predicting the
hydrodynamic processes in bends is of vital importance, since such knowledge is
helpful in making use of rivers, such as navigation, water supply, waste discharge, flood
control and so on. . i

IM model is validated by comparing the simulated results with experimental data
obtained by de Vriend and Koch [14]. In de Vriend and Koch’s experiment, the
channel consisted of a 39-m long straight section followed by a 90" bend with a radius
of curvature of 50 m. The channel cross section was rectangular, and the width was 6
m. The channel bed was horizontal in the straight portion and had a slope of 3x10™ in
the curved portion. The Chezy factor was 70 m"*/s. The discharge given from the

upstream end of the channel was 0.61 m”/s; yielding the average velocity was about 0.4

m/s, and the average flow depth was 0.25 m.’

The mesh of 103x39 was used in the simulation. The simulation reach covered a
23-m-long straight channel before the entrance of the bend and a 90° bend with a radius
of curvature of 50 m. The upstream boundary condition was the inflow discharge per
unit width, and the downstream boundary condition was the measured water-surface
elevation and no-slip boundary was used at the banks.

Fig. 3 shows the variation of velocity ratios [J/UM across the dimensionless
channel width [(r -r)/ B] obtained from IM model (A = 2.59 s) and the measured

data, where [/ is the depth-averaged longitudinal velocity, [UpAf is cross-section
averaged longitudinal velocity, 7 is the radius of curvature of the inner bank and »

is the channel width. = Fig. 4 shows the corresponding dimensionless depth ratio
100-(z, —z,,)/d against the dimensionless channel width, where 7z is the mean

water-surface elevation across the channel width. One can observe from Figs. 3 and 4
that the simulated results agree fairly well with measured data. In Fig. 3, the
longitudinal velocity near the outer bank increases along the bend and becomes greater
than that near the inner bank due to the transverse convection of streamwise momentum
along the bend caused by the secondary current. The velocity becomes lower near the
inner bank and higher near the outer bank starting from the § = 27.8° section. This
phenomenon becomes more evident as the flow moves further downstream. In Fig. 4,
the superelevation water surface in the bend can be observed even at the entrance to the
bend, whichis g =0° As expected, the water surface is higher at the outer bank than
at the inner bank in the channel bend. The stable transverse slope of the water surface
is established soon after the beginning of the bend (9 = 13.8%).

Table 2 CPU time needed by IM and EX models for bend flow case with various Ay

Atfsec) 0.5 1 2.59 4 6 8 945

Model Type EX M EX IM EX IM M ™M ™ ™M

CPU Time (sec) 2112 2412 1066 1250 446 519 357 277 234 154

Max CFL 0.33 0.61 149 288 463 656 807

CFL 0.18 0.35 0.91 141 212 283 335
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Table 2 shows the results of stability status for simulating the bend flow case with
IM and EX models. From the previous validation analysis, the results obtained from
IM model with As =2.59 s, which agree very well with measured data, are thought to
be reasonably considered as observed results. Consequently, it was found that E,.

almost approaches zero (say less than 2.5x10~) and the values of the ratio k, / k, all

lie between 0.989 and 1.027 for each case studied here. From Table 2, one can observe
that the use of the EX model cause a restriction on the allowing maximum time step that
is 2.59 s and correspondingly yields Max CFL of 1.49 and CFL of 0.91. Not like the
GVF case, here IM model is no longer unconditionally stable, in which the maximum
time step allowed is 9.45 s and the Max CFL and CF[ values are 8.07 and 3.35
respectively. As compared to GVF case, where the dispersion step can be neglected,
one can find clearly that the restriction on the selection of time step becomes more rigid
for the bend flow case, in which the dispersion step cannot be neglected. Nevertheless,
it still allows for model users to select relatively high Max CFL, CFL and As values
when IM model is adopted. The CPU time for a two hour simulation for each case is
also shown in Table 2. With the same As, the IM model may require slightly more
CPU time. Nevertheless, as A¢ is greater than 2.59 s, EX model can no longer be
converged for the simulation. On the other hand, IM model can be tolerant for even
three times larger Ar with a very convincing convergent solution. From Table 2, with
the use of maximum allowable A = 2.59 s for EX model and As = 9.45 s for IM
model, one can find that the CPU time for IM model is only about one-third of that for
EX model.

4.3 Shallow Recirculating Flow Case

Inflow

Fig. 5 Shallow recirculating flow produced by sudden widening of flow
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Fig. 6 Velocity vector field for the shallow recirculating flow case

Shallow recirculating flows are common occurrences in natural as can be observed
in bays and harbors, behind islands, and around coastal inlets. Because of the simple

geometry with recirculating zone for the experimental data conducted by Babarutsi ef al.

[15], it can be regarded as a typical test case for the model verification. The
reicrculating flow in the experiment was produced by a sudden widening of the flow in
the smooth channel. Fig. 4 shows a plan view of the geometry of the flow, in which
L represents . the recirculating length for recirculating zone. Flow entering the
channel was blocked off on one side; forming a lateral expansion 4, as shown in Fig.

5. The width of the channel and the lateral expansion d, were 0.61 m and 0.305 m
respectively; the uniform velocity at inlet {7, was 0.145 m/s; water depth 4 was
0.0819 m; friction factor , was 0.00527.

Table 3 Recirculating length and reéirculating flow rate obtained by IM model,
. CV model, and experiment.

; Models
Experiment
IM Model CV Model
Lid, q/Ud, Lid, q/Uyd, Lid, q/U,d,
7.87 0.085 7.68 0.082’ 743 0.109

The feature of the shallow recirculating zone is characterized by the dimensionless
recirculating length /d, and the dimensionless reverse-flow rate g /U, d,s in which

g represents the maximum- value of the reverse-flow rate per unit wxdth Table 3
shows the results of the experiment.

With a 81x20 uniformly distributed grid, the IM model (A¢ = 0.4 s) is applied to
predict the shallow recirculating flow field. The boundary conditions for upstream,
downstream and banks are the inflow discharge per unit width, the measured
water-surface elevation, and the no-slip condition respectively. The eddy viscosity p
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keeps constant throughout the recirculating flow field and can be determined as
v =0.0067U,d, [16]. The results of dimensionless recirculating length £/ d, and
dimensionless reverse-flow rate ¢/U od, from IM model are given in Table 3. From
Table 3, IM model yields a fairly good prediction that is very close to the measurement,
in which IM model slightly underestimates L/d, and ¢ /U.d, by 2.4 % and 3.5 %
respectively. The result of velocity vector field simulated from IM model is shown in
Fig. 6. One can observe from Fig. 6 that inflow is imposed at the upper half of the left
side of the channel and a recirculating region forms at the lower half of the left side of
the channel, near the sudden widening of the channel. Meanwhile, large velocity

gradient is evident near the interface between upper and lower halves near the sudden
widening of the channel.

Table 4 CPU time needed by IM and EX models for shallow recirculating flow case

with various Az

At(sec) 0.1 02 03 04 075 10 20 32

Model Type EX M EX M EX MM EX IM M ™M ™M ™M

CPU Time (sec) 3872 4300 1932 2246 1297 1502 977 1130 601 456 230 151

Max CFL 025 0.52 0.81 108 197 249 502 8.5

CFL 0.14 0.26 0.39 0.53 100 131 261 417

The results of stability test for IM and EX models are shown in Table 4. However,
the indexes of k, and k, are not suitable in the present case since the simulated

results’ may have negative values or approach to zero. Therefore, only Erm; is
adopted here for analysis. By regarding the results from IM model with Ar =0.4 s as
the observed results, which had been validated previously with good match with
experimental data, it was found that the values of E,_ for each simulated case studied
here are all less than a very small value (say about 5x10™). As one can observe from
Table 4, the use of EX model has the more severe stability constraint in which the
maximum values of Max CFL, CFL and At allowed are 1.08, 0.53 and 0.4 s
respectively: In contrast, the IM model can be used with relatively large maximum
values of Max CFL, CFL and At which are 8.15, 4.17 and 3.2 s respectively. It is
obvious that the flow field of the shallow recirulating flow case is more complicated
than that of the bend flow case since the flow directions are variant and the velocity
gradient are greater in the former case. This complexity of flow field may cause more
severe stability constraint for numerical simulation. Furthermore, if the maximum
allowable At = 0.4 sis used for EX model and At =3.2 sis used for IM model, from

Table 4, one can find that the CPU time needed for a two hour simulation with IM
model is about 6.4 times less than that with EX model.

4.4 Dam-Break Flow



Understanding the basic flow characteristics of dam-break problems is essential for
more reliable engineering design. It is usual to regard the dam-break wave as an
unsteady shallow water flow [17].  The flow is usually subcritical upsiream of the dam
site and is supercritical downstream. The numerical schemes used for solving the
problem will face severe challenges especially when they are applied to cases with large
initial water depth in the reservoir and zero depth, dry bed, in the downstream channel.

vertical gate

%
40 m - still water regioh ,
dry channel bed region

|<—— 1000 m Pl 1000 m :;

Fig. 7 Initial situation of the dam-break flow case

A hypothetic dam-break flow case with analytical solution proposed by Chow [18]
is adopted herein to examine the robustness of IM model. The channel with vertical
walls is 2000 m in length and 35 m in width. Bed slope and resistance are assumed to be
negligible. The channel is rectangular in section and is initially closed by a transverse
vertical gate, as shown in Fig. 7, containing still water, which the depth is 40m, on its
left and having a dry channel bed on its right. The gate is located in middle of the
channel, i.e., 1000 m from the upstream end, and is removed instantaneously. A
uniform mesh of 201x36 is selected and the total simulation time is 20 s after the dam
break.

The main difficulty in dealing with the propagation of a wave front on a dry bed
lies in the boundary conditions of the flow field. The location of the propagating
boundary is not known a priority nor is there any additional equations associated with
flood wave propagation on an existing channel. In the present study, the distance
between the upstream boundary and dam site is designed so as to ensure that the
velocity is equal to zero at the upstream boundary site and the computational field
during the total simulating time includes at least two more grid nodes in the £

direction with zero depth of flow at the downstream boundary site [19]. Therefore, the
discharge given at the upstream end and the water depth given at the downstream end of
the channel are all set equal to zero. In such a situation, the velocity boundary
conditions for dispersion step are no more unknown and they can be set as zero.
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Fig. 8 Comparison between simulated depth and analytical solution at various time.
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Figs. 8(a)—(d) show the comparisons of water-surface profile along the channel
centerline between the results from IM model ( A = 0.25 s) and analytical solutions at

5,10, 15, and 20 s respectively. Figs. 9(a)—(d) show the corresponding longitudinal
- velocity distributions along the channel centerline at 5, 10, 15, and 20 s respectively.

- One can observe from Figs. 8 and 9 that the simulated results agree fairly well with
analytical solutions. From Figs. 8(a)—(d), a positive steep-front wave develops and
propagates downstream, associated with a negative wave propagating oppositely
upstream of the dam after the dam breaches. As time increases, the trailing edge
recedes upstream and the wave front advances downstream. The water-surface profile
is a parabola and smoothly tangential to the channel bed. Nevertheless, since the
Hybrid scheme adopted by the present study has only a first-order accuracy, numerical
damping is exhibited at the shock front as indicated both in Figs. 8 and 9. According
to the above analyses, this application study demonstrates the ability of the IM model to
deal with the mixed type of unsteady subcritical and supercritical flows and the channel
bed being alternatively dry and wet.

By testing the numerical stability without having any oscillations or computational

failure for IM model, the maximum time step that can be used in the present dam-break

case is 0.25 s; yielding Max CFL of 0.89 and CFL of 0.31. In contrast, the EX
model cannot work at all even if a very small time step 0.001 s is used. This shows the
great advantage of the IM model because a relative large time step can be used in the
numerical simulation with discontinuity and dry bed conditions.

5. CONCLUSIONS

An implicit two-step split-operator procedure for solving the shallow water flow
equations has been presented in this paper. To show the need for an implicit scheme
for practical use, an explicit type two-step model was developed herein for comparison.
Four cases, including GVF, bend flow, shallow recirculating flow and dam-break flow,
have been demonstrated to show the accuracy, flexibility and practical applicability of
IM model. In the GVF case, in which the dispersion step can be neglected, the
solutions can almost achieve unconditional stability by means of IM model. By using
the maximum allowable time step for both models, the IM model is about 2.9 and 6.4
times faster than EX model for the bend flow and shallow recirculating flow c¢ase,
respectively. The dam-break flow case demonstrates that IM model is capable of
solving the mixed type of unsteady subcritical and supercritical flows and the channel
bed being alternatively dry and wet with adequate accuracy. In short, our findings
demonstrate that the implicit two-step split-operator approach proposed is a competitive
scheme which is capable of being applied to various kinds of practical hydraulic
problems.
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