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SYNOPSIS

A two-dimensional numerical model for flood flows in a flood plain with complicated
topography is' developed.  The model is based on the Spatial Averaged Finite volume method
on Unstructured grid using FDS technique for 2D Flood flows (SA-FUF-2DF model). An upwind
treatment of bed slope terms and a procedure for the movement of a wet/dry boundary are
incorporated into the SA-FUF-2DF model to treat flood flows on complicated topography. The
model is first applied to an experiment of the solitary wave which passes around a conical island,
and then is verified against the experimental data of depth and velocities on the flood flow in flood
plain where submerged/non-submerged topography are presented. The verification demonstrates
that the model can reproduce the complex behavior of the flows with reasonable accuracy.

INTRODUCTION

In recent years, flooding due to high intensity rainfall has been increasing. In Japan,
countermeasures against flooding have tended to shift flood hazard mitigation measures
such as hazard maps, effective systems of emergency evacuation and control of flood flow
with flood retarding plantations etc. Numerical models are instrumental in investigating
and predicting possible flooding scenarios, which can then be used to formulate suitable
flood hazard mitigation measures.

The behavior of flood flows is affected by complicated flood plain geometries with
topography with depressions in the ground or hills, structures, as well as road networks.
Therefore, a numerical model for simulating flood flows is required to evaluate correctly
the effects of the floodplain geometries on the flow. There are existing flood simulation
models, which take into consideration the effects of houses (Fukuoka et al. (6), Suetugi &
Kuriki (16) and authors (14), (1), (15)), river and sewerage network (Kawaike et al.(8)),
flood retarding plantations (authors (13)), submerged topography (Glaister(7), Bermudez
& Vazquez(2)) and the topography, which is submerged /non-submerged accordmg to flow

-phenomena {Bradford and Sanders(3), Liu et al.(9)) on the flows.

In modeling of submerged/non-submerged topography, the discretization method of
bed slope term and the treatment of submerged/non-submerged (dry/wet) topography
require particular attention. For discretization of bed slope term, the method based on
characteristics of the two-dimensional shallow water equations, which are hyperbolic partial
differential equations and generally used as governing equations of flood flows, is required.
Glaister(7) and Bermudez & Vazquez(2) proposed the discretization method of bed slope
term, but no quantitative verification based on experimental data was carried out. On
the other hand, the treatment of submerged/non-submerged (dry/wet) topography was
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proposed by Bradford & Sanders (3), Liu et al. (9), Zhao et al. (18) and Fraccarollo
and Toro (5). All these models were constructed based on a structured grid system. In
this system, in order to lay out of grids around complicated boundaries of geometry, a

“highly fine grid may be needed. This poses serious difficulties in laying out grids along a

complicated boundary, and may also result in a increased computational time for sufficient
accuracy. V

These aforementioned problems can be overcome by using an unstructured grid
system, wherein grid sizes may be varied in a computational domain to fit the local
geometry. This enables to lay out grids around complicated geometries more easily and
correctly than a structured grid system. The efficiency of an unstructured grid system for
flooding simulation has gained recognition, and several models ((14), (1), (15), (8)) have
been constructed based on the grid system.

In this study, a numerical model for 2D flood flows on a flood plain of topography,
which may be submerged/non-submerged depending on flow conditions, is developed. The
model is based on the Spatial Averaged Finite volume method on Unstructured grid using
FDS(Flux-Difference Splitting) technique for 2D Flood flows (SA-FUF-2DF model(13)).
To treat flood flows on complicated topography, an upwind treatment of bed slope terms
and a procedure for the movement of a wet/dry boundary are incorporated into the model.
The model is applied to the experiment of the solitary wave which passes around a conical
island, and then is verified against the experimental data of depths and velocities of the
flood flow in flood plain with not only submerged topography but also with non-submerged
topography.

NUMERICAL MODEL

SA-FUF-2DF Model

The SA-FUF-2DF model is the same as reference (13), and hence an outline of the
model is briefly presented here. o

The SA-FUF-2DF model (13) uses the following spatial averaged 2D shallow water
equation as the governing equation
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where U = flow vector; E and F' = flux vectors; § = vector containing source and sink
terms. These vectors are given by
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where t=time; h = flow depth; u, v = flow velocities along z- and y-direction, respectively;
g = acceleration due to gravity; S,; and S,, = bed slopes along z- and y-direction (=
—0z,/0x and —0z,/0y), respectively; z, = bed elevation; Sy, and Sy, = friction slopes
along z- and y-direction (= n2uv/u? +v2/h*? and n?vv/u? + v2/h*3), respectively; n =
Manning’s roughness coefficient; F, and F, = the drag forces due to obstructions within
control volume. ‘
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Fig.1 Sketch of partially dry cell

The integral form of the governing equations is obtained by integrating Eq.1 over a

control volume € using the Gauss divergence theorem as

?—fvdsauf (7—'~n)dL+/SdS=0 | 3)
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where n = outward-pointing unit vector normal to the cell face 8Q = (ng,n,); F-n =
En; + Fny is normal flux vector; dL = length of 082, dS = area of (1.

Eq.3 is numerically integrated by using the unstructured finite volume discretisation
and a forward Euler time discretisation. Also, the numerical flux through the cell faces is
calculated by flux-difference splitting (FDS) technique (11). An unstructured triangle grid
to correctly model complicated and well-developed urban areas with buildings, houses and
other structures, which are treated as closed boundaries, is used. The time step is computed
based on CFL type stability conditions expressed as At = C,(min(dr))/(2max(c +
Vu? +v?2)), where C, = Courant number, c=celerity(=+/gh) and dr = length of vector
joining the two centroids of a triangular grid cell.

Treatment of Bed Slope Terms

Following the argument of Roe (12) for linear equations, the terms containing space
derivative in § should be upwinded in the same way as the flux term. Thus 8, is first split
into portions with and without the space derivative terms. Thus, ‘

N,
1 <
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where §; = the vector which contains no derivative term and S} = upwinded vector which
contains derivative term, V;= area of cell i, N, = total number of cell face (N.=3 in case
of triangular cells), 7= index for cell; k= index for cell face. S,; and S} can be written as
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ghSs, + F, = N

Sy, B9, M, & in Eq.5 can be expressed as
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Fig.2 Experimental set-up for a solitary wave passes around a conical island (4)
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where Lj = length of k'* face, c=wave speed (=v/gh), A = dpera,tor defined as Ale) =

(9)r = (o)1, @ = (Vhrur + vVhgur)/(Vhi +Vhr), o = (Vhrvr + VRrvr)/ (VAL + VEg),
h=(hy + hg)/2.

Treatment of wet/dry boundaries -

FDS cannot estimate the numerical flux when the flow depth is zero. In this case,
the computation cannot be continued. To circumvent this, a very small flow depth h, is
assumed in case of zero flow depth. The cell, in which the flow depth is less than h,, is
referred to a dry cell.

There are two types of dry cells: a fully dry cell and a partially dry cell. The fully
dry cell is defined as the one with no adjoining cell where the flow depth is more than h,,.
In case of fully dry cell, the flow depth h is set to h, and the flow velocities u, v are set
to zero. On the other hand, the partially dry cell is defined as the one with least one but
not more than three adjoining cell, where the flow depth is more than h,. In case of the
partially dry cell, the flow depth and velocities are computed based on the relationships
between bed elevation of a partially dry cell and water level of an adjoining cell. When
the water level of an adjoining cell is greater than bed elevation of partially dry cell, the
numerical flux is calculated by the FDS technique. When the water level of an adjoining
cell is less than bed elevation of a partially dry cell, the closed boundary is applied to the
interface of the cells.
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Numerical experiments on 1D dam-break flows shows that the SA-FUF-2DF model
always yields stable results if the floodplain tail water depth remains above h,=0.00001m.
The computed results with h,=0.00001m agree well with the Ritter solutions (10) except
near the wave front, and mass is conserved within a cumulative error of the order of
107%%. Based on these 1D results, the value of h,=0.00001m is assumed to be valid for
2D computations.

In case of a very small flow depth, the bed friction computed by the Manning formula
may become unrealistically high. In such cases, the bed friction is set to zero wherever the
flow depth remains below 0.001lm. It was confirmed by means of numerical experiments
that the simulations continued stably with this treatment when the Manning’s roughness
n was under 0.07.

MODEL VERIFICATION

Solitary wave passes around a conical island

The SA-FUF-2DF model was first applied to the existing experimental data on a
solitary wave which passes around a conical island. This was carried out by Briggs et al.
(4). The data have been used by other investigators ((9), (17),(3)) as a test problem. As
pointed out by Bradford and Sanders (3}, depending on the model structure and treatment
of dry/wet boundary, the spurious oscillations in computed water level and velocity vectors
occur during the run-down of the wave around the dry/wet boundary and the computation
cannot be continued owing to the oscillations. From such a point of view, the robustness
of the SA-FUF-2DF model for simulating long wave run-up and run-down on arbitrary
two-dimensional topography will be examined in the next section.

The calculation domain is 30m wide and 25m long. The center of a conical island
was located at a center of the domain. The island is 0.625m high and has a base diameter
equal to 7.2m and a top diameter of 2.2m. The still water depth h over the flat portion of
the domain is 0.32 m. A sketch of the island geometry is shown in Fig.2.

The domain is discretized by 5076 triangular cells and the Courant number is set to
0.9. The bed friction is neglected as Liu et al. (9) carried out in their simulations. The
wave generator is located on the left domain boundary and a water level 7 is given in Eq.7
as a boundary condition.

n = Hsech? (—C—sﬂi—Zl) : (7)

where H = wave height(=0.032 m); C; = \/gh (1 + H/(2h)); I, = hy/4hcs/(3H\/gh); T =
time at which the wave crest enters the domain (=2.45 s).

Fig.3 shows the computed water level and flow vectors at each time. It can be seen
that the wave reaches the front of the island (Fig.3 (a)), and then the wave obstructed
by the island is deflected(Fig.3 (b)), and consequently passes around the island(Fig.3 (c)).
Spurious oscillations at computed water levels and unphysical velocity vectors during the

tundown of the wave do not occur in the SA-FUF-2DF model. This provides evidence that

the SA-FUF-2DF model is robust enough for simulating process of flooding and recession.

Flood wave passes over submerged and around non-submerged topograpy

The SA-FUF-2DF model is now applied to our experimental data on a flood wave,
which passes over submerged and around non-submerged topography.

The experimental set-up consists of a reservoir and a flood plain as shown in Fig.4.
The beds of both the reservoir and the flood plain, which are made of acrylic boards, are
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Fig.4 Experimental set-up and arrangement of mounds which is modeled on the topography
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Tablel Experimental conditions for flood waves
Case | Discharge @ (m®/s) | Height of downstream sharp crested weir (m)
I 0.0155 : ‘ 0.08
I 0.0155 004
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(Case II : submerged/non-submerged)

set horizontally. A sharp crested weir (2.38m long) was placed at the downstream of flood
plain. As shown in Fig.4, the two types of mound were used as topography.

Two cases of experiments were conducted; Case I was for verification against flood
flows over the submerged topography; Case 11 was for verification against flood flows over
submerged as well as non-submerged topography. The experimental conditions are given
in Tablel. ‘ : - ' :

The flow depths and velocities were observed at each observation station specified in
Fig.5. Flow depths h were observed by means of a wave height meter. The depth averaged
flow velocities in z-direction u and in y-direction v were calculated by dividing a unit width
discharge in z-direction ¢, and y-direction g, by depth h. The discharge ¢, and g, was
obtained by integrating velocity profiles in z- and y-direction, which were obtained from
flow velocity in z-direction u, and in y-direction u, observed by electromagnetic velocimeter

The domain is discretized by 3986 triangular cells and the Courant number is set
to 0.9. Manning’s roughness coefficient was set to 0.01 for acrylic bed. The unit width
discharge (g=6.5x 107® (m?%/s)) is given as an upstream boundary condition, while the
flow depth h=0.1m for Case I or h=0.056m for Case II is given as a downstream boundary
condition. The closed boundary condition is applied on the side boundaries of the domain.
As initial conditions, the velocities u and v are set to zero, while water levels are set to two
states; one water level is set at a higher level than the both Mound A and B, the other water
level is set at a lower level than the Mound B, although the steady state computational
results obtained from two different initial conditions were found to be identical.

As pointed out by Bradford and Sanders (3), significant mass error is occurred
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when a treatment of wet/dry boundaries is inadequate, and then the flood propagation
is underestimated because of the mass error. In the treatment used in this study, the mass
error remains from 1.0 x 1076 to 3 %, and the error is acceptable for engineering standards.

Fig.6 and Fig.7 show computed water level and flow velocity vectors for Case I and
II, respectively. It was observed that in Case I the velocity vectors are deflected due to the
differences of topography height and in Case II the flood flow is divided by the topography
located at the intersection of cross section B-B’ and D-D’ shown in Fig.5.

Fig.8 compares computed water levels with observed ones in the cross sections A-A’
~ F-F’ shown in Fig.5. In both Case I and Case II, the computed results reproduce the
experimental data adequately. In particular, the water surface profile is depressed over the
topography in Case I, and the water level rose in front of the non-submerged topography
whereas it dropped behind the non-submerged topography in Case II.

Fig.9 compares computed velocities with observed ones in the cross sections A-A’ ~
C-C’. The shadow in Fig.9 illustrates the locations of the topography. In Case I, u over
the topography located at the intersection of section B-B’ and D-D’ increase and then
decrease through the topography. In Case II, u in the cross section B-B’ increases over
the submerged topography in the upstream and decreases rapidly, due to the effect of non-
submerged topography located at the intersection of the cross section B-B’ and D-D’ on
the flow. In both cases, the computed results reproduce the experimental data adequately.

The results mentioned above demonstrate that the SA-FUF-2DF model with
treatment of wet/dry boundaries can predict well the depths and velocities of 2D flood
flows under the presence of non-submerged as well as over submerged topography.

CONCLUSION

In this study, a numencal model for 2D flood flows in a flood plain with
submerged/non-submerged topography was deveioped The model was based on Spatial
Averaged Finite volume method on Unstructured grid using FDS technique for 2D Flood
flows (SA-FUF-2DF model). An upwind treatment of bed slope terms and a procedure for
the movement of a wet/dry boundary were incorporated into the SA-FUF-2DF model to
treat flood flows on complicated topography. The model was applied to the experiment of
the solitary wave which passes around a conical island, and then was verified against the
experimental data of depth and velocities of the flood flow in a flood plain with submerged
topography as well as non-submerged topography. The model verification demonstrates
that the model can reproduce the complex behavior of the flows in a flood plain with

. submerged as well as non-submerged topography with reasonable accuracy.
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APPENDIX-NOTATION

The following symbols are used in this paper:

c = celerity(=+/gh);

dL = length of AQ;

ds = area of ;

E,F = flux vectors;

F,, Fy = the drag forces due td obstructions within control vIoumé;

F - n = normal flux vector;

g = acceleration due to gravity;

h = flow depth; ’

% = index for cell;

k = index for cell face;

Ly = length of k™ face;

n . .= Manning’s roughness coefficient;

n = outward-pointing unit vector normal to cell face = ((ng, ny));

N, = total number of cell face;

s = vector containing soﬁrce and sink terms;

Ste, Spy = friction slopes along x- and y-direction, respectively;
H = upwinded vector which contains derivative term;

Sy = the \}ector which contains no derivative term;

Sos;Soy = bed slopes along x- and y-direction, respectively;

t = time; - ' ' k

U = flow vector;

U,V = ’velocities along x- and y-direction, respectively;

V; = area of cell i ‘ B

2p = bed elevation; and

@ = control volume.
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