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SYNOPSIS

A first-order accurate Finite-Volume Method(FVM) numerical model for 2D flood flows is
presented. The model uses an unstructured triangular grid system and incorporates conservative
properties as well as a signal propagation through the Flux-Difference Splitting(FDS) technique. To
test the reliability of the model, experiments on dam-break flood waves propagating in a channel
as well as a floodplain with structures were conducted. The depths and the surface velocities of
flood flows were measured by means of image analysis and Particle Tracking Velocimetry(PTV),
respectively. The model verifications against these experimental data show that the proposed model
can reproduce flood flows with structures with reasonable accuracy.

INTRODUCTION

The frequency of the occurrence of high intensity rainfall and subsequent flash floods has been
increasing in many parts of the world. As a result, even densely populated and well-developed areas
suffer from serious flooding. To mitigate flood damage, countermeasures need to be improved against
flooding, such as more reliable hazard maps and more effective systems of emergency evacuation, in
addition to better flood control facilities such as diversion channels and flood retarding basins. These
countermeasures are commonly constructed according to prediction results of flood-flow behavior
based on numerical simulations of flood propagation.

A numerical model for simulating flood flows, which is usually influenced by complicated
floodplain geometries with structures, road networks and buildings, is required. Such effects are
commonly incorporated into a model through a grid arrangement, which conforms to the boundaries
in the interior and around the computational domain, together with suitable conditions describing
the type of the boundary. Therefore, two factors in constructing an accurate numerical model for
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flood flows become important: First a numerical technique for integration of governing equations,
and second a suitable grid system to implement that numerical technique on.

Numerical techniques using Finite-Volume Method(FVM) based on Flux-Difference Split-
ting(FDS) have been found to provide accurate results in cases of the 2D shallow water equations
for modeling flood flows (e.g. (2), (6), (9), (11)). The FVM is based on the integral form of the
governing equations. This method uses the total normal flux through the control-volume boundaries
for marching in time. The FDS is one of the most reliable and accurate techniques used to estimate
numerical flux. This technique essentially applies the upwind difference method to the linearized
Riemann problem (10). While this technique can determine the directionality of signal propagation,
the approximate Jacobian developed by Roe (10) enables conservative splitting of flux-differences.
Although the rigorous theoretical development for FDS has been confined to 1D flows, its logical
extension for solving 2D problems reported in the above literature show significant advantages.

Most of the existing models have used a structured grid system ((2), (6},(9)), while a few
models have used an unstructured grid system((7),(8),(11)). In an unstructured grid system, the
grid size may vary in the computational domain depending on the local geometry. This makes the
work of laying out of grids around a complicated geometry easier than a structured grid system. An
unstructured grid system is also advantageous in that it reduces computation time for comparable
accuracy. However, data on the actual accuracy and applicability of the numerical models based
on an unstructured grid system for 2D flood flows is rather inadequate. To make a complete and
quantitative verification of the models, reliable experimental data of flood flows shoud be obtained.

Experiments on flood flows have been conducted (e.g. (3), (4), (5),(12)). Among these studies,
Bellos et al. (4) and Fraccarollo and Toro (5) specified the inflow condition, and these experimental
data appear to be reliable. Bellos et al. (4) have provided experimental data on the flow depths of
2D dam-break flows in a converging-diverging channel, which separated the reservoir section from
the floodplain section. The finite depth in the reservoir section and dry- or wet-bed condition in
the floodplain section were given as the initial inflow condition. Fraccarollo and Toro (5) provided
experimental data for flow depth and velocity for propagation of 2D dam-break flood wave in a
floodplain due to opening a gate, which separate the reservoir section from the floodplain section.
The finite depth in the reservoir section and dry-bed condition in the floodplain section were given
as the initial inflow conditions. In these experiments, the slope of the channel or the floodplain were
changed but remained featureless. According to our findings, experimental data on the flow depths
and velocities of flood propagating in a floodplain with structures or with complicated floodplain
geometry as well as reliable inflow conditions have not been reported.

In this paper, a high-accuracy numerical model for 2D flood flows with capability to handle a
complicated floodplain geometry is presented. This model is based on FVM and FDS techniques (10),
satisfying conservative property while incorporating signal propagation. An unstructured triangular
grid system is employed for enhancing practical applicability. To test the reliability of this model ,
experiments on flood propagation in a channel and a floodplain with structures were conducted. The
quantitative accuracy and applicability of the model are verified against these experimental data.
Findings shows that the proposed model can reproduce the observed depth and velocities of the flood
propagation with reasonable accuracy.

GOVERNING EQUATIONS

The governing equations for 2D flood flows can be expressed as

E F
oU , OF , OF

3t+6‘x 8y+8=:0 (1)

where U = flow vector; E and F' = flux vectors; § = vector containing source and sink terms. These
vectors are given by ‘
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where h = flow depth; u, v = flow velocities along z- and y-direction, respectively; g = acceleration
due to gravity; Sor and S,y = bed slopes along z- and y-direction, respectively; Sy, and Sy, = friction
slopes along z- and y-direction, respectively. The friction slopes are estimated as

5. = nPuvul + o2 G nfvyvu? + 02
fz = h4/3 3 fy = h4/3 (3)

where n = Manning’s roughness coefficient.
The flux vectors E and F' are related to U through their Jacobian matrices A and B as

0 10 0 0 1
A——aE--(-~1["+c2 2u 0);3-—8F— —uwv v u) (4)

ou —uv voou oU -2+ 0

where ¢ = celerity= v/gh.
The integral form of the governing equations is obtained by integrating Eq.1 over a control
volume (2 as

%/QUdS+£Q(.’F-n)dL+LSdS=O (5)

where o = outward-pointing unit vector normal to the cell face 9Q = (nz,ny); F-n = En, + Fn,
is normal flux vector; dL = length of 0§}, dS = area of Q.
The normal flux vector F - n is related to U through its Jacobian matrix C', as

_ F-n)

Cn =55

= An; + Bny (6)

NUMERICAL MODEL
The first-order accurate FVM model with an unstructured grid (Fig.1) for Eq.5 can be written
1 &

U = UL - At | 53 (Le(Fi ) + Ss (7)
¥ k=1
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where ¢ = index for the cell being computed; ¢ = index for time; k = index for the face of the cell;
N, = total number of faces for a cell; U; = average value of U over the cell {; §; = average value of
S over the cell 4; V; = area of cell 4; At = time increment; L, = length of the k™ face, Fr 5T =
numerical flux of the k™ face.

The numerical flux based on the FDS technique (10) can be written as

1 1 —~
Fy-npg==(Fr+FL) np — =|Ca|]AU (8)
2 2

where F g/ ny = normal flux vector on the right/left sides of the k' face; (7,,,;c = approximate
Jacobian matrix of the k't face; A = operator defined as A(e) = (o) g — (o)1, where R and L denote
the right and left sides of the k" face, respectively.

The approximate Jacobian allows conservative evaluation of the flux vector by A(F - n) =
CHAU By using concept of approximate Jacobian proposed by Roe (10) for 1D linear systems,
the approximate Jacobian may be constructed for 2D cases. This leads to the search of particular
averages of velocities and celerity, which are computed as

vhrur +vhrur . vVhro+vhrvr . [ hp+hg

U= \/H‘i‘\/ﬁ; ;U= \/EZ+\/’EE ; €=14/9 3 (9)
The approximate Jacobian is designed to satisfy the following properties:
3 .
U= (/&) A(F-n)=CppAU = Z(aﬂ M el )k (10)
ps o
From Eq.10, the numerical flux can be rewritten as
1 13
j—’;;.nk:§(j:R+fL)-nk~§;(5ﬂ[}\Jléj)k (11)

where ), & = eigenvalues and the right eigenvectors of the approximate Jacobian, respectively; &7
= wave strengths. The eigenvalues can be expressed as

M = dng +9ny + & A= ding +ny; AP = dng +iny — ¢ (12)

The right eigenvectors can be written as

1 0 1
el=| a+én, |; &= —eny, |; E=| a-n, ‘ (13)
U+ Chy Ny U — Cny

The wave strengths are given by

at Ah + 32 (A(hu)ng + A(hv)ny, — @ - nAR)
& =11 ((A(iw) - 9A(R))ng — (A(hu) — uA(h))ny) (14)
as %’}— — 52 (A(hu)ng + A(hv)ny — @ - nAh)

where & - 1 = Ung + Uny.

The approximate Jacobian defined above does not satisfy the entropy inequality condition.
Therefore, Eq.7 might converge to a non-physical solution in case of rarefaction waves. One possible
remedy for this problem is to replace the eigenvalue in Eq.11 by a function \I/(S\j ), such as the one
proposed by van Leer et al (13). The function ¥()/) is defined as

. |M] if (M| >L180 ; -
m(xﬂ):{ ()\3)2 L19 i ] < _2%5]_ i 07 = max(0,4AM) (15)
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Fig.2 Experlmental Set-ups (Flows in a Channel)

The average value of § is treated in the manner described in (6). S; is first split into portions
with and without the space derivative terms. Thus,

=8+ Z s ' (16)

where 8y = the vector which contains no derivative term and S7 = upwmded vector which contains
a derivative term. S and S7 can be written as

p g g
Ss=| 9hSp | 5 Si=35| 8= (55 PN (17)
ghSry / j=1

Finally, S’k and Bj can be expressed as

0 : B : 1
Sk = g’:l(LkAzbnz) and @2 = Q—QL%Q,A—%) 0 (18)
gh (LiAzyny) 3 ¢ -1

BOUNDARY CONDITIONS

Open and Close Boundary

The numerical flux across the cell face lying on the boundary of the computational domain, is
calculated by using the following boundary conditions:

The cell face is an open boundary when there is flow across the cell face. This boundary
condition is determined according to the type of local flow regime, which is either sub- or super-
critical. For sub-critical flow, the flow depth or unit-width discharge normal to the cell face is given.
When the flow depth kg is given, velocity normal to the cell face w - n g is obtained from Eq.19. On
the other hand, when the unit-width discharge ¢, is given, hr can be solved from the Eq.20.

(w-n)p=(u-n);+2(ct —cr) (19)
2¢% — ((w-n);, +2c1)ch +9g, =0 (20)

For super-critical flow, at the inflow boundary, both flow depth and velocity normal to the face are
specified. At the outflow boundary, no external condition is necessary.
At the closed boundary, the flow across the cell face is set to zero. Therefore,

(w-n)g=—(u-n),;hr=ht ; A ' (21)
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Treatment of Dry-Bed

A very small flow depth h, is assumed in dry cells while velocities v and v are set to zero. In
order to prevent an unrealistically high friction slope at very small flow depths, a tolerance depth
he is specified and friction slopes Sf, and Sy, are set to zero as long as the flow depth in a cell
remains less than h.. Based on numerical experiments, the values of h, and h. are set to 0.00001m
and 0.001m, respectively. '

EXPERIMENTS

Two different experimental set-ups were used: a straight channel (Fig.2) and a floodplain
(Fig.3). The experimental set-ups in both cases consist of a reservoir section and a floodplain section
separated by a gate-fitted wall. The bed in both cases was horizontal and their Manning’s roughness
coefficient was 0.01. The floodplain in both cases was initially dry. The presence of structures, such
as buildings, was modeled by placing the square pillars (0.06m wide, 0.2m tall) in the floodplain. The
angle of attack of a square pillar was defined as shown in Fig.4. Experimental conditions are shown
in Table 1.

For experiments in the channel, the length and width of the reservoir section are 6.5m and
0.6m, respectively. The length and width of the floodplain sections are 13.5m and 0.6m, respectively.
The width of the gate was the same as that of the channel. The number of rows of the square pillars
used varied from 1 to 3, and the angle of attack of the pillars was changed to 0°, 15°, 30° and 45°.
The initial depth in reservoir section was 0.1m. Furthermore, the flow depths were observed at each
observation stations.

For experiments in a floodplain, the length and width of the reservoir section was 2.0m and
3.0m, respectively. The length and width of floodplain section was 3.0m and 3.0m, respectively.
The gate was 0.5m wide and was located at 0.75m from the left-side end of the wall separating the



Tablel Experimental Conditions

Channel Floodplain
CASE 1 CASE2 CASE3 CASE4 CASES
Arrangement B By B o @ 3
f P d
dme e ddfeereoon| mal
B B "8 B )
Square Pillars
Spacing d (m) 0.18 0.12
Angle of
A2k & (deq) 0, 15, 30, 45 0
Initial Depth
in Reservoir 0.1 0.2
Sections hy (m)
Observed Data Flow Depth Flow Depth
P Surface Velocities
[x (m) [y (m)
al 0.29] 0.00
Locations of x(m) [y (m) b| 0.84-0.50
Observation al 2.03] 0.00 c| 1.34]-0.75
Stations b| 221 0.00 d| 1.84-0.35
e| 1.35] 0.00
1 1.84] 0.00

(b) Surface Velicities

Fig.5 Measuring Method for Flow Depth and Surface Velocities

0.0

0.03
Depth (m)

(Flows in a Channel, CASE1, a=15°, t=3.5 seconds)

Fig.6 Examples of Grid Arrangement and Computation Results of the Flow Depth
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reservoir section from the floodplain section (Fig.3). The number of rows of square pillars and the
angle of attack of the pillars were not changed. The initial depth in reservoir section was 0.2m. The
flow depths and surface velocities were observed at each observation station.

A dam-break flood flow was produced by opening the gate instantaneously. A water surface
profile visualized by a laser light sheet and was recorded by means of a digital VTR. Flow depths
were obtained by analyzing the recorded images with a computer as shown in Fig.5(a). Surface
velocities were obtained by analyzing the motions of foam polystyrenes floating on water surface
with PTV(Particle Tracking Velocimetry) as shown in Fig.5(b). From these measurements, the
depth-averaged velocities were calculated from U, = 0.92U;, which is a relationship between the
depth-average velocity vector U, and the surface velocity vector U, obtained from an experiment
results of 1D dam-break flows (1). Each experiment was repeated at least 4 times under the same
conditions in order to obtain reliable data.

MODEL VERIFICATION

Flows in a Channel

Examples of grid arrangement and computational results of the flow depth around the pillars
for CASE 3 with o = 15° at 3.5 seconds after opening the gate are shown in Fig.6. The figure shows
that the rise of the flow depth around 1st- and 2nd-rows of pillars propagates upstream.

Fig.7 compares the computed depths with observed data of CASE 1 ~ CASE 3 at each angle
of attack. It shows that the computed depths coinside satisfactorily with the observed data in all
cases. The computed results reproduce the following observed phenomena: (1) there is a rise of flow
depth from the arrival time of the wave front up to 5.0 seconds and after that the flow depth remains
largely unchanged. (2) Depending on the angle of attack «, the part of channel width blocked by the
pillars is changed. Accordingly, the rise of flow depth in front of the pillars also changed. (3) The
difference in flow depth between CASE 1 and CASE 2 is wider than the difference between CASE
2 and CASE 3. It should be noted that at the observation stations for CASE 1, the discrepancy
between the computed and the observed depths is wider than the other stations. This may be due
to the effects of a complicated streamline curvature in the vertical, which is stronger for CASE 1.

A trend similar to CASE 1 can also be revealed in CASE 4, and for the first 5.0 seconds in
CASE 5(Fig.8). At 5.0 seconds after opening the gate in CASE 5, the computed depths coincide
with the observed depths. The discrepancies in the flow depth between CASE 4 and CASE 5 are
significant up to 3.0 or 4.0 seconds after opening the gate. This provides evidence that the effects of
the last row of pillars in CASE 5 become significant after 3.0 or 4.0 seconds from the opening of the
gate.

Flows in a Floodplain

Examples of grid arrangement and computation results of the flow depth around the pillars
at 2.0 seconds from opening the gate are shown in Fig.9. This figure shows that the flood flows
obstructed by the pillars are deflected, and consequently the flow depth in front of the pillars riges.

Fig.10 compares the computed depths with observed data at each observation station. At the
stations a, e and f on the gate center axis, it is observed that the flow depth rises suddenly in the
beginning and then drops sharply. Thereafter the flow depth continues to decrease. At the station
a near the gate, the computed depths coincide closely with the observed data except for the initial
3.0 seconds after opening the gate. At this time, the computed depths are lower than the observed
data. At the stations e and f, the computed depths mostly match with the observed data except
for the initial 2.0 seconds after opening the gate. In this period, the computed depths are slightly
lower than the observed data. The discrepancy between the computed and the observed values at
the station a is wider than the values at stations e and f. This provides evidence of the effects
of streamline curvature in the vertical, which is stronger near the breach sections. The reason for
the discrepancy between the computed and observed values is that the governing equations are not
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capable of handling these effects. At the stations b, ¢ and d, which are away from the gate center axis,
the flow depth rises suddenly in the beginning and continues to decrease thereafter. The computed
depths mostly coincide with the observed data.

Fig.11 compares the computed depth-averaged velocities with observed data at each observation
station. The observed velocities at all stations rise to their maximum in the beginning and continue
to decrease at a later period. At the stations a, e and f, the observed y-velocity is nearly equal
to 0. The computed results mostly reproduce the observed data. At the stations a, e and f, the
discrepancy between the computed results and observed ones is due to the same reason as that of
flow depths. At other stations, a slight discrepancy between computed and observed values may be
identified. This is mainly due to the fact that approximation of the dry-bed was made in very shallow
water. )

The above findings demonstrate the proposed model reproduces the observed depth as well as
velocities of 2D dam-break flood waves propagating on a horizontal dry-bed with the square pillars
with reasonable accuracy.

CONCLUSION

An accurate FVM numerical model for 2D flood flows which can handle a complicated floodplain
geometry is presented in this work. The model is based on the FDS technique which satisfies
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conservative property and incorporates signal propagation. An unstructured triangular grid system
is employed for efficient handling of complicated floodplain geometriy. For a completely accurate
verification of the model, experiments of dam-break flood waves propagating in a channel as well as
a floodplain with square pillars, which model structures, were conducted. The experimental data on
the flow depth and surface velocities were obtained by using an image analysis and PTV, respectively.
The model was verified against the experimental data and was found to reproduce the observed depth
and velocities with reasonable accuracy.
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APPENDIX-NOTATION

The following symbols are used in this paper:

U = flow vector;
E, F = flux vectors;
S = vector containing source and sink terms;
h = flow depth;
U,V = velocities along x- and y-direction, respectively;
g = acceleration due to gravity;
SozySoy = bed slopes along x- and y-direction, respectively;
Stz Spy = friction slopes along x- and y-direction, respectively;
n = Manning’s roughness coefficient; .
c = celerity(=+v/gh);
n = outward-pointing unit vector normal to cell face = ((ng,ny));
F-n = normal flux vector;
i = index for a cell;
t = index for time;
k = index for a cell face;
Ne = total number of cell face;
U; = average value of U over the cell 4;
S = average value of § over the cell 7;
Vi = area of cell ¢;
At = time increment;
Ly, = length of the k™ face;
r.ny = numerical flux of the k' face;
A = operator defined as A(e) = (¢)r — (o);
Chrk = approximate Jacobian matrix of the k' face;
N, e = eigenvalues and right eigenvectors, respectively; and
& = wave strengths.
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