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SYNOPSIS

A numerical model based on the Simplified Marker and Cell (SMAC) method and Monotone
Upstream-centered Schemes for Conservation Laws (MUSCL) technique is constructed to simulate
two-dimensional density surges, initiated by a finite volume release of dense fluid into a finite
ambient water depth on a horizontal bed. The density differences are due to either salinity or
mixture of nearly uniform sized particles and water. The simulated results are compared with
such flow characteristics as the maximum height, propagation speed, mean effective gravity force
and densimetric Froude number at the front of the surges.

INTRODUCTION

In many problems of environmental concern, there are a number of practical situations
in which denser fluid spreads out as a gravity current. Typical examples of such
phenomena are sea-breeze fronts, the accidental release of dense industrial gases, powder-
snow avalanches, turbidity currents and lock exchange flows (Simpson (22) and Hopfinger
(12)). ~ '

- Gravity currents can be in the form of either a starting plume or a thermal, depending
on whether the source is maintained or instantaneous. A starting plume consists of a head
with complex three-dimensional flow structure at the leading edge, followed by a thinner
flow. The leading edge of the flow is commonly referred to as the front, which is a zone
of breaking waves and intense mixing, and plays an important part in the behavior of
currents. The rest is called the body, which plays an important role in the development of
the flow by feeding buoyancy into the front. Consequently, the total buoyancy of the front
increases along its path (Britter & Linden (9), Akiyama et al. (3)).

The instantaneously released thermal by contrast consists only of a front flow
structure without a distinct body. A great deal of research has been devoted to the
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Tablel Major flow characteristics of the front of conservative gravity currents

| U | H | B | Fr
Inclined plume | ~ constant | ~ ;s | ~z;' | ~ constant
Inclined thermal | ~ x}l/ * | ~a; | ~27%| ~ constant

determination and/or prediction of flow characteristics of inclined thermals. Hopfinger
& Tochon-Danguy (13) analyzed powder-snow avalanches as two-dimensional inclined
thermals with snow entrained from the powder-snow cover ahead of the avalanches.
Beghin et al. (6) investigated theoretically and experimentally the motion of conservative
two-dimensional inclined thermals on slope angles ranging mainly from 5° to 90°.
Their experimental study shows that the length-to-height ratio, spatial growth rate and
entrainment coefficient are all functions of the bottom slope angle. In addition, a thermal
theory, which is basically an extension of the free vertical thermal model by Morton et
al. (18), has been proposed by Beghin et al. (6). Akiyama & Ura (2) have conducted
an extensive experimental as well as theoretical study of inclined thermals with small
density differences on slope angles ranging from 5° to 90°, aiming to provide more complete
information than Beghin et al. (6). It was found that both the spatial growth rates
of the maximum height and the entrainment coefficients obtained in the study were of
substantially larger magnitude than those of Beghin et al. (6). In the analysis, a thermal
model was developed that included a resistance term, previously ignored by Beghin et
al.(6).

In summary, the major flow characteristics of front of conservative gravity currents
on inclines are tabulated in Table 1, where U = propagation speed, H = maximum height;
B = mean effective gravity force (=€ g); Fr =densimetric Froude number (U/\/egH);
¢ = relative density difference; g = acceleration due to gravity; z; = traveling distance
measured from the origin to the foremost part of the front.

Akiyama et al. (1) extended the range of investigation of Akiyama & Ura (2) to low
slope angles ranging from 1° to 5°. It was found that, in the range, the total initial effective
gravity force Wy within the thermal body was not conserved along its path. The effective
gravity force W within the thermal body was found to be less than 50% of Wy, and larger
amount of total buoyancy force remains within the thermal body with larger slope angle.
The study also indicates that when a slope angle is less than 3°, the motion of the flow
changes from that could be described by the thermal theory.

A number of studies have been conducted on the motion of a two-dimensional thermal
or a density surge on a horizontal channel. Huppert & Simpson (16) showed that an
almost constant velocity regime is expected in the early stages of a finite volume release.
They called this as the ”slumping regime”. In this regime the front height H and the
densimetric Froude number F'r are approximately constant with z;. The value of Fr
in the slumping regime has been estimated experimentally by several investigators. For
instance, Hoult (15) proposed Fr=1.18. However, evolution of such flow characteristics as
the front propagation speed and the maximum front height with time, or along its path
remains uncertain, perhaps due to difficulties in estimating loss of W} from the front of a
density surge.

The motion of the fluid surrounding the gravity currents also depends on the fractional
depth of the current H/h, where h is the depth of the surrounding fluid. The slumping
regime comes to an end when the fractional depth falls to about one tenth. In the inertia-
buoyancy regime, where the inertia and buoyant force are balanced, the front speed U will
decrease as t7/3, where t=time. Huppert & Simpson (16) proposed the following empirical



relationships for the front Froude number F'r of gravity currents on a horizontal channel,
based on the results from steady-state experiments reported by Simpson & Britter (23) as
well as from additional data obtained by Huppert & Simpson (16).

~f119 for H/h < 0.075 W
" 0.5(H/R)Y? for H/h = 0.075 ~ 1 ‘

Various theories which account for the front of a density surge resulting from
instantaneous release have been proposed. Hoult (15) and Huppert & Simpson (16) used
an order of magnitude evaluation of forces in the governing equations. Benjamin (7)
and Yih (25) used simple energy considerations, Rottman & Simpson (20), Bonnecaze
et al.(8), Jha et al. (17) solved the depth-averaged shallow-water equations as the initial-
value problem, imposing the front condition. However, an order of magnitude evaluation
requires extensive experimental work in order to determine proportional constants. Energy
considerations require an appropriate estimation of energy loss in the front, however, this
is actually impossible. By solving shallow-water equations, the front propagation speed
can be predicted if an appropriate front condition is imposed, however, the shape of the
front cannot be reproduced, because of the nature of the method.

Theoretical analyses are helpful in understanding the fundamentals of the motion of
gravity currents, including the density surge. However, gravity currents in practice take
place under the complicated conditions, such as the limitation of ambient water depth, the
presence of density gradient and others. This necessitates the development of a numerical
model. A number of numerical studies for various types of gravity currents have been
performed ((10), (19), (14), (26), (4), (11)). Among these studies, Eto & Fukushima (11)
examined conservative density surges on the inclined surface. Hosoda et al. (14) and
Nakayama & Satoh (19) dealt with conservative gravity currents on the horizontal surface.
The former was mainly concerned with the mixing process of a lock exchange flow, and
the latter with a plume geometry of the front and the turbulent heat flux on the interface.
To the best our knowledge, there exists no numerical model, that is able to adequately
simulate the motion of density surges on horizontal surface.

In this study, a numerical model, based on the Simplified Marker and Cell(SMAC)
method and Monotone Upstream-centered Schemes for Conservation Laws (MUSCL)
technique, was constructed in order to simulate two-dimensional saline as well as suspension
density surges on a horizontal bed, produced by a finite volume release of dense fluid into a
finite ambient water depth. The simulated results were verified by means of experimental
results of maximum height, propagation speed, buoyancy and densimetric Froude number
of the front of the surges. Comparison between the simulated results and the empirical
relationship, proposed by Huppert & Simpson (16), was also presented. The effects of
the fractional depth on the motion of the current were examined by means of numerical
experiments. In addition, the flow characteristics in the slumping regime as well as the
inertia-buoyancy regime were also clarified.

GOVERNING EQUATIONS

The suspension density surges considered in this study are induced by a high
concentration solid-liquid mixture fluid, hence one-equation model is employed as a two-
phase flow model. The effects of particles on the motion of the currents are, therefore,
considered only in the conservation of mass.

Governing equations are the conservation of volume, the equation of motion with
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Boussinesq approximation, and the conservation of mass.
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where t=time; u, v= flow velocities along z- and y- direction, respectively; p = pressure;
€ = relative density difference(=(p — p.)/pa); p = density of solid-liquid mixture; p, =
density of ambient fluid; v = kinematic viscosity of fluid; Dy,=diffusivity (=r/Sy); Se =
Schmidt number; V; = settling velocity of a particle.

NUMERICAL METHOD AND BOUNDARY CONDITIONS

SMAC(Simplified Marker And Cell) method

The governing equations are solved numerically using Simplified Marker And Cell
(SMAC) method (5). Eqgs.2,3,and 4 are solved in the following order:

1. Solve Eqgs.3 and 4 by using 2nd-order Adams-Bashoforth time integral method with
u,v,p,€ at t and compute u, v at intermediate level, € at the next time level, respectively
as shown in Eq.5.

3(A"+ B") — (A" 4 B!
UP=U"+ At (~;1-Vp”+ ( )= ha )+S")
o

2
n n =1 n—1 .
Ly At3 (fadd + fdiff) - (Eadd + edz‘ff) ; (5)
du u u 0%
whereU:(u) A=| Yor T Vay B= v m+6y2) S:( 0 )
v — (v +oP v gzg+g;—g) —eg
€add = — (a—g‘f + %’f), €diff = Dp, (g—:ﬁ + g%), At=time step size, n=index for time.

2. Using the velocities at intermediate level, solve Poisson type equation Eq.6 for a
scalar potential ¢ corresponding to the time change of pressure p by using the SOR
method and compute u, v, and p as shown in Eq.7 and 8. Convergence criteria
of Eq.6 is set to ||¢™Ft — ¢™||/||¢™F]| < 1.0 X 103 where m=iteration number,
[|6]|=(1/N - I, ¢2)/2, I=index for computational grid, N=total grid number.
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Fig.1 Staggard grids

Computational Techniqﬁe for Space Derivatives

The advection terms are computed by the MUSCL method (24) to achieve stable
computations. The pressure terms and viscous terms are computed by central difference.
Using Staggard grids shown in Fig.1, the advection term, pressure term, and viscous term
are computed respectively as follows:

Advection Terms :

=[uflij + [ufliv1

[(Uf)x}iﬂ/z,j = Az
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where fLi,j’ fRz',j’ fLi_!_l/z,j_l/z, fR,i-(—]./Z,j—l/Z = interpolated f by using MUSCL method
are writen as

(10)
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84

Fig.2 Sketch of a thermal on horizontal bed

Table2 FExperimental conditions
Case | h [Ag(m X m)| e [Wo (/) [d(mm)
GS |09 0.3 X0.3 0.0110 0.00970 -
GP |05 0.2 X 0.2 0.0125 0.00490 0.044

where AL, 15 = ficppg—fimsprgs Afijns = firvpg=Fimipgs By, = firyjpjo—

fiv1/2,4-25 A?ji+1/2,j—-1 = fit1/25— fi-1/2,j-1, minmod(z,y) = z(|z] < |y],zxy > 0),y(|z| >

lyl,z <y >0),0(z x y <0), b= 325, k= model constant (k=0.5 is set in this study).
Pressure Terms :

[_LQB] _ Loy Ay (13)
L T

Viscous Terms:

{l/ (82u 8211,):1 - V(’ui..l/g’j - 2ui+1/2,j -+ Ui43/2,5
+1/2,5

o2 o Ag? +
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Ay
Continuty Equation:

,8.2 N _3}_) _ TYi-1/25 + Uit1/2,5 n “Vig-1/2 T Uijy1/2 (14)
dz Oy Az Ay

where Az, Ay = grid size in z, y direction.

Boundary Conditions
The imposed boundary conditions for u, v, ¢, € are as follows.
e side and bottom boundary:
© = v = 0 (non-slip conditions), 8¢/0n =0, 9¢/dn =10
e top boundary : : k
Ou/0y=0, v = 0 (slip conditions), ¢ = 0, J¢/On = 0, where n = direction

perpendicular to boundary.
EXPERIMENTS

Experiments were conducted in a Perspex water reservoir (0.1m wide, 1.2m deep, and
7.5m long) with no bottom slope. Both conservative (Case GS) and non-conservative (Case
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Fig.5 Comparison of computed results with observed results

GP) density surges were considered. A salt-solution marked with fluorescence in Case GS or
turbid water in Case GP were used to produce the flows. As shown in Fig.2, a fixed volume
Ag of dense water with density py was instantaneously released into homogeneous fresh
water body with density p,, contained in the square box placed at the upstream end of the
channel, by withdrawing the release gate of the box. The total initial effective gravity force
W, is defined as Wy= €gg Ao, where ¢y =initial relative density difference (=(po — p4)/p4),
g = accelelation of gravity. In Case GS, W is defined as csgAy, where c=volumetric
concentration (=0~1.0), s=submerged specific gravity of a particle(=0-1), and ¢ = specific
gravity of a particle. Particles were glass beads with median diameter d=0.044mm and
s==1.47. The particle Reynolds number R,(=V,d/v) is 0.068. Experimental conditions are
listed in Table 2.

The propagation speed U and shape and size(front maximum height H, front area
A, front length L) of the front were quantified by a flow visualization technique; a CCD-
camera was moved along with the advancement of the cloud. An analysis of the images of .
the clouds recorded by a digital VIR, allowed to obtain these flow characteristics, which
are defined in Fig,2. The average total effective gravity force B of the front of the surges
was estimated by total effective gravity force of the front W divided by A. In Case GS,
W was estimated by multiplying volume by density of saline water siphoned out from the
front, which was cut off from the rest of flow by inserting boards behind and front of
the front. In Case GP, W was estimated by subtracting the effective gravity force of the
deposited particles Wy from W,. W, was obtained by inserting a board behind the front
and by siphoning out the deposited particles after they fully settled down on the bed.
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Fig.6 Densimetric Froude number F, as function of fractional depth H/h

VERIFICATION OF THE MODEL

In the calculations performed, kinematic viscosity of fluid is set as ¥=1.0x1075(m?/s)
and Schmidt number is S;=0.5. Grid size is Az=Ay=0.02m for Case GS and Az=0.02m,
Ay=0.01m for Case GP, respectively. The falling velocity of particle V, is computed
from Rubey’s equation (21). The total initial effective gravity force Wy is well conserved
throughout computation, because error in W in the entire computational domain is found
to be less than 1.0x107%%.

Fig.3 and 4 show experimental photographs of the surges and computed relative
density difference ¢ for Case GS and Case GP, respectively. Therein the region of the
computed surges is defined by ¢ >0.0003. The forming process of the surges from static
condition can be observed. Intense mixing is confined to the region just behind the front
of the surges, and the mixed fluid is left behind the front.

In line with our interest in the practical aspects of modeling, the prediction of flow
properties such as the propagation speed U, maximum height H, and mean effective gravity
force B of the front of the surge were found to be significant.

The computed front region A is defined as e=0.0003 as stated the above. It allows to
determine the foremost point z; as well as H of the front at a given time. B is estimated by
dividing the total relative density difference, which was calculated from integrating relative
deunsity difference within the front, by A of the front.

Figs.5a ~ 5d show the relationships between the dimensionless traveling distance
z/+/Ao from the releasing point to the leading edge of the surge, and the dimensionless
propagating speed U/(WZ/Ao)'/*, the dimensionless maximum height H/\/A, the
dimensionless mean effective gravity force B/(W;/Ay), the densimetric Froude number
F'r, respectively.

In Case GS, both numerical and experimental results show that U/(WZ/Ae)*,
H/\/A,, B/(Wy/Ap), and Fr are almost constant with z;/+/4, up to the point 2 ;/v/Ay ~
6. Such relationships indicate that in this particular case the slumping regime is terminated
around that point. :

When z;/v/Ay & 6, it is observed that the dependence of U/(WZ/Ap)'/* and
B/(Wo/Ao) on 7//As are UJ(WE/Ao)/* ~ (a;/v/A0) "2 and B/(Wo/Ao) ~ (x7/v/A)~"
respectively, while both H/+/Ay and Fr are almost constant with (z;/v/4)™*. The
relationship of U/(WZ/A4p)Y* ~ (x//Ap)~'/? suggests that the flow changes from the
slumping regime to the inertia-buoyancy regime, because previous studies (Hoult (15),
Huppert & Simpson(16), Rottman & Simpson(20)) show that such a relationship as
U ~ t7/3 in the inertia-buoyancy regime exists. This relationship yields that z; ~ #%/3. Tt
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Fig.7 Non-dimensional Characteristic Variables as a function of z¢/h

is apparent from these relationships that U ~ x}'l/ ? is valid in the inertia-buoyancy regime.

Fig.6 shows a comparison between the numerical and experimental results regarding
dependence of the front Froude nember F'r on the fractional depth of the current H/h.
In the figure, the empirical relationships (Eq.1) proposed by Huppert & Simpson (16) are
also plotted. It can be observed that calculated F'r scattered around Eq.1, and hence
dependence of F, on H/h is simulated well by the present model.

In Case GP, it may be seen from these figures that the present model is capable to
appropriately simulate the behavior of suspension density surge in the slumping regime.
However, the model fails to simulate the flows in the inertia-buoyancy regime. In this
region, experimental results of U, B and H fall more rapidly than those of the conservative
density surge. This may be due to the loss of buoyancy resulting from particle settling from
the flow. It may be indicated that a SGS model, which appropriately handles small scale
turbulence, and the treatment of particle deposition are required to simulate the behaviors
of a suspension density surge.

Since the present model simulates well the motion of the conservative density surge,
the effects of such an additional parameter that may significantly affect the motion of the
surge, as the ratio h/y/Ag of the ambient water depth h to the initial height /A, of the
surge, are examined through numerical experiments. Simulated results are presented in
Fig.7. It can be observed from these figures that the transition point from the slumping
regime to the inertia-buoyancy regime is controlled by the parameter h/+/A, and the
transition takes place in the shorter traveling distance when h/+/Ajy is larger.



CONCLUSION

A numerical model, which is based on Simplified Marker and Cell(SMAC) method
and Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) technique, is
constructed to simulate two-dimensional densmy surges, initiated by a finite volume release
of dense fluid into a finite ambient water depth on a horizontal bed. The density difference
is'due to either salinity or mixture of nearly uniform sized particles and water. Comparisons
with experimental results of maximum height, propagation speed, mean effective gravity
force and densimetric Froude number at the front of the surge show that the present model
simulates wellthe motion of the conservative density surges. The following relationships
were found to exist: U/(W2/A4o)Y%, H//As, B/(Wy/A), and Fr are almost constant
with z;/+/Ag in the slumping regime: on the other hand, U/(W¢/Ag)Y/* ~ (z;/v/Ag) /2,
B/(Wy/Ao) ~ (z5/+/As)~%, while both H and Fr are almost constant with (z;//A,)~"/?
in the inertia-buoyancy regime. It is also found from numerical experiments for conservative
density surges that the transition point from the slumping regime to the inertia-buoyancy
regime is controlled by the parameter h/+/Ay.
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APPENDIX-NOTATION

The followmg symbols are used in thls paper



Az, Ay

‘area of the front of the surge;

inital fixed volume of dense water;

mean effective gravity force of the front of the surge;
volumetric concentration;

median diameter of partilce;

diffusivity (=v/Su);

densimetric Froude number (=U//egH);
acceleration due to gravity;

maximum height of the front of the surge;

index for time;

Schmidt number;

time;

propagation speed of the front of the surge;

flow velocities along z- and y- direction, respectively;
settling velocity of a particle;

pressure;

submerged specific gravity of particle;

effective gravity force;

total initial effective gravity force;

location of front of the surge;

relative density difference;

density of solid-liquid mixture;

density of ambient fluid;

kinematic viscosity of fluid;

scalar potential corresponding to time change of pressure;
grid size in z, y direction; and

specific gravity of particle.
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