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SYNOPSIS

The availability of using hypothesis test techniques to identify the long-term trends of hydrological time
series is investigated in this study. For the purpose to test the long-term trends of hydrological cycle, both
parametric and nonparametric test techniques are employed to detect the jump and monotonic trends of the
spatially averaged annual temperature and precipitation time series in Japan. Jumps (step trends) were detected
from both time series. Although the annual temperature showed an obvious increasing monotonic trend, the
precipitation record did not give significant evidence of a monotonic trend. The number of samples required for
detecting jumps with a given magnitude at specified significance and power level was estimated with the power
function of the t-test. If the magnitude of a jump reaches one or two times of the standard deviation of the time
series, the previous 100-year record together with several years of new data will be available for detecting the
possible step trend. Otherwise, at least 10 years or more of data record will be required to make significant
inference for the plausible jumps.

INTRODUCTION

The increased concentration of greenhouse gases may cause changes in both temperature and precipitation.
Their impact on regional hydrological processes may further affect nearly every aspect of human life from
municipal and industrial water supplies to food productivity and energy use. The impact of climate change has,
therefore, received great attentions, and numerous studies concerning climate change have been conducted over
the past several decades. From these studies, potential impacts on the hydrological regime in various geographic
areas were investigated and the areas, that could be negatively affected, were identified. For example, test
results on temperature and precipitation data from 37 weather stations showed that the Canadian Prairies have
become warmer and somewhat drier over the last several decades (see Gan (6)). Zhang et al. (21) found that the
annual precipitation totals have changed —10% to 35% in Canada, with the strongest increase in northern Canada,
and significant decreasing trends in winter precipitation in southeastern Canada. Another study showed that a
jump of precipitation in New South Wales occurred around 1945. A dramatic change in flood risk corresponding
to 1945 was apparent: of 41 long-term flood gauges, over 90% show increases in flood frequency, 30% at greater
than 99% significance (see Franks (5)). In Japan, two jumps in annual temperature were found around 1920s and
1950s by Yamamoto et al. (19), a jump around 1935 and an increasing trend of the annual maximum daily
precipitation over the past 100 years were detected with statistical significance by Yamamoto and Sakurai (20)
and Iwashima et al. (10). By using weather pattern simulations, Terakawa et al. (16) found that annual
precipitation in Kanto, Chubu, and Seinan inner belt of Japan exhibited a decreasing trend, while annual
precipitation in other regions including Hokkaido and Tohoku did not show any long-term trend.  In spite of
these useful studies focusing on climate change impacts, there still remain considerable unsolved problems
concerning both the magnitude and the timing of the impacts on hydrological processes that have occurred, or will
occur.

During the past several years the severity and frequency of flooding and prolonged droughts seemed to have
increased globally. Therefore, the following questions are posed: Has the increase of hydrological extremes had
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anything to do with climate change? Although it is quite difficult to understand the causal relationship between
hydrological processes and climate change, statistical tests to find a possible causal relationship should be of
interest to hydrologists. In previous studies on climate change, the global atmospheric general circulation
models (GCMs) have been used to simulate the climate changes (see e.g. Xu (18)). GCM applications showed
that the accumulation of greenhouse gases in the atmosphere has resulted in the long-term trend of the temperature
and precipitation records (see Kite (11)). The globe exhibited a significant warming trend during the past
century, and if climate change is true, what are the likely impacts for the hydrological circulation, and how will
the hydrological frequency analysis be affected? Traditionally, the probabilities of occurrence for large floods
are estimated by hydrological observations. A probability distribution is usually selected and the distribution is
then fitted to historical data using statistical techniques. An important assumption made in this approach is that
extreme values are independent and identically distributed with some unchanged underlying probability
distribution. In other words, the assumption for hydrological extremes implies that natural climate change does
not affect the occurrence of hydrological extremes (see e.g. Bradley (3)). As a preliminary study, recent trends
in precipitation and streamflow time series in Japan were investigated by Takeuchi (15). The 30-year records of
streamflow and precipitation in the selected 31 major river basins showed a decreasing trend in the streamflow
series and an increasing trend in the precipitation series. In the second stage of this research, one of the
important objectives of this study is to detect long-term trends in hydrological time series, which may further be
used to evaluate the possible effects of climate change on hydrological frequency analysis and water resource
systems.

During the past decades, many parametric and nonparametric techniques for the detection of long-term trends
in time series were developed and applied (see e.g. Hirsch et al. (8)).  Several of these techniques will be used to
explore the hypothesis that climate change has occurred gradually or suddenly in Japan during the past century.
Next section will first outline the techniques of trends detection in time series. It is followed by a presentation of
results for two kinds of data sets in Japan. The number of samples required detecting jumps in these time series
is then examined in the next section of the paper. And the paper concludes with a summary and discussion of the
findings from this study.

MODEL DESCRIPTION

The hypothesis testing problem may be stated as follows: A null hypothesis Hy assumes that an event E has
not occurred with an alternative hypothesis H; that E has occurred.  The test statistic T, a function of the data set
X=(X1, Xz, ..., Xn), is used to choose the hypothesis between Ho and Hy. In a trend test, the null hypothesis Hy
means that there is no trend in the population from which the sample X is drawn. In the hypothesis testing for
long-term trends, two types of trends are usually considered. One is the monotonic trend that the time series
changes monotonically over time. The other is the jump or step trend (see e.g. Hirsch et al. (8)).

Depending on the characteristics of the data being studied, either parametric or nonparametric may be
employed. The advantage of nonparametric tests is that few assumptions are made on the data, and it is thereby
flexible to handle problems such as seasonality more easily (see e.g. Belle and Hughes, (1)). Furthermore,
nonparametric tests generally have higher power than parametric procedures if there is a substantial departure
from normality and the sample size is large (see Hipel et al,, (7)). Mann-Kendall test for monotonic trends and
Mann-Whitney’s test for jumps particularly perform well in comparison to the parametric t-tests (see e.g.
Berryman et al. {2)). These techniques may be two of the best choices for trend detection.

Parametric t-test for Jump and Monotonic Trends

The two-sided t-test for a step trend in the data vector X is a technique to test whether the means for two
partitions of the data set differ significantly. The hypothesis is as follows (see e.g. Lettenmaier, (12)); Hy: © =
uaand Hyr w1 % 1. On the basis of estimates X, and X, and significance level ¢, the test statistic is given
by

X, —X
TC = ___‘NJ___l_L__ N

Vnt

in which
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where n = nj+m,, and n), n; are the numbers of the samples before and after the jump occurs. Hypothesis Hy or H;
is accepted if 7, <T vy OF T >T ey respectively. Where T o = quantile of the Student’s t
%

distribution with degrees of freedom v =n-2.
The time series X, including a linear trend may be expressed by a linear regression model as follows:

x1=ﬂ0+i8it+€;a f=1,2,...,n (3)
where €, o0 N(0,0 52 ), denoting a normal distribution with mean zero and variance O ez , B, = wend

magnitude, and 3, = base level. Although the F-test is used to choose a regression model, t-test is usually

employed to test the null hypothesis that x, are independent and identically distributed normal random variables,
not dependent on the t.  The t-test statistic for monotonic trend is defined as (see Maidment {13))

rdn—2
Vi=72

where r is the correlation coefficient between X, and t for t=1, 2, ...n. H, is accepted or rejected if
T, =T 4, ot T.>T_ ), respectively. In which T e = the quantile of the Student’s t distribution

T =

“)

with degrees of freedom v =n-2.- Significance level « is selected to be 0.05 (5%) in this study.
Mann-Whitney Test for Jumps

A useful nonparametric approach for jump test is the Mann-Whitney test (see e.g. Mood and Graybill (14)).

Given the data vector X =(x,x,,..,x,) , partiion X such that Y=(x,,x,,..,x,)
Z= ()C,,l i Xz Xy ), and n=n;+n;. The n observations may be rearranged in an ascending order as the
smallest observation by 1, the second by 2, ..., and the largest one by n. These integers are known as the ranks

of the observations. If the sum of the ranks for the n; X values is denoted by Ty, it can be proven that the mean
and variance of Ty are

E(Ty)= n,(n, +2n2 +1) . )

mn,(n, +n, +1) ©
12

The exact distribution of Ty is not easily given for large n; and n;. However, Mann and Whitney have
proven that Ty is approximately normally distributed for large n, and ny, and the normal approximation may give
quite accurate results when n, and n, are larger than 7. Therefore, one can use the normal approximation with
mean and variance given by equations (5) and (6) to find a critical region for testing Ho under large n; and n,
values (see Mood and Graybill (14)). In other words, following Z. may be used for testing the jumps,

I

zr(x,)—n‘(n' +n, +1)/2

Z == @)

l:n,n2 (n, +n, + %]%

where 1(x,) is the rank of the observation x,, The null hypothesis Hy is accepted if —Z

Var(Ty) =

SZ, <7, 4,

i-~0f2
where & 7 g2 aT€ the standard normal deviates, and « is the significance level for the test.

Mann-Kendall Test for Monotonic Trend
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Mann-Kendall test has been used in different fields, and has been found to be an effective tool for identifying
monotonic trends in hydrologlcal time series (e.g. Burn (4), Westmacott and Burn (17)).  The test statistic of the
Mann-Kendall test is given as

S= Z ngn(xk -x,) | (3)

in which the xk: )éi ;r[:the sequential data values, n is the length of the data set, and
1, 6>0
sgn(@)={ 0, 6=0 : )
-1, 6 <0
The theoretical mean and variance of the test statistic for the time series with ties are given as follows:
E(S)=0 ' : (10)
n(n~1)(zn+5)~2e.(e, ~1)(2e, +5) ,
var[S] = (11

18
in which ¥ denotes the summation over all ties and e; is the number of ties of extent i. For example, in the data
set$,5,6,7,8,8,8,10, 10, 11, 12, 12, the e, values are as follows: ;=3 [three untied values (6, 7, 11)], ;=3
[three ties of extent two (5, 10, 12)], e;=1 [one tie of extent three (8)], and for all larger values of i, ¢~0 (see
Maidment (13)). For sample sizes larger than ten, the statistic is nearly normally distributed. In other words, the
statistic

S—1

—_—, 5>0
A var(S)
Z = g, §=0 (12)
S+1 S<0

Jvar($)”

is a standard normal variable. In a two-sided test for trend, the null hypothesis Hy is accepted if
-7 a2 S Z.£Z 12> Where T Z 12 are the standard normel deviates, and o is the significance level for
the test.

In addition to testing the trend of time series, it is usually necessary to estimate the magnitude of the trend,
which may be defined as a slope, i.e. the change per unit time. The Kendall slope is an unbiased estimator of

trend magnitude, and it has higher precision than a regression estimator where data are skewed (see Hirsch et al.
(9)). It is defined as follows,

. x,—xi X . )
B = Median | —— |, Vi <i , (13)

=7
inwhich 1< j<i<n,and B is arobust estimate of the trend magnitude. In other words, the estimator 3
is the median over all combination of record pairs for the whole data set and is thereby resistant to the effect of
extreme values in the observations (see Hirsch et al. (9)). A positive value of f indicates an increasing trend,
and a negative value of f indicates a decreasing trend.

RESULT ANALYSIS AND DISCUSSION
Two types of long-term trends are tested in this study. One is the jump, which consists of a step change
in the data record; and the other is a monotonic trend, which consists of a process with mean level varying
gradually over the data record. These two types of trends in hydrological processes may be attributed to abrupt

and gradual variations due to climate change or other reasons.

Data Analysis
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Hydrological observations such as streamflow and water levels are possible choices to detect climate
changes, but these time series have several problems: (1) streamflow or water level at a gauge are only
representative of a limited area; (2) these series may be susceptible to external influences from urbanization or
other changes in the environment; and (3) their fluctuations are usually very large (see e.g. Kite (11)). On the
contrary, time series such as spatial averages of temperature and precipitation measure areally various integrated
effects and are relatively uninfluenced by human’s activities. The temperature and precipitation time series,
therefore, are selected for trend tests in this study.

Both temperature and precipitation time series are usually measured continuously at small time intervals
and a choice of intervals must be made before long-term trends are tested. The number of data available, the
information contained in the data, and the test approaches affect the choice of time intervals. Daily or monthly
data are cumbersome when used for periods of over 100 yr, and are also usually unavailable for areal average.
For the purpose of investigating the evidence of climate change, spatial averages of the annual data are employed
in this study. In order to enhance the spatial coverage of the study area, the stations and gauges are taken from
different climatic zones in Japan. Therefore, the hydrological time series selected may reflect a diversity of
climatic and physiographic conditions. - A minimum of 50 years of record for one data set is desirable to have a
reasonable record length for the statistical tests. On the basis of the data condition available, average
precipitation over 46 main rain gauges, estimated by Japan Ministry of Land, Infrastructure and Transport on the
basis of the meteorological data provided by Japan Meteorological Agency, is used in this study. As for annual
temperature, due to its less variability, averaging over main meteorological stations may be sufficient.
According to a study made by Terakawa et al. (16), the area investigated can be divided into six climatic zones.
The averaging temperature time series, selected over these six different climatic zones, may reflect the diversity of
climatic and physiographic conditions. Because several of the stations are located in metropolitan areas, urban
effects on trend may be greater than climatic change. Trend detection with better representative data set will be
carried out once new data is available at the next stage of this study. Figure 1 shows the study area and the
meteorological stations from which temperature data were collected. Both data sets were evaluated qualitatively
on the basis of natural conditions to ensure that only stations with good quality data were selected.

Fig. 1 Map of the study area showing 6 main meteorological stations

The statistics for those two time series are given in Table 1.  Figures 2 and 3 show plots of the mean annual
observations for those two records. In order to evaluate the non-randomness over a range of timescales, the
10-year moving averages (MA) are also given in those graphs. Although different t-year moving averages are
employed, the 10-year period performs better than others. Scrutiny of the time series in Figure 3 reveals that
precipitation peaked in the early 1920s and has been declining since 1923. Several patterns emerged in annual
precipitation with two distinct regimes; a low precipitation regime from 1924 to 1940 and a significantly higher
precipitation regime from 1941 to 1959. The period from 1973 to 1997 was also one of the driest periods during
the period of study. Three years: 1978, 1984, and 1994, were the three driest on record; and 16 of the 25 years
had below-average precipitation.
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Table 1  Statistics for two time series

Statistics Temperature | Precipitation
Mean 12.87 1634.44
Variance 0.40 24950.40
Standard deviation 0.63 157.96
Coefficient of variation 0.05 0.10
Coefficient of skewness 0.59 -0.27
Maximum value 14.74 1995.00
Minimum value 11.71 1170.00
Range 3.03 825.00
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Fig. 2 Annual average temperature over 6 main meteorological stations in Japan
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Fig. 3 Annual average precipitation over 46 main rain gauges in Japan

As mentioned above, parametric tests for long-term trends require the error terms - £, in equation (3): (1) to
be independent, (2) to have constant variance, and (3) to come from normal population. The null hypothesis H,
i.e., the error terms €, are independent and identically distributed random variables without dependence on time

t, is rejected if ]Tcl > Tl o) in which Tl o) is the point on the Student’s t distribution with v =n-2 degrees
-y ~ay. :

of freedom that has the probability of non-exceedance of 1— % . And T, is estimated by using equation (4) with
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the combination of the correlation coefficient between noise series £, and the corresponding time series t.  The

estimated T statistics are 0.24, and -0.04, and the values T, o at significance level ¢ =0.05 are 0.184 and
o/,

0.194 for temperature and precipitation time seties, respectively. Precipitation time series accept the hypothesis
Hy, i.e. the error terms €, of the precipitation time series are independent and identically distributed random

variables. However, the temperature time series rejects this basic hypothesis.

The test on constant variance is somewhat complex. One alternative is to test for every possible pair of
sample series. In other words, the original time series is divided into any two groups and test the variance for
those series. However, it is time-consuming and seems unnecessary. In this study, all possible partition points
are first identified by vision. for each time series. In this visual identification, two principles need to be noted.
One is that there is a large difference between the mean values of the two subdivided time series; the other is that
any one of the two subdivided series has enough length of record.  From this viewpoint of statistics, the dramatic
changes of only one or two samples in the record cannot provide sufficient evidence to confirm the occurrence of
the jump or monotonic trends. For example, the temperatures in both 1945 and 1947 had small values compared
with the neighboring years. However, the values in the years before 1945 or after 1947 have ordinary values.
Only those two isolated two-year changes could not provide effective evidence of trends, and this period,
therefore, will be excluded from the possible periods to be tested. According to these principles, each one of the
two time series are further divided into four sub-series, as given in Tables 2 and 3. In these tables, the statistical
features for the subdivided time series are also presented. It is interesting to note that while no large difference
was found for the averages of the four subdivided precipitation time series, the standard deviation and the
coefficient of variation increased drastically for the period from 1973 to 1999.  Although further investigation is
required, it is possible that the extreme precipitation occurred more frequently over the past several decades. A

2 2. . . . . - .
test of Hy: 0‘,2 = 0‘22 versus Hy: 0,” # &, is two tailed; that is, Ho should be rejected if F' = 17”'1‘41 (a2)’ in
52
which £ = /2 . The estimated results for two time series are given in Table 4. It can be inferred from
§

Table 4 that the hypothesis of constant variance for the error terms of both the temperature and the annual
precipitation time series is accepted.

Table 2 Partitions of the temperature time series
No. | Time series | Length of record | Mean value | Standard dev. | Coe. of variation

1 ]1886—1913 28 1236 045 0.04
2 19141947 34 12.59 0.34 0.03
3 11948—1988 41 13.13 0.36 0.03
4 11989—2000 12 14.01 0.47 0.03

Table 3 Partitions of the precipitation time series
No. | Time series | Length of record | Mean value | Standard dev. | Coe. of variation

1118971923 27 1696.22 113.48 0.07
2 | 19241940 17 1559.35 123.52 0.08
3 11941—1972 32 1667.22 138.71 0.08
4 119731999 27 1581.07 201.86 0.13

Table 4 F Statistics for two time series

Temperature Precipitation
No. Series Test No. Series Test
ny Nz F Ho ny Nz F

1 28 |34 | 167 | A 1 27 | 17 1 0.86
2 34 141 | 1.27] A 2 17 | 32 | 0.80
3 41 112 1057 ] A 3 32 127 1047

Note: R-rejected, A-accepted. Significance level «=0.05.

> |
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In order to test the normality of two error term series, the chi-square and Kolmogorov-Smirnov
goodness-of-fit tests are employed in this study. Results are given in Table 5.  In chi-square goodness-of-fit test,
the number of cells into which the observations are to be tallied is set to 6. Obviously the hypothesis H, that the
error terms are normal distribution is accepted for both temperature and precipitation time series, too. In short,
precipitation time series accept three assumptions, and the assumption of independence is rejected by temperature
time series. In other words, although trend tests will be implemented for two time series in the following section,
the corresponding result is only significant for precipitation time series, while the results for temperature time
series may be used for reference.

Table 5 Goodness-of-fit test for two time series detected

%% test Smirnov-Kolmogorov test
7 p (X))
x o | %7005 | Ho D, D, Hy
Temperature | 4.009 | 3 | 781 | A | 0.069 0.127 A
Precipitation | 0.631 | 3 | 781 | A | 0.048 0.134 A

Result Analysis

Before a monotonic trend is tested, one has to first identify whether there is any jump in the time series.
Table 6 gives the t-test results for two time series. It is clear that jumps occurred in temperature time series
around 1914, 1948, and 1989. For the precipitation record, two jumps may have occurred around 1924 and 1941.
Because of the limitations from the assumptions in the parametric test approach, nonparametric test techniques
should be further used to confirm the existence of the jumps. Table 7 shows the test result of the Mann-Whitney
for two time series. Obviously, both nonparametric and parametric approaches give the same results. In other
words, three years in temperature time series; 1914, 1948, and 1989 may be regarded as a time around that jumps
occurred, as given in Fig. 4. This conclusion is somewhat consistent with the one obtained by Yamamoto et al.
(19). The changes of the precipitation time series that occurred in 1924 and 1941 may be regarded as possible
years, around that jumps may have occurred, and evidence of this is shown in Fig. 5.

Table 6 t-test results of jumps for two time series

Temperature Precipitation
No. Series Test No. Series Test
n | m T. H, n; | n; T

£
1 28 134 1223 | R 1 27 117 13.77
34 | 41 | 664 | R 2 17 132 1269
3 41 1121694 | R 3 32 127 1193

i~

P |

Table 7 Mann-Whitney test results of jumps for two time series

Temperature Precipitation
No. Series Test No. Series Test
no | m | Z | Hy n | Zo | Ho
1 28 134 126 R 1 27 117 1324 | R
2 34 141 1530 R 2 17 1321250 R
3 411121446 R 3 321271149 A
Temperature
:451(5) ~~~~~ AvTZfage §
© 40 L Changed averages EN
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g 13.0 L4 4 pam— ;v*ﬁv \“M'{%{\
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Year
Fig. 4 = Average temperature time series showing the jumps
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Fig.5 Average annual precipitation showing the jumps

It should be noted that the hypothesis for the precipitation time series must be re-tested, because the length
of the time series ny changed due to the absence of the jump for the time series around 1972. The re-tested
results obtained by using both t-test and Mann-Whitney techniques are given in Table 8. It is interesting to note
that the jump around 1941 disappeared from the plausible jumps detected previously. Due to this change, further .
detection is still needed. The result is listed in Table 9.  Although the hypothesis that there was no jump around
1941 was accepted, the hypothesis that the jump had not occurred around 1923 was rejected. In other words, a
jump most likely occurred around 1923 at a significance level 5%. In spite of the fact that the climate
background needs to be further investigated, it seems clear that a jump exists in both temperature and precipitation
time series from the viewpoint of statistics.

Table 8 Further detection of jumps for the precipitation time series
t-test Mann-Whitney test
No. Series Test No. Series Test
ny n; Tc HQ 1y j$53 ZC H()
1 27 | 1713771 R 1 27 117 {324 | 'R
2 17 159 11511 A 2 17 1591180 ] A

Table 9 Third detection of jumps for the precipitation time series

t-test Mann-Whitney test
No. Series |  Test No. Series Test
n 1 Tc Ho ng 1y ZC HQ

1 27 176 1242 | R 1 27176 1245 | R

Before the monotonic trend is tested, the linear trend should be first estimated and detected. As given in
equation (3), the linear regression equations for two time series are given as follows,

T=12.107+0.013¢ (14)
P=1677.386-0.826¢ (15)

The results of both t-test and Mann-Kendall test for two time series are summarized in Table 10. The
results from two approaches strongly suggest that the null hypothesis, which states that there is no monotonic
increasing trend for temperature record, should be rejected.  In other words, the temperature time series shows a
clear monotonic trend and both parametric and nonparametric tests revealed the same result. ~ An analysis of the
linear trend in this time series indicates an increase of 1.32°C from 1886 to 2000 and the values have several
peaks in 1962, 1979, and 1990, although oscillations exist from visual inspection. On the contrary, the long-term
monotonic trend in annual precipitations is weak over time. For example, the average annual precipitation
decreased 8.3 mm per decade, or 0.5% per decade, corresponding to a decrease of 5-6% throughout the past
century. Both t-test and the Mann-Kendall test results show that the hypothesis Hy is accepted for precipitation
time series, and that there is no significant monotonic trend for the precipitation record.
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Table 10 Monotonic trend test for two time series

t-test Mann-Kendall test
Bo B Te [Ho| Ze B Hy
Temperature | 12.107 | 0.0132 | 1042 | R | 8.247 | 0.0133 | R
Precipitation | 1677.39 | -0.826 | 1.590 | A | -1.271]-0.7218 | A

Estimations of trend magnitudes are also given in Table 10. It reveals that the temperature trend
magnitude is positive with a value of 0.013.  This means that an increase of almost 1.3°C has taken place in the
past century. On the other hand, B value for the precipitation time series is negative and shows the trend of
decreasing with time, although this trend could not be identified at significance level 5%. ' In conclusion, both
parametric and nonparametric tests confirm the presence of an increasing trend in temperature time series.
However, for the precipitation time series, a significant monotonic trend is not detected by both t-test and
Mann-Kendall test. In order to further confirm the plausible monotonic trend occurred in both precipitation and
temperature records during the past several decades (1950-2000), which was commonly regarded as an important
period with greatest climate change over the several centuries, detections were also performed for the last 50-year
records of the precipitation and temperature. Part of the results is given in Table 11. It shows that the
temperature shows a significant monotonic trend, but any monotonic trends at the significance level 5% is not
detected for the precipitation time series. Findings also show that both time series exhibit stronger monotonic
trends during the last 50 years in comparison to that over the last century. The magnitude of the trend for
temperature during the last 50 years is twice of that over the last century, and the magnitude of the trend reaches
four times for the precipitation time series. In other words, the hydrological cycle has changed more significantly
recently. This may have resulted from the greenhouse effect and from the rapid urbanization over the past several
decades. ' :

Table 11 Monotonic trend test for the last 50-year time series
t-test Mann-Kendall test
Bo B Te |Ho| Z B Hy
Temperature | 12.754 1 0.0226 | 5609 | R | 4419 | 0.0228 | R
Precipitation | 1706.49 | -3.070 | 1.786 | A | -1.690 | -2.9783 | A

It should be pointed out that, although the temperature time series is an average from six main
meteorological stations, these stations extend from the Southern to Northern Japan. The representation of the
data records should be sufficient for one to conclude that the increasing trend of the temperature in the last century
is not due to noise, but signals, and is most likely an indication of a broad scale response to a systematic
mechanism, such as the greenhouse effect and urbanization. However, unlike temperature records, both
parametric and nonparametric tests did not provide any positive results of the long-term monotonic trend for the
annual precipitation over 46 gauges from 1887 to 1999 and the last 50-year time series. It is unclear whether it
represents noise or signals, and it is still too soon to conclude whether the decrease in precipitation is the result of
a climate change or partially the result of natural climatic fluctuations.

REQUIRED NUMBER OF SAMPLES TO DETECT TRENDS

When data are sampled from a population, one may occasionally get a sample which is not representative of
the original population under study. For example, one may come to the conclusion from a sample that there is a
trend in the population but, in fact, there is none. ~ The rejection to a true hypothesis is called a type I error; «
is usually used to express the probability to make this type of error. Likewise, one may come to the conclusion
that there is not a trend from a sample taken from a population with a trend. ~ Accepting a false hypothesis will
cause a type Il error and p is usually used to express the probability to make this kind of error. The

confidence level is defined as the probability (1-a ) to get the right conclusion when there is no trend in the
population. The power of the test, vy, is defined as the probability (1- p ) to get the right conclusion when there
is indeed a trend in the population. The number of samples needed to detect the trend with a given magnitude at
the specified o and o values may be estimated by the power function of the test. The power function for the
classical t-test was given by Lettenmaier (12) as follows:



21

y:l—p:F(N,—T:_%V) ; (16)

where F() = the cumulative distribution function of the standard Student’s distribution with v = n-2 degtees of
freedom; Tl o = the quantile of the Student’s t distribution at significance level ¢; Ni = a measure of trend
-, ;

magnitude and is defined as (Berryman et al. (2))

lan

g e (monotonic trends) (n
V120,
or ,
i
N, _l e (jumps) L)
20 ‘

£

where Afl = the change in mean level over the entire length of series; U, and Y, = the means before and

after the jump occurs; n = the number of samples; and O, = the standard deviation of the noise term with the
zero of mean value. '

The power of the t-test against either a linear or a step trend may be estimated by equations (16) or the
number of samples required for detecting linear or step trends may be calculated by using specified power v and

N, - T“U/ . The Student’s quantile T1 o is a function of only the sample size and the significance level.
Hv -2

As the sample size becomes larger, the Student’s distribution approaches a normal distribution and equation (16)
may be further simplified as

’)’:F(N{ -—Z“__%)) (19)
where Z =) = the quantile of the standard normal distribution at non-exceedance probability (I-a/2).
2

In order to investigate the required sample size to detect trends, the relationship among different
parameters in equations (16), (17), and (18) should be examined. This may be quite complex due to t0o many
unspecified parameters. Only several special cases will, therefore, be studied in this paper. Let ¢ denote the
ratio of the change in the mean level over the entire period of series with a monotonic trend or the difference of

A -
the means before and after jumps to the standard deviation of error terms ({ % or ]'u‘ # % )
£ £

equations (17) and (18) may then be simplified as follows

N, = /% ) .0 (monotonic trends) (20)
N, :‘/; ’ % (jumps) : : @0

From equations (19), (20), and (21), some special cases can be easily examined. As an example; one
would detect trends where the change in the mean level over the entire length of series with monotonic trend or
the difference of the means before and after the jump equals to the standard deviation of error terms (0 =1). The
number of samples may then be estimated from equations (19), (20) and (21). . For example, it was found that
n=153 and n=55 for monotonic trend and jump when « and p equalto 0.05. The results for other cases are
given in Fig. 6. The graph shows that the required sample size for detecting the monotonic trend is greater than
that for detecting jumps under the same power and confidence level. If the power and confidence levels are set
to be 0.9 and 8 =1.2, a monotonic trend can not be detected within 72 years of sampling data set; however, with
only 25 yeas of samples the jump may be detected successfully.

With the combination of the analysis on the error items of both temperature and precipitation time series
and the subdivided times series from them, it is found that: 8 =0.55—0.85 for temperature series, and 6 =0.55—
0.88 for precipitation series. For both time series, step and monotonic trends could be detected with 50 and 130
years of record (n;+n,) under the power and confidence level of 0.90. Because some approximations were made in

or
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equation (19) and the actual time series did not satisfy the conditions of t-test approach, Fig. 6 may be used only
as a reference for detecting the plausible jumps or monotonic trends in the time series. These conclusions may
be useful for evaluating the impacts of climate change. Unfortunately, the number of samples for other test
approaches could not be estimated due to the lack of power functions involved.

500 —e— Jump (a=0.05,§=0.05)
AL =t Monotonic(a=0.05,§=0.05)
- -e-- - Jump (0=0.10,§=0.10)
Monotonic(e=0.10,§=0.10)
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Fig. 6 Changes of sample size with parameter 6

In order to further investigate the relationship between n; and n,, the sample sizes before and after a jump
— fm —2 [=2 — — 2 . .
occurs, let A = X, /x, , =35, /sl ,and X, =X, sl’ =57, equation (1) may be re-written as follows for a

given power of test,

|A-1x
>T, 22)
\/(n, -1) +n(n2 -h 1,1
neoon
Equation (22) may also be further changed to
[(n, =) +n(n, =D](n, +n,) <o 23)

mny(n—2)

2
u_/
Q= (24)
G T, e/

where Cv is the coefficient of variation for the former half of the time series. ~As the sample size becomes larger,
the Student’s distribution approaches a normal distribution, T!_O/v will tend to a constant, which is independent
5

in which

of the degree of freedom v, and equation (23) may be further simplified as

::f('l’naclr"nl) (25)
For any given A, 7, C,, and i, n, may be easily estimated. In order to analyze the relationship among 1,
1, Cy, ny, and n,, the estimated parameters A, 7, and C, for two time series are presented in Table 12,

Table 12 Parameters A, 7, and C, for two time series
Parameter | Temperature | Precipitation | Alternatives
A 1.02—1.07 | 0.92—1.07 | 0.90—1.10
7 057170 | 1.19—2.12 | 0.50—2.00
Gy 0.03-0.04 | 0.07—0.13 | 0.03—0.20

The alternative values simulated for parameters A, n, C, in this study, resulting from the combination
of both values from temperature and precipitation time series, is also given in Table 12, which are determined on
the basis of the estimated values of those parameters in the same table. As several of these special cases, Fig. 7
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shows the relationship between n; and n, for different C, at specified values of 1=0.9 and n=1.0. Obviously
the required sample size for detecting jumps will increase with the increase of C, value. When the previous
sample size n, is 50, the required size n, for detecting jumps will be less than $ if the C, of the previous time
series is less than 0.1. Otherwise n, would be 23 if the C, increases to 0.2. Large values of C, imply a greater
noise or larger fluctuation for the previous time series and the number of samples required will thereby be large.
Fig. 8 presents the graph showing the relationship among ny, n;, and 4 for specified values of 7 =1.0 and
C,=0.2. With the decreasing of 1 values from 1.0, i.e., the decrease of the magnitude for jumps, the required
sample size n, will increase dramatically. For example, when the mean value after jump occurs is 0.85 or 1.15
times of the mean value before trend occurs (A =0.85 or 1.15) and the previous length of the time series is 50
years, the jump will be easily detected once 8 years of new data is recorded. Otherwise, more than 20 years of
data will be needed if the change of the jump magnitude becomes smaller and A value is 0.9 or 1.1. Actually
this conclusion corresponds to the results in Fig. 7.
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Fig. 7 Changes of the required sample sizes with C, for 1=0.9 and 7 =1.0
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Fig. 8 Changes of the required sample sizes with 4 for n=1.0 and C,=0.2

Fig. 9 shows a more interesting finding. This graph shows clearly that the required number of samples is
quite insensitive to the changes of n for specified A =0.9 and C,=0.2. In other words, the change of the ratio
of variances for the time series does not help one to detect the jump. In conclusion, the required sample size for
detecting jumps will be more dependent on the changes of the mean values of the time series as well as on the
coefficient of variation of the previous time series, i.e. the magnitude of jump and the statistical features of the
time series, but it is much less dependent on the change of the ratio of variances of the time series.

Part of the results represented in Fig. 7 through 9 is further summarized in Table 13. It shows the sample
sizes n, required to detect jumps for X, =X, £k -s, with n,=50 years. For the temperature time series

examined in this paper, parameters 1 is 1.02—1.07, 7 0.57—1.7, and Cv 0.03—0.04 for the several possible
jumps detected, as shown in Table 12. For the precipitation time series, parameters A, 75, and C, are also
presented in the same Table. With the combination of these parameters and the above results, it can be deduced
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that on the basis of the last 50 years of record another 10 years or more longer of records will be required for
detecting new jumps for the temperature and precipitation time series.
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Fig. 9 Changes of the required sample size with 7 for n=0.9 and C,=0.2

Table 13 Required sample size n; for n;=50 when X, =X, £k -s,

2/.2 K

53 /s 2 1 (12 | 255 173
0.5 z2 |=z5|=z19| =32 | =53
0.6 =2 |=5|=19| =34 | 260
0.8 =2 | =z5|=21] =40 | =78
0.9 =2 | =5| =22 =43 | =29
1.0 z2 |z=s5|=z23| =47 | 2113
1.1 =2 | 25| =24| =51 | 2145
12 z2 | =5|=25] =57 | 2204
15 =2 | =zs5|=229] =87 | /
1.8 =2 |=zs5|=35|=179| /
2.0 =2 | =5|z40] / /

It should be pointed out that the conclusions made in this section may only be used for reference due to the
lack of strong mathematic basis on the assumption of t-test approach for the hydrological time series, as the results
obtained in the third section of this paper. Although these conclusions need to be further validated from the
point view of statistics, there is no doubt that some of these results may be helpful for the detecting of jumps or
monotonic trends in hydrological processes due to climatic change.

CONCLUSIONS

The feasibility of using hypothesis test techniques to identify the long-term changes of hydrological time
series due to climatic changes were investigated in this study. Parametric tests were limited by the assumptions
such as the normality and constant variance of the error terms. . Nonparametric tests did not have these additional
assumptions and were better adapted to the trend test for hydrological time series. Powerful nonparametric tests
include the Mann-Kendall test for monotonic trends and the Mann-Whitney test for step trends.  Application of
these techniques to two kinds of time series in Japan showed that jumps were detected in both temperature and
precipitation time series, and that the monotonic trend found in the annual temperature might be regarded as the
impact from climate changes and/or urbanization. On the contrary, the changes in precipitation may be within
the range of normal fluctuation and could not be definitively ascribed to climate change. While the temperature
revealed a strong increase over the last century, there seems to be no significant monotonic trend for precipitation
time series in Japan. More samples will be required before a definitive conclusion can be reached as to the
extent of the impact of climate change on precipitation. In other words, Japan seems to have become warmer
during the past century, but the evidence is insufficient to conclude that climate change has led to much or less
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precipitation, as found elsewhere in the world. As the number of observations increases, it is necessary to have
more effective techniques for detecting jumps or monotonic trends over a wide range of situations.
Mann-Kendall and Mann-Whitney tests could be two of these choices. The sample size required for detecting
step trends as well as its dependence on different statistical features of the hydrological time series was also
investigated. It is believed that the approaches presented in this paper as well as some preliminary conclusions
reached in this study could be useful tools for further examining the impacts of climate change on hydrological
processes. Finally, it should be pointed out that it is not easy to distinguish between jumps and monotonic trends.
1t is not clear whether both kinds of trends or only one of them have occurred, and further studies are required to
identify these trends more precisely.
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APPENDIX ~ NOTATION

The following symbols are used in this paper :

C, = Coefficient of variation;

€ = Extent of tie ; '

FO = Cumulative distribution function of the standard Student’s distribution;
Hy = Null hypothesis that trend has not occurred,;

H; = Alternative hypothesis that trend has occurred;

n = Number of observations;

ng, ny = Sample sizes before and after a jump occurs;

N, = A measure of trend magnitude;

T = . Correlation coefficient;

S = Mann-Kendall statistics;

Te = t-test statistic;

Ty = Sum of the ranks of the n, X values;

T]_O/ , = Quantile of the Student’s t distribution;

2’ .

X;, X, = Estimate of means before and after a jump has occurred,;
Z, 4, = Standard normal deviates;

Au = Change in mean level over the entire length of series;
-« = Confidence level;

B = Trend magnitude;

B, = Base level for linear trend;

B, = Linear trend magnitude;

b = Power of the test;

7 = Ratio of variance before and after a jump occurs;

0 = Ratio of the change in mean level;

A = Ratio of averages before and after a jump occurs;
41, 43 = Means before and after a jump occurs;

v = Degrees of freedom; and
o, = Standard deviation of the noise term.
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