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SYNOPSIS

A fully developed three-dimensional turbulent flow over sand ribbons in an
open-channel was computed to clarify the generation mechanism of “secondary currents of
Prandtle’s second kind” by using direct numerical simulation (DNS) with a regular grid in a
generalized curvilinear coordinate system. Stable secondary currents and turbulent
characteristics were reasonably reproduced. Detailed evaluation of each term in the mean
vorticity transport equation revealed that the secondary currents were generated principally
by cross-planar turbulent shear stress(_y +y, +) and that the anisotropy of the cross-planar

turbulent normal stresses(,*? — %) restrained the generation of the secondary currents,

where v and w" represent vertical and spanwise velocity fluctuations normalized by friction
velocity(u . ) respectively and the overbar denotes time average.

INTRODUCTION

Turbulent shear flow frequently exhibits a pattern of longitudinal stripes such as curl
clouds in the atmosphere, Langmuir circulations in oceans, longitudinal dunes paralle] to the
wind direction in deserts and riverbeds with longitudinal ridges. A predominant factor in
these phenomena is a cluster of longitudinal vortices in the flow direction that are
cross-sectionally aligned in parallel at a spacing approximately double the thickness of the
boundary layer. In rivers, a cluster of longitudinal vortices at a scale of flow depth causes
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the positions of maximum velocity to draw down below the free surface and to transform
regularly sand wave, bed load and suspended load transversely. Such vortices have
considerable the flow resistance law, convective diffusion of heat or materials, and flows
around hydraulic structures and thus cause engineering problems in quantitative evaluation.
In fluid mechanics, secondary currents are known as “secondary currents of Prandtl's second
kind” caused by the anisotropy of turbulence in a straight open channel with a non-circular
cross section. A number of studies have been made on the generation mechanisms of
secondary currents [1]. Experimental studies have reviewed the convection term,
production term and viscosity term in a balance equation for a time-averaged longitudinal
vortex in the flow direction [2].  The studies, however, fall short of clarifying the generation
mechanism of secondary currents because the terms were extremely small in quantities, and
because accuracy was limited to second-order spatial differential operators that were applied
to the data obtained by measurements .

Subsequently, with recent advancements in computer technologies, new tools for
identifying turbulence phenomena have been developed.  In particular, a numerical analysis
method called direct numerical simulation (DNS) that is based only on physical laws without
any turbulent model is expected to be very useful because of the reliability of the governing
Navier-Stokes equations. Also, DNS can explain instantanecus turbulent structures and
easily compute high-order statistical data of turbulence. It thus enables the provision of
data unobtainable by conventional time-averaged turbulent models or experimental
measurements. DNS is expected to make great contributions to the understanding and
clarification of turbulence phenomena including the generation mechanism of secondary
currents [6].

No DNS studies related to riverbeds with longitudinal ridges, however, have been
conducted. ~ The objective of this study is to clarify the generation mechanisms of
secondary currents formed in an open channel flow over a riverbed with longitudinal ridges
and to examine the effects of the secondary currents on the Reynolds shear stress by using
DNS.

FLOW CONFIGURATION AND COMPUTATIONAL PROCEDURE

Computations were carried out for a fully developed turbulent flow in a straight open
channel over a riverbed with longitudinal ridges. The bottom shape and the bed height
were assumed as shown in Fig. 1 as based on the longitudinal ridges developed from a flat
bed [12]. Periodic boundary conditions were applied in the streamwise and the spanwise
directions, and the flow field was free from side wall effects. k

As the governing equations, the Navier-Stokes equations and the Poisson equation for
pressure, both of which were transformed into a three-dimensional generalized coordinate
system, were used as shown in equations(l) and (2) below, respectively. Other
computational conditions and algorithm used are shown in Table 1 and previous papers
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Fig. 1: Computational domain

Table 1 Computational conditions

Coupling algorithm Fractional Step Method
Time advancement 3rd Adams-Bashforth Method
Grid system Regular Grid System
Sth-order Upwind Scheme
Spatial scheme (Convective term)
4th-order Central Scheme
(The others)
Grid numbers 64 X65X65
’ Ax*=14.7 (x"=942)
Spatial resolution Ay*=01~58  (y'=150)
Az"=8.0~9.6 (z"= 600)
Reynolds number Re.=u h/v=150
Time step Ar=2/1000*h/u .
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RESULTS AND DISCUSSION

An analytical study was conducted on the statistics obtained from three-dimensional
turbulent fluctuations of 500,000 steps (+ ¢ = 2/1000*4/u- ) in a fully developed turbulent
flow field. Time-space averaged friction velocity <u-> was used to make the statistics
dimensionless.

Figure 2 shows the vertical distribution of mean velocity U" where y* represents the
height from the bed surface at each position. 'The figure clearly shows a large differences in
mean streamwise velocities owing to the effects of ridges and troughs. While the
distribution of velocities over ridges (z/h=1 and 3) agree with the distribution governed by
the logarithmic law as in flat open channel flows, the distribution over troughs (z/4=0, 2 and
4) shifts toward higher velocities in the logarithmic region.

Figure 3 compares a computed cross-sectional distribution of friction velocities with the
flume test results obtained by Nezu and Nakagawa [10].  Both show variations in the shear
stress acting on the riverbed.  The friction velocity had a minimum value on ridges and then
increased gradually toward the troughs. While Nezu and Nakagawa regarded rough
trapezoidal bars as ridges and evaluated friction velocity based on the logarithmic law, the
authors computed friction velocity based on the velocity gradient on the bed surface.
Despite such a difference in methods of the evaluation, both distributions generally agreed
fairly well with each other. ;

Computed results of the mean velocity U and the vectors of secondary currents
(V*,W") are shown in Fig. 4 and 5, respectively. Figure 4 shows that the mean velocity U"
is high over the trough and low over the ridges. Figure 5 indicates that the downflow
appears over the trough and upflow over the ridges. The effects of the secondary currents
on the spatial distribution of main flow velocity is thus reproduced satisfactorily [8],[13].

Figure 6 shows isolines for vorticity w,”. Longitudinal vortices at a scale of flow
depth are aligned in mutually different rotational directions. The centers of longitudinal
vortices do not match those of secondary currents, but are closer to the ridges. This is -
because the behavior is similar to that of longitudinal vortices generated in the viscous
sublayer as shown by Smith and Schwartz [15].  In addition, the center of longitudinal
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Fig. 2: Distribution of mean streamwise velocity Fig. 3: Spanwise distribution of u
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vortices approaches in such a direction as to cause to upflow owing the mutual action of
vortices and to the effects of the bottom wall. Longitudinal vortices at a scale of flow depth,
unlike those in the sublayer, have their centers near the bottom because of the effect of the
free surface serving as a boundary. These reproduced phenomena agree with the results of
stability analysis using a vortex filament model [14].

The computed turbulent statistics are shown in Figs.7 through 11.  Turbulent energy k"
is’ greatest over the ridges in the upflow region, and smallest over the troughs in the
downflow region and its spatial distribution agrees well with the data obtained by
measurements [8].

The relationship among the terms of Reynolds shear stress that rules the generation of
turbulent energy is shown below.
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For the generation of turbulent Kinetic energy, - u*v* and - ,+, are the dominant
termsand -y'w' canbeignored. (- ) representing anisotropy of turbulence has
a large positive value near the free-surface and the bed, thus indicates higher anisotropy due
to the constraint on - at the boundary. and  (,,** —»*? ) slightly decreases cross-sectionally
over the trough. The turbulent kinetic energy budget in the flow field where stable
secondary currents exist is shown by equation (3) below.

o w'u' 3 whulu” 2
U'—— ()= — (' p"+ —— o ——us,"y ~uu’S,~
! 6xj( 2 ) axj( P 2 Re, ) S,
‘ ©)
2 +
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In equation(3), the convection term of turbulent kinetic energy generated by secondary
currents is on the left-hand side, and the first, second and third terms on the right-hand side
are the diffusion, the production and the dissipation terms, respectively. The vertical
distributions of each term over the ridges and the toughs where turbulent kinetic energy
exhibit maximum and minimum values are shown in Fig. 12.  For comparison, the figure
also plots the computational results for flows between parallel plates carried out by DNS [7].
A comparison made for each term in the turbulent kinetic energy budget equation between
flows over a bed with ridges where secondary currents developed and flows between parallel
plates shows no significant difference except for the production and turbulent diffusion terms
over the ridges. The turbulence production term is greater over the ridges because -y *v*
in the Reynolds shear stress is extremely large near the ridges as is obvious from Figs.8 and
13. It should be noted that the turbulent diffusion term is also different from that for flows
between parallel plates because the secondary currents have an impact on high-order,
specifically third-order moments.

The effects of secondary currents on the Reynolds shear stress were examined by using
equation (4) as determined by Nakagawa, Nezu & Tominaga [9], which was obtained by
vertical integration of the Reynolds momentum equation in the mainstream direction where
# is the flow depth.

1 oU* y ouU* U
e (1= D) (VW )
Re, ( z) jf( o )dy

dz @)

d + 4
+jj—a-z-(-u W) dy

In a two-dimensional uniform flow field, the turbulent shear stress exhibits a linear
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Fig.14:Integration of additional stress terms of
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Fig.13: Turbulent shear stress

distribution due to the first term on the right-hand side. In a flow field with secondary
currents, however, a convection term (second term on the right-hand side), and a turbulent
diffusion term (third term on the right-hand side) are added to the turbulent shear stress.
The computational results of the second and third terms on the right-hand side over the
ridges and troughs are shown in Fig. 14. The second term on the right-hand side weakens
the shear stress in the upflow region, and strengthens it in the downflow region. It is
evident that the third term on the right-hand side, indicating the cross-sectional momentum
transport due to turbulence -, *w* , has a sign opposite to that of the second term, and thus
strengthens the shear stress over ridges and weakens it over troughs. The total of the
second and third terms on the right-hand side has the maximum and minimum values over
ridges near y/h = 0.4 and 0.15, respectively. Whereas the total over troughs has the
minimum value near y/h=0.2. This explains the spatial distribution of Reynolds shear stress
as shown in Figs.8 and 13 and is consonant with the fact that the shear stress at the bottom is
small in the upflow region, and large in the downflow region [8][13].
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GENERATION MECHANISM OF SECONDARY CURRENTS

Based on the work of Brundrett et al. [2], the mean vorticity equation is expressed by
equation (5) where @, is a mean streamwise voriticity .

.\ a + 2 — — aZ aZ
; CU'\ =_a__(v+2 ~W+2)+(_7__T)(_V+W+)
ox dyodz dy oz %)
1,90 9t .
( Y,

"Re, o
Computed values of the convection term on the left-hand side and the difference of Reynolds
normal stress (the first term), Reynolds shear stress (the second term), and viscous diffusion
(the third term) are shown in Fig. 15. The values agreed fairly well with the experimental
results conducted by Nezu and Nakagawa [11].  In the regions with a high absolute value of
@,", the second and third terms on the right-hand side are predominant and have opposite
signs to achieve balance. Convection and viscous diffusion terms are relatively small, so
they can be ignored. ~ As shown in Fig.8 ~ Fig.10, the Reynolds shear stress - "~ is much
smaller than the other Reynolds shear stress terms, and can be ignored in the turbulent
energy budget. However, the spatial second-order derivative is relatively large and is also
the dominant term in the balance equation of ,”. It was observed that the sign of @,” is

the same as that of the spatial second-order derivative of the Reynolds shear stress - vew*,
but opposite to that of the spatial second-order derivative of the difference of the Reynolds
normal stress (2 —) . Therefore, the computational results based on DNS showed that
while the difference of Reynolds normal stress (> -3, ) , which has been conventionally
believed to generate secondary currents, depresses secondary currents, the Reynolds shear
stress — v w* drives the generation of secondary currents and that secondary currents were
stably balanced by them.

CONCLUSIONS

1) DNS satisfactorily reproduced the flow field over a riverbed with longitudinal ridges
because the computational results were in good agreement with experimental results
with respect to turbulence statistics such as the mean velocity, the Reynolds shear stress,
and the mean streamwise vOrticity. ‘

2) The turbulent kinetic energy budget was investigated over ridges and troughs. Over
troughs, each term in the turbulent kinetic energy budget equation agreed with that of
flows between parallel plates. Over ridges, however, the production and turbulent
diffusion terms of the equation energy were affected by secondary currents and different
from those in flows between parallel plates.

3) The effects of secondary currents on the Reynolds shear stress — ,*y* were examined
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by using a momentum transport equation. Findings showed that the wall shear stress is
large near troughs and small near ridges due to the tendency of upflows to weaken and
downflow to strengthen -, *v* . In addition, the cross-sectional momentum transport
due to turbulence - ,w- strengthens -, *v* over troughs and weakens it over ridges.
The generation mechanism of secondary currents was studied by using the mean
streamwise vorticity equation. Results showed that while the difference of the
Reynolds normal stress® = — 2 *  attenuates secondary currents, the Reynolds shear
stress —p*w* is the main cause of secondary currents and therefore drives the
generation of secondary currents. Thus balance between the Reynolds shear
stress— y*w* and normal stress 7 -, * generates stable secondary currents over the
longitudinal ridges.
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APPENDIX - NOTATION

The following symbols are used in this paper :

h = flow depth ;
K = turbulent kinetic energy ;
p = pressure ;
Re. = Reynolds number based on the friction
velocity ;
S;i = instantaneous velocity-gradient tensor ;
S = mean velocity-gradient tensor ;
t ' =time ;
U, : = friction velocity ;
wyw = instantaneous velocities in the xy and z

directions ;
—u*vt,—v'w*,—u w =dimensionless Reynolds shear stress

UVW = mean velocities in the x,y and z directions ;
V7w = difference of Reynolds normal stress
XYz = coordinates of the streamwise,vertical and
spanwise directions ;
At = time increment ;
Ax, Ay Az = grid spacings in the x,y and z directions ;
Ax*, Ayt Az = grid spacings in wall units in the coordinate x,y
and z directions ;
o = channel half-width ;
&; = coordinates in calculation space ; and
W, = dimensionless mean vorticity.

+(superscript) = non-dimensional coordinate normalized by the
by the viscous length.
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