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SYNOPSIS

First; we examined scaling and multifractal properties of temporal precipitation data with an
emphasis on the structure of the rainy vs. non-rainy periods, using the so-called p model. These
data have scaling properties in a range of 1 day < L, < 32 days. We characterize the scaling of the
rainy areas with the single parameter of the B model and classified surface observation stations
into two groups according to the parameter; namely, along the Pacific Ocean and Japan Sea coasts.
The Pacific Ocean data are more intermittent and peaky than the Japan Sea data and exhibit more
multifractality than the latter.

Second, we analyzed the time variation of scaling properties of several months of spatial

radar data using the intercept of the regression estimate of the scaling of the fractional wetted area.

These results showed that over the sea in the summer, there was a tendency for a different scaling
of small vs. large scales.

Finally, we extracted four independent precipitation events from the whole dataset and
examined whether or not a one-to-one function can represent the relationship between mesoscale
forcing and the parameter of the B model. We conclude that there is a one-to-one functional

relationship if we consider each precipitation event separately and exclude multiple independent

precipitation events.
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INTRODUCTION

The U. S. Federal Emergency Management Agency (FEMA) map for Presidential Disaster
Declarations (http://www.bakerprojects.com/fema/) indicates that, in the United States, there is a
high ratio of number of floods and severe storms to the total number of Presidential Disaster
Declarations. These natural disasters are also severe in many developing countries. Although some
sort of disaster prevention specialists in Japan are interested only (or at least almost only) in
earthquakes, it goes without saying that water-related disasters, which include severe storms,
landslides and floods, also threaten our lives, economic foundation and social systems, and that
ignorance of these natural disasters leads to loss of life and property. Flooding is the outcome of
several hydrological processes. Spatial variability of annual maximum floods is influenced by
spatial variability of rainfall in large basins and by the relationship between catchment response
time and the duration of rainfall in small basins (Gupta and Dawdy (7), Robinson and Sivapalan
(23) and Kuzuha et al. (unpublished manuscript)). Bléschl and Sivapalan (2) indicated that the
variability of annual maximum floods is influenced by interplay among numerous hydrological
processes, and we know that other water-related disasters are also influenced by numerous
hydrological processes. However, heavy rainfall is the chief cause of occurrence of these disasters.
Many meteorologists and hydrologists have made efforts to gain an understanding of the temporal
and spatial distribution of rainfall. First, we will review the random cascade, a powerful tool for
modeling the temporal and spatial variabilities of rainfall, referring to Gupta and Waymire (9) and
Over and Gupta (22).

According to Gupta and Waymire (9), the following idealized geometric structure has guided
the development of statistical models of space-time variability of rainfall for the past 20 years. A
hierarchical spatial structure of rainfall intensity is widely observed in mesoscale rainfall: the
smallest spatial structures consist of clusters of regions (cells) of high-intensity rainfall that are
embedded within regions (small mesoscale areas) of low rainfall intensity that are in turn
embedded within large mesoscale areas in which rainfall intensity is even lower. Austin and Houze
(1) were the first to observe empirical evidence of this structure within storms of a variety of
synoptic types occurring in New England. Attempts to model this hierarchical spatial structure are
classified into two types of approach (Over and Gupta (21)). One is the physical approach, which
involves the numerical solution of a set of equations describing the dynamics and thermodynamics
of the atmosphere. The other is the statistical approach, which involves the use of stochastic
methods to describe the hierarchical spatial organization of rainfall intensity at mesoscale level
and which we will describe in this paper. Statistical methods may be further divided into three
types: (a) point process models, beginning with LeCam (14); (b) random field models, such as the
Gaussian model of Bras and Rodriguez-Iturbe (3); and (¢) models based on notions of scaling
invariance. A brief review of the development of the last type follows.

Lovejoy and Mandelbrot (15) assumed that rainfall scale invariance held in the form of
statistical simple scaling (see, e.g., Gupta and Dawdy (6)), specifically, as a geometric fractal
which will be defined below. Later, Schertzer and Lovejoy (24) were the first to adopt random
cascades and multifractal measures, and used them to describe the spatial variability of rainfall.
They developed a continuous cascade model, which is somewhat different in details from the
discrete cascade which we use in this paper. After Gupta and Waymire (8) explored the MKP
function (Mandelbrot (17), Kahane and Peyriere (12)) of several kinds of discrete cascade models,
Over and Gupta (21) analyzed the structure of mesoscale rainfall using a random cascade
generator by employing the so-called f model. Over and Gupta (22) tested a theory of space-time
rainfall applicable to fields advecting without deformation of the coordinates using a random

cascade whose generator is a composite generator (f model multiplied by the lognormal model).



Jothiyangkoon -ef al. (11) expanded the model of Over and Gupta (22) and introduced a
deterministic multiplier estimated by rainfall data into a spatially non-homogeneous composite
generator. Tachikawa et al. (27) also introduced a deterministic multiplier estimated by elevation,
since precipitation depth depends on elevation (Suzuki et al. (25)). On the other hand, Gupta et al.
(5) and Troutman and Over (28) used random cascades to clarify the interpretation of scaling
exponents of event-based flood discharge in cases where multiscaling holds.

In this paper, we analyze the multifractal properties of temporal and spatial precipitation data.
A similar type of paper on time series of daily precipitation was published by Svensson ef al. (26)
which examined multifractal properties of temporal rainfall data, though they did not use a
cascade model. In particular, we analyze the applicability of the B model to temporal and spatial
data, which is an extension of the work of Over and Gupta (21) and Svensson ef al.(26). The
ultimate goal of this research is to find a downscaling method for GCM data and generation of
time-series data by average precipitation based on a composite model. However, in this paper we
use a simple f§ model as an analytical tool and explore the temporal and spatial scaling properties
in this way. .

This paper consists of five sections. In the following section, we present the fundamental
theory of a random cascade and fractal and describe the data we use. We analyze temporal data,
that is, time series of daily precipitation, in the third section. The fourth section covers our
analysis of spatial precipitation data, and consists of two sub-sections. In the first sub-section, we
look at whole datasets comprehensively to find the general characteristics as a function of time.
We examine each scan of radar data in the second sub-section. The final section presents our
conclusions. Although part of this paper is a translation of a published Japanese paper (Kuzuha et
al.(13)), we also look at the data with the additional perspective contributed by the second author
(T. M.-Over) who has joined our group. i :

A BRIEF REVIEW OF THE THEORY OF RANDOM CASCADES AND THE DATA USED

The Theory of Random Cascades
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Fig. 1 = Schematic of a one-dimensional random cascade.

First, we review the fundamental theory of random cascades, referring to Over and Gupta
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(21). Readers who are not familiar with the theory of a (discrete) random cascade can gain a more
detailed understanding by referring to Over and Gupta (21, 22) and Over (20). Consider a ‘bar’
whose length is Loon which ‘mass’ is distributed. Assuming its mass density to be R, (mass per
unit length), total mass on the ‘bar’ is RoLg (Fig. 1). A cascade generator W divides this total mass

into two parts: namely, RyL,2™'W;' and RyL,27'W. The subscript n of W, means the n™

generation (see Fig. 1), and the superscript i means the i-th ‘bar’. W is a (non-negative)
independent identically distributed (IID) random variable, and thus the two masses on the ‘bars’
are not deterministic. After n iterations of division, the mass on the i-th bar (of n'™ generation)

is RoLe2 " W{W Wy ... W} . This example is for one dimension. More general equations for d

dimension are as follows. Let us suppose a d-dimensional ‘element’ instead of a ‘bar’. Random
cascades are constructed by successively subdividing a d-dimensional element (cube) [0, Lo]“ into

b sub-elements, where b is called the branching number. If A’ denotes the i-th element after n

iterations of division (the n™ generation), and mass on the element is denoted by u,(4’,), then

Fi(8y) = RoLgb™ TTW . : ¢))

The ensemble average of W is defined as follows:

: EW]=1 @)
Note that the total mass at each generation is not conserved (however, the average of total mass is
equal to initial mass, RoLo), since W is an IID random variable (a canonical cascade). On the other
hand, cascades with pathwise conservation are called microcanonical cascades. The dimensionless
spatial-scale parameter A, at the n™ generation is defined as follows:

/in 2_%1_=b—nld (3)
0

where L, is the side length of the sub-cube (element) at the n'" generation. We will apply
1-dimensional random cascades to temporal precipitation data (Section 3) where d = 1 and b = 2,
and 2-dimensional ones to spatial data (Section 4). Fig. 1 indicates L, and A, for a 1-dimensional
cascade.

The limiting mass 4 (4,)is obtained by letting n — oo, and it satisfies an important
recursion equation given by Gupta and Waymire (8),

U (N Y= 1, (NDZ.() i=123...,6" )

where Z_(i) are also IID, but we will not discuss this random variable in detail. What is

important is ‘observed mass’ on the element A, is g (A)).

For analysis of temporal data under the assumption that it arose from a random cascade, one
can easily see that when the branching number is 2, L, must be a power of 2. Considering the
available data length of daily precipitation at each observation station, we select 8192 (= 2'%)

(days) (= 22.4 (year)) as Lo. p(Ay)=RyL,is the amount of precipitation over 8192 (days), and

1., (A)is amount of precipitation over L, (days). Since we use daily precipitation data, n varies in



the range of 1-13 and Ly; = 1 (day). In our analysis of spatial data, Ly is 320 (km). Since the
resolution of the spatial data is 2.5 (km) x 2.5 (km) or 5.0 (km) X 5.0 (km) (depending on the
observation period mentioned later), the biggest n (generation) is 7 or 6.

It is most straightforward to motivate the notion of scaling invariance in terms of scaling of

the moments of the measure. Let us define the qth order moment at level n M ,(g) as follows:
M, (=21, (M) (o< g<=) ©)

where [u,(4))]9 for g <0is zero if p,(A)) is non-positive. In view of Eq.(3), the scaling of the

moments is defined as

“g)= },im logM,(q) _ .. logM,(q) )

-0 —log4, z}_r?o (nlogd)/d
Since the masses are identically distributed, if they 6beyed the law of large numbers, their sample
moments would get close in some sense to their ensemble moments for large n,

M,(q)~EM ,(q) = (RyL)* (b TEW )" EZ . @)

However, this cannot be made rigorous as it is written, because the ensemble moments are
diverging to infinity or going to zero with n depending on the value of 8" 7EW? and taking logs,
Eq.(8) is derived as follows.

log, EM,(q) = n(1- g +log, EW ) +log, EZZ +qlog,(RyLy)  (8)

Because the scale of resolution A, is derived from Eq.(3), that is, A4, =b""?. Eq. (8) is
equivalently written as

log, EM,,(q) = ~d log, 4, (1~ q +log, EW?) +log, EZZ + qlog, (R, L), (9)
which shows that the relationship between the ensemble moments and the scale of resolution

exhibits log — log linearity, that is, scale-invariance, with a slope of dy(g), where

Zp(q)=logy EI?]-(q-1) (10)

As for the relationship between M,(q) and scale, consider the relation

logM, (q):log[ g;(fq))jﬂogEMn(q):logYn (q)+1ogEM,(q).  (11)

If the ratio ¥, (q) between the moments and the ensemble moments converges for large n, then
according to Eq. 11, the moments will scale the same as the ensemble moments, i.e., log-log

linearity with scale and a slope of dy(g). In fact, a theorem will be cited below to the effect that

Y,,(q) does converge to a random variable Y(g), and so the aforementioned scaling of the

moments does hold. This theorem further shows that 7(q)=dy,(q) under certain conditions,
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giving the desired result that the moments scale as zlg) (Eq. 6).

In this paper, we explicitly consider the # model for which the cascade generator W can be
written by using any number p (0< p <1):
W=0 . (with probability p)

- ) . (12)
W=(1-p) (with probability 1 - p)

The reader can easily confirm that the expected value of W is unity, as shown in Eq. (2). The
means of estimating distribution of W from a data set by estimating the 7(g) function is based on

the following theorem.

“"THEOREM 2.1 (Holley and Waymire (10)). If Pr(#<b) = 1, if there exists a positive

29
number such that Pr(W > a) = 1, and if ——E—%)]T< b, then with probability 1
7(q) =dy,(q) . (13)
Furthermore,
M@ M, ()

= =Y 14
nm E[M,,(q)]  n= (RyL4)7 5" D E[ 28] (@) (14)

where Y(g) is a random variable for each value of ¢g. Equation (14) indicates that M,(g) does not
converge to its expected value in the high-resolution limit due to a random variable Y(g). This
demonstrates the non-ergodicity of the measures generated by random cascades (Over and Gupta
(21)). Note that Pr(WW > a) = 1 (a: positive number) does not hold for the § model, because of W =
0 having a positive probability. However, a generalized form of this theorem that includes the
model case has since been proven (Molchan (18), Ossiander and Waymire (19)).

In this paper we are mostly concerned with the scaling of the rainy vs. non-rainy areas. This
may be computed as follows. Taking ¢ = 0 in Eq. (10),

2p(0)=logy(1-p)+1 (15)
and in accordance with Eq. (13),
7(0) = dy, (0) = d[log, (1- p) +1] (16)
As a result, the following equation holds (Over and Gupta (21));

p=1-pFOd-l (17

and then p is estimated by using 7(0), that is, the relationship between logM,(0) and (~log4,).

The alternative but equivalent method mentioned below is also used below for estimating
the p value. Let us define the fractional rainy (wetted) area f(4,). According to Egs. (3) and (14),
for a large but finite n, the following equation holds (Over and Gupta (21));

log M ,(g) = log Y (q) + glog(RyLd ) + log b™"'? 4 log £[Z1]

(18)
=log¥(q)+qlog(RyL}) - 7(g)log A, +log E[Z4]

Since f(4,) is equivalent to M,(0)/b", the fractional rainy area is estimated by



log f(4,) =1log M ,(0) = log Y (0) + (-7(0) + d)log A, +1logP{Z_, > 0] (19)

Estimating the slope (= s) of Eq. (19) (log f(4,) versus logA,), and according to Eq. (16), p is
obtained by the following equation (Over and Gupta (21));
p=1-p"%"1 20)

Data

There are two kinds of (surface) meteorological observation systems used by the Japan
Meteorological Agency. The first is called AMeDAS (Automated Meteorological Data Acquisition
System), which has more than 1,300 observation points; however, observations started relatively
recently, after 1976. The other is the ‘Surface Meteorological Observation System” which has
about 150 observation points and has a relativély long observation period (record length at some
observation stations is more than 100 years). Since as mentioned we need a continuous time series
for daily precipitation for more than 22.4 years, and there are fewer days when daily precipitation
is not recorded in the latter system than the former, we chose the data from the ‘Surface
Meteorological Observation system’ for analysis of temporal precipitation. We attempted to
extract the most recent continuous 8192 days of precipitation data at each observation station.
However, most time series include ‘unavailable days’ in which daily precipitation is not recorded.
For this reason, we relax the condition for extraction: namely, the latest 8192 days of precipitation
in which there are no continuous 64-day periods in which there are more than 2 unavailable days.
If there is one unavailable day in the continuous 64 (days), we assume that there is no
precipitation on that day. Under these conditions, we were able to extract continuous 8192 daily
precipitation data (time series) at 151 observation stations. i

For spatial precipitation data, we adopt the ‘Radar-AMeDAS Precipitation’ data collected by
the Japan Meteorological Agency, for which the radar estimates of precipitation rates are corrected
by the AMeDAS data. The correction has been carried out due to errors of radar data arising from
the instability of the sensitivity of the radar hardware and to the vertical variation of rainfall
(Makihara (16)). The rain depths in this data set are not continuous and the resolution is' 1.0mm in
the range of 1-77mm, 5.0mm in the range of 80-1250mm, and so on. However, in this paper; we
regard the discrete value as real rain rate. We use the data for 2001, during which the spatial
resolution of the data is 5.0 km X 5.0 km between January and March, and 2.5 km X 2.5 km
between April and December.

SCALING OF TEMPORAL DATA
Scale Invariance of Temporal Data

Fig. 2 shows examples of the relatiohships between log, A, and log, M,(g) at Wakkanai

(Local ID number 401; WMO ID number 47401) and Izuhara (800, 47800). As mentioned above,

the relationship between log, 4, and log, M,(g) should show linearity if the time series of daily

precipitation has scaling or fractal properties. Svensson ef al. (26) found that daily precipitation’

data from China and Sweden have scaling properties in the range of 1-32 days: We carried out the
same preliminary investigation for 0 < n < 13 (corresponding to 8192 days = L, > 1 day) and
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Fig. 2 Top row: The relationship between L, and log, M (q) at Wakkanai (Local ID number 401; WMO ID
number 47401) and Izuhara (800, 47800). Circles are data and lines are regression lines determined by least
squares, and the data and lines correspond to ¢ = 0, 0.5, 1.0, 1.5,....5.0 from the bottom. Bottom row: The

- same figures as the top two figures, but the range of L, is wider. One can confirm that the relationship

between L, and log, M, (g) is almost linear for shorter L,; say, less than 32 days.

obtained the same conclusion. Thus we show the relationships in the range of 1 to 32 days in Fig.
2; other figures which are not shown here show mostly same results. The analysis made by
Svensson et al. (26) was of monsoon climate data in China and temperate climate data in Sweden.
Both regions have a temperate climate, according to Koppen’s regional classification, but the
former is affected by monsoons, Baiu cold fronts and typhoons. They showed two examples of the

relationship between log, A4, and log, M,(¢g) for a monsoon climate (similar to Fig. 2 in thié

paper). One is at a location which was affected by a major typhoon in 1975, and the other is for a
location which was not so affected. Curves for the former exhibit well-defined straight line
behavior for g £ 2.5, but the moments of high order do not follow a straight line due to an
exceptionally high 5-day rainfall caused by the typhoon, while curves for the latter and for the
Swedish locations exhibit linearity for 0 £ g < 4.0. Although Japan suffers from numerous
typhoons, there has been no extraordinary precipitation, such as that seen in China in 1975, in the
dataset used in this paper, and thus the relationship exhibits a relatively well-defined linearity.
However, the relationship generally departs slightly from linearity for large values of g.

Rigorous statistical work on the significance of deviations from linearity in the relationship
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Fig. 3 The relationship between p and p for 151 daily precipitation observation stations. The line in the

figure divides the set of data into the two groups. Circles (above the line) denote the data along the Pacific
Ocean (Group A) and stars (below the line) denote those of the data along the Japan Sea (Group B).

between logM, (g)and logA, has been carried out by Troutman and Vecchia (29) and Ossiander

and Waymire (19) for theoretical cascades in which the measure is simulated according to the
boxes shown in Fig.1 (an ‘on-grid’ cascade in the terminology of Over (20)). However, of course
real data does not follow these boxes (thus, it is an ‘off-grid’ cascade; see APPENDIX), and so
these results can not be applied directly to real data. Adaptation of these results to real data is
beyond the scope of this paper. As deviations from log-log linearity are obvious to the eye for time
scales longer than 32 days, we conclude, preliminarily, on the basis, as others have done, that
scale-invariance is satisfied in the range 1 to 32 days but not at longer time scales.

Estimation of p Value of # Model

For each series of 8192 daily values, we calculated the p value using #0) according to Eq.
(17), where 7(0) was computed according to the method shown in Fig. 2 over the range of finite

scales from 1 to 32 days. We further calculated the average daily precipitation ( in mm/day) for

each time series. Fig. 3 indicates the relationship between R and p for 151 stations. As can be

seen from Eq.(12), although p does not directly represent the fraction of dry periods, p is the
ratio by which dry periods propagate. Thus it follows that if day periods at the time scale where
the cascade apparently begins (32 days) are the same, then the larger p is, the more dry days there
will be in the record. If we further assume that the daily rainfall depth on days when there is rain is

independent of p, then the larger p is, the smaller Rshould be. However, the data in Fig. 3 does

not indicate such a relationship. We divide the set of points into two groups using a broken line in
the figure; namely, above the line and below the line. By dividing in this manner, a decreasing

tendency of p with R becomes clear in each group. Hereinafter, the group above the broken line
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Fig. 4 Distribution of surface meteorological observation stations: (a) Group A, (b) Group B. The diameter
and density of color of each circle indicates the value of p. The diameter of each circle is proportional to the
value of p, and the darkness of color in the circle indicates the class of value of p; there are four classes of
thickness: p <0.15,0.15<p<0.18,0.18 <p £0.2, and 0.2 < p, respectively.
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Fig. 5 The relationship between 7(g) and g: (a) Group A, (b) Group B. ©(g) is calculated by Eq. (6) using

least squares regression over the range of scales 1< L, £32.

is referred as ‘Group A’ and below the line as ‘Group B’. Fig. 4 shows the distribution of 151 the
observation stations; the left-hand figure is for Group A and the right-hand figure is for Group B.
One can find that ‘Group A’, with a relatively large p, corresponds to observation stations along
the Pacific Ocean, and ‘Group B’, with a relatively small p, corresponds to observation stations
along the Japan Sea. This means that the scaling properties of daily precipitation along the Pacific
Sea are different from those along the Japan Sea. The former is more intermittent, and the latter
less so. We hypothesize that intermittent storms in summer and fall (which are dominant along the
Pacific) and continuous snowfall in winter (which mainly falls in the region along the Japan Sea)
cause these properties.

Multifractal Properties

According to Frisch and Parisi (4), the relationship between 7(g) and g exhibits a convex
curve if data has multifractal properties, while the relationship exhibits a linear pattern if data is
monofractal. According to Over and Gupta (21), however, the relationship exhibits linearity in the
case of the B model, which is a multifractal model; that is, the relationship exhibits linearity if
data can be completely modeled using only the B model. Thus, we designate as multifractal in the
narrow sense cases that are strictly convex, and multifractal in the wide sense cases including p
models which are multifractal models but whose #(g) versus g exhibits linearity. Fig. 5 gives the
7(g) curves for the two groups of daily data. This figure includes only data at stations at which s



of 7(q) versus'g for g = 5 is greater than 0.95 and were computed by fitting over the range of scales
of 1 to 32 days. Fig. 5 shows that ‘Group A’ generally exhibits more convexity than ‘Group B’,
indicating that ‘Group A’, or stations along the Pacific, have stronger multifractal properties and
intermittent and peaky properties than stations along the Japan Sea. As mentioned above, a time

series which can be completely modeled using the B model must exhibit linearity in (g) vs. q.

(compare Fig. 5). Thus, we can conclude that using only the B model is inadequate for generating /
modeling precipitation time series in this region and over these scales. However, the evaluation of
p values in this section is meaningful, as it depends only on the structure of the dry and rainy
periods (i.e. whether wet or dry), not the values during wet days (i.e. precipitation amount during

wet period) , which cause the convexity in the 7(g) curves.

SCALING OF SPATIAL DATA

Questions to be Addressed

Fig. 6 The locations of a Tand region (box in lower left) and a sea region (box in upper right).

Over and Gupta (21) used a B model to analyze spatial precipitation data and investigated the
dependence of the parameters of the B model on large (meso) scale forcing measured by the spatial
average of the precipitation field. They used data from GATE (Atlantic Tropical Experiment)
Phase I and II. These data were obtained from C-band radar images over the tropical Atlantic
during the summer of 1974. Phase I was between 28 June and 16 July, and Phase II was between
28 July and 15 August. Our present investigation was motivated by the following three questions.
1) Although Over and Gupta (21) analyzed using the complete data set as well as each scan, data
length is 40 days at most. What are the scaling properties for more long-term data?

2) What is the difference between data for the summer and winter? :
3) Can the random cascade theory be applied to spatial data on land, where topography, especially
the existence of mountains, may disturb multifractal or scaling properties?

We extracted data for a land region and a sea region between January and February and
between July and September in 2001 from the complete radar dataset for the purpose mentioned
above. The land region is located between 34.5°N to 37.7°N and 137°E to 141°E, and the sea
region is located between 26.5°N to 29.7°N and 127.5°E to 131.5°E (Fig. 6). Both regions are 320
x 320 km; i.e., Ly is 320 km. Recall that for January and February the highest resolution is 5.0 km,

69



70

yielding a 64 by 64 pixel grid over the 320km, while for July through September, the resolution is
2.5 km, yielding a 128 by 128 pixel grid. In this section, we analyze the scaling properties using
the whole dataset (which consists of data for January, February, July, August and September), and
then analyze it using each scan of spatial precipitation. Radar AMeDAS precipitation data is an
accumulation of hour of precipitation; thus, each of our datasets consists of 3624 (151 day x 24
hour) scans of data. However, since radar is not always available and there are some scans which
include too few rainy pixels, preventing regression analysis from being carried out, 2302 scans are
available for the land region and 2717 scans are available for the sea region.

Analyses Using Whole Dataset

First, we calculate the p value for each scan of data of 5019 (land: 2302, sea: 2717) scans.
The p value is calculated using Eq. (20) by way of the slope of logd, versus logf(4,). f(4,)

is the fractional rainy area. To understand this function, let us assume that there is only one pixel
where there is precipitation. Even if average precipitation is very small in this particular case,

f(4y) is 1 and log f(4;) is 0. Thus one can find that logf(1,) can easily be zero for small

values of n (i.e., at large scales). Fig. 7 shows two examples of the relationship. In this figure
natural logarithms are used. The regression analysis in the figure was carried out by least squares
weighted by the number of pixels, after Gupta and Waymire (8). It can be observed that log-log
linearity holds for large but finite values of n. Note that the intercept of the regression line is
negative in the left-hand figure, while it is positive in the right-hand figure. Over and Gupta (21)
have clarified the meaning of the intercept. According to Eq. (19), the intercept corresponds to

logY(0) +1logPr[Z_, > 0]: and they mentioned that logPr[Z_, >0] is negative but small in magnitude

for p = 0.21~0.35; thus the intercept corresponds approximately to log¥(0). According to Eg.

(14),

M0 . f(4,)
n =1 n =Y(0 21
PRI By Y @D

This means that a positive, large intercept corresponds to an unusually (where ‘usually’ is defined
in terms of scale invariance holding over all scales) large fractional rainy area (or, equivalently

concavity in the logf(4,) versus logA,curve) and that a negative, small intercept corresponds to
an unusually small fractional rainy area (or, equivalently convexity in the logf(4,) versus

log 4, curve). Thus the left-hand figure in Fig. 7 shows a typical case of an unusually small
fractional rainy area and the right-hand figure shows an unusually large fractional rainy area. One
can see that in the right-hand figure in Fig. 7, log f(4,) is zero for n = 0,1(320 km and 160 km).

This is typical for the case of an unusually large fractional rainy area. Since rain areas are spread
widely, after the st division by random cascade, all four of the elements possess precipitation

(f(/ln):landlogf(/in)=0).

Fig. 8 indicates the time variation of the intercept and the p value for the data from the two



Ln: - 25 50 100 200 400 800 160.0 320.0(km)  Lm:' 25 50 10.0 200 40.0 80.0 160.0 320.0 (km)
I O I T T T T T

1.0 Aot : 10 ‘ ‘ L

05 ] : 05 //

~.0.5 ' . '

(§ H

E“'o P URNNE SO SO SO

.45
2.0 =

CInlfOw]

25 ndoi3iz

-3.0 = T ¥ o

5 -4 -3 2 -1 0
In{an)

B0 oM e oM o e we W Wwe e R

Fig. 7 Top row: Examples of the relationship between log, (=- ) and log f(4,) , determined by weighted
least squares regression: (a) the land region on January 23, (b) the sea region on September 23. Bottom row:

Spatial distribution of rainfall intensity in the scenes analyzed.

regions. For the sea region, the positive intercept is dominant, especially in the summer, while in
the land region, the negative intercept is slightly dominant especially in the latter part of the year.
Examining the sea region in the summer further, notice the p value is also large. This means that
the structure of rainy and non-rainy area is like that shown in Fig.7(b), and thus the

log f(4,) curve is concave, slope of log f(4,)vs. ldgiln is large in small scales, and consequently

p is large. This implies that non-rainy areas at large scales are not as many as the small-scale
scaling structure would imply. On the other hand, positive intercept may also arise due to the
effect of the data being ‘off-grid’(Over (20); see APPENDIX in this paper), and in the present
dataset, from the effect of advection over the hour of accumulation of the radar data. Over and
Gupta (21) mentioned that this unusually large fractional rainy area is typical in the GATE data.
Our conclusion is the similar to theirs, since they investigated only a sea region. Moreover, we
found that this is not typical on land. Fig. 7 also suggests that scale invariance does not hold for
small values of n (large spatial scales). This finding was also observed by Gupta and Waymire (8)
and Over and Gupta (21), with a critical scale of about 100 km.

Fig. 9 indicates the relationship between estimates of p values and spatial average of

precipitation ( R) for the whole dataset. As might be expected, there is not as strong a one-to-one

relationship between the parameter of the B model and large-scale forcing measured by the spatial
average precipitation as was found by Over and Gupta (21) and Over and Gupta (22), because the
relationship in the figure includes precipitation caused by various kinds of precipitation
mechanisms. Thus we will further investigate the existence of a one-to-one functional relationship
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Fig. 8 Time variation of intercept, average of precipitation and p value for the land region and a sea region:

'~ (a) the p value in the sea region, (b) the same in the land region, (c) the average of precipitation in the sea
region, (d) the same in the land region (e) the intercept in the sea region, (f) the same in the land region. In
these figures, annual series data are shown. Dots indicate hourly data and solid lines indicate a 49 -hour
moving average.
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Fig. 9 The dependence of p value on spatial average precipitation for whole dataset: (a) the land region, (b)
the sea region. : ) )

by éxtracting separate precipitation events later.
Analyses Using Each Scan of Radar Data

Here we use several scans of radar data and investigate one effect of mesoscale forcing
(spatial average of precipitation) on the single parameter of the B model like Over and Gupta’s
(21). We need to classify mechanisms that are causes of precipitation and investigate the effects of
making these classifications. Since we have more than 5,000 radar data scans, however, we regard
this as an open problem and have selected the following four independent precipitation events
(refer to weather charts made by JMA in Fig. 10):

(1) July 18 to 20 (sea region), (2) September 9 to 11 (land region), (3) September 27 to 29 (sea
region) and (4) September 27 to 29 (land region).

(1) is a period when there is no front over the sea region, while there is a stationary front over the
Kyushu district whose location is north of the sea region. According to Radar AMeDAS data, a
strong precipitation arca is moving north-eastward over the region.

(2) is a period when a typhoon passes over the land region.

(3) and (4) show a period when there is a stationary front in the northern part of the sea region and
there is a typhoon in the west of the sea region. According to the weather chart, there is no front
over the land region.

-

R 1 1A Pt GG i R s ety %111

Fig. 10 Weather charts around Japan. (a) case (1) at July 19 00UTC, (b) case (2) at September 10 00UTC,
and (c) cases (3) and (4) at September 28 00UTC. Note that JST is 9 hours ahead of UTC.
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Fig. 11 Time variation of spatial average of precipitation ( top row) and intercept of regression line (second

row ), and the relationship p and % (bottom row). Columns 1, 2, 3 and 4 correspond to cases (1), (2), (3) and

(4), respectively. The day number is counted from January 1. In the figures in the botton row, regression lines

are indicated. p is estimated by Eq. (20).

Fig. 11 indicates the time variation of spatial average of precipitation ( R), the intercept
mentioned above, and the relationship between p and R for these four events. Over and Gupta

(21, 22) reported two different functions of p and R as follows:

s

L T (22)
R 0.75
=log,o| —— 23
P =108y I (23)

max

where s and R, are parameters. We applied both the equations to the data and the result of the
regression analyses are shown in Table 1. Equation (22) (Over and Gupta (21)) seems to be
slightly more appropriate for our data. The solid line in the figure is the regression curve provided
by the equation. However, of course, we cannot conclude which equation is generally appropriate.



Table 1 Estimates of the parameters of Eq. (22) and Eq. (23) and I

Equation (22) (Over and Gupta (94)) Equation (23) (Over and Gupta (96))
s Riax ” s Riax 7
Period (1) . 0.145 62.1 0.9235 -0.166 102 0.9118
Period (2) 0.167 55.6 0.9277 | -0.198 77.2 0.9117
Period (3) 0.129 60.8 0.7737 -0.180 71.1 0.7746
Period (4) 0.136 28.0 0.9452 -0.162 322 0.9444
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Fig. 12 Time variation of spatial average of precipitation (left) and the relationship between p and 7 (right).

This figure allows inference of a close relation between single-peaks of precipitation and a one-to-one

relationship between p and {. This figure is an example that there are multi-peaks of precipitation.

(2001/09/03/0:00 - 2001/09/12/24:00)

We carried out an examination based on data from other precipitation events, and conclude that the

relationship between R and p is defined by a one-to-one function if each independent
precipitation event is extracted, and even if there is a front over the region. Extracting each
independent precipitation event from a major convective storm is relatively easy (e.g. a typhoon),
but extracting individual events from data which includes multiple precipitation peaks, and where
the time variation of precipitation is complex, is more difficult. If we extract time varying
precipitation which includes several precipitation peaks, it seems that there is a possibility that we
cannot assume a one-to-one function which represents the relationship (see. Fig.12, which is an

example whose relationship between R and p does not exhibit one to one function, and there are

multi-peak of precipitation).
CONCLUSIONS

We examined temporal and spatial precipitation data and used B model to analyze both sets
of data. Daily temporal data has scaling properties in the range of 1 day < L, (the duration of
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accumulation of daily precipitation) < 32 (days). Although scaling invariance does not hold for
time series longer than this, the p value, the parameter of the § model, can be used as an index to
represent the scaling properties of the dataset. Based on this parameter, we conclude that
precipitation at surface observation stations along the Pacific Ocean is more intermittent and
peaky than those along the Japan Sea. Moreover, although both groups have multifractal properties,
those along the Pacific exhibit more multifractality.

As for the spatial data, we analyzed the time variation of scaling properties using the
intercept of regression analysis. These results showed that over the sea in the summer, there was a
tendency for a different scaling as small vs. large scales, which may be due to several causes: the
‘off-grid’ nature of the scale, the accumulation of rain depth over one hour, or actual deviations
from scaling invariance.

Finally, we extracted four radar data scans and examined whether or not a one-to-one
function can represent the relationship between large-scale forcing (spatial average of
precipitation) and the parameter of the § model. We conclude that there is a one-to-one function
provided we extract individual precipitation events, that is, those which do not contain multiple
peaks. The equation relating p and the spatial average rain rate in Over and Gupta (21) is slightly
more appropriate than in Over and Gupta (22).
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APPENDIX

‘Off-grid’ here refers to the fact that the theory and simulation of discrete random cascades
are done with reference to a regular grid of boxes that fill a cube in d-dimensional space, whereas,
in general, data will not honor this grid. Therefore, for example, a compact region of rainfall of
about the same area as a box in this grid at some scale will likely cover portions of two or more
boxes, and the fraction of boxes at this scale that have non-zero rain will be, in some sense,
artificially enlarged. Over (20) argues further that this effect is not scale-invariant and introduces
concavity into the scaling of the ¢ = 0 moment, though not enough to explain the observed
deviations from scale-invariance observed in the GATE data examined there. An ‘off-grid’ effect
would also exist for ¢ > 0 but would be smaller.
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