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SYNOPSIS

Water surface displacements at various heights of the sheet were measured to find and to
investigate the region of initiation of the sheet oscillations, i.e., the incipient oscillations. The power
spectra show that a sinuous oscillation appears upstream and a super-harmonic transition occurs
downstream. To calculate the impedance of the sheet, periodic forced-vibrations were applied at the
weir crest. The frequency response of the sheet varied with position along the sheet and, therefore,
with the thickness of the sheet. Also, the geometry of the air space behind the sheet was confined
with a back wall of adjustable length. By varying the length of the plate, we observed pressure
fluctuations propagating upstream. From these results, an integro-differential equation was developed
to model the motion of the sheet. The numerical solution of this equation reproduces the tendency of
the amplitude of oscillation of the sheet to grow exponentially along the sheet and the resonance
between the sheet and the confined air behind the sheet. Moreover, incipient oscillations of the sheet
were characterized through a linear stability analysis of the Navier —Stokes equation.

1. INTRODUCTION

Oscillations of a sheet of falling water have been studied in relation to the nappe oscillations of
weirs and dams (e.g., Shwartz (1), Binnie (2) and Honma and Ogiwara (3)). Recently, civil and
environmental engineers have been concerned with the noise produced from these oscillations, and the
efficiency of momentum and heat exchanges between air and water. The prediction and control of
the sheet breakup height are also important for the design of fountains (Casperson (4)). Also,
stabilizing a plane liquid sheet is essential for film coatings (e.g., Weinstein et al. (5) and Luca (6)),
while disintegration of liquid is necessary for the mixing of fuel and gas (e.g., Lasheras and Hopfinger
-
Taylor ((8) and (9)) studied the dynamics of thin sheets of fluid, and discussed the free-edge shape
of the liquid sheets and their disintegration based on the surface wave dynamics. Research in this
area has been extended to the investigation of liquid atomization problems (e.g., Mansour and Chigier
(10)), where shear stresses from air and surface tension govern the breakup regime (Lasheras and
Hopfinger (7)). On the other hand, a falling liquid sheet is gradually accelerated by the gravitational
force, and then both shear stresses between air and water and pressure fluctuations propagating
through air influence the sheet motion (Binnie (2) and Kyotoh and Kase (11)), thus resulting in large
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amplitude oscillations. In these studies, the sheet is abruptly amplified at around two meters
downstream from the weir crest and the wavelength of sheet oscillations is about 60 cm (see also
Aizawa and Shinohara(12)). Since the flow is non-uniform and convective, i.e., the thickness and the
falling velocity change roughly from 2 cm to 1 mm and from 3 cm/s to 6 m/s respectively, it might be
difficult to decide the origin of the instability leading to such a large amplitude sheet oscillation.
Therefore, in the present study the displacement of the water sheet is measured starting from the point
of fall down to the breakup point to observe the spatial evolution of the oscillation.

The mechanism of liquid sheet instability and breakup has been studied theoretically by numerous
authors. Hagerty and Shea (13) found that only two types of waves are possible on a flat liquid sheet,
i.e., sinuous and dilational modes. Lin (14) showed that a viscous liquid curtain becomes unstable
when the Weber number of the curtain flow exceeds 1/2.  Luca and Costa (15) studied the instability
of a spatially developing liquid sheet by using a multiple-scale perturbation analysis. - They showed
that the sinuous mode is locally absolutely unstable below a critical Weber number, and that it is
locally convectively unstable if the Weber number exceeds this critical value. = Weinstein et al. (5)
derived approximate equations that govern the time-dependent response of a two-dimensional liquid
curtain falling under the influence of gravity and subjected to ambient pressure disturbances. As
aforementioned in regard to the falling-water sheet, pressure fluctuations due to sheet movements and
shear stresses from ambient air should be considered in the modeling.

The present investigation was undertaken to address some of the questions raised above. In
section 2, experimental results obtained from “free falls”, “free falls with vibrations”, and “free falls
with a back wall”(with or without vibrations), are presented. In section 3, a model which describes
the motion of the two-dimensional sheet is developed, and shear waves which were observed in this
study are characterized by a linear stability analysis of the Navier —Stokes equations.

2. EXPERIMENT

2.1 EXPERIMENTAL SETUP

40 ¢ Oscillator MO

The experimental apparatus is illustrated in Fig. 1.

The free fall of the water from the weir is confined

between two side walls, one being transparent and another

a black-painted ply-board. The weir has a width of 40 cm

and a height of 40 cm. The water falling from the weir to

a bottom tank is circulated with a centrifugal pump.

The following equipment was used in the
experiments for collection of data.

(a) A high-speed video camera is used to capture images of
the falling stream. The camera records 186 frames per
second, which has a maximum recording capacity of
256 frames per second in normal mode.

(b) Transverse motion of the water sheet is monitored with
a laser-beam displacement sensor. The sampling time
and the amount of data to be recorded can be set
independently. Some whitening material is mixed in the
water for proper visualization and acquisition of data. X

(c) A system to apply a forced vibration is installed at the
weir tank near the spillway.
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Fig. 1 Experimental setup

2.2 EXPERIMENTAL RESULTS

Experiments were performed for mainly three cases, “free falls without forced vibrations”, “free
~ falls with periodic forced vibrations” and “free falls with a back wall”. For each set of experiments,
the displacement of the water sheet was measured with the laser displacement sensor starting from the



79

point of the fall in intervals of 10 cm down to 250 cm from the top.  The footage taken by the high-
speed video camera was used to find the wave period and celerity, to estimate the breakup point, and
also to study other structural features of the phenomena.

2.2.1 FREE FALLS EXPERIMENT

Figure 2 shows the power spectra of the sheet displacement at 0 cm, 120 cm and 220 cm from
the weir crest for two discharges, Q = 0.130 m*/min and 0.189 m’/min. The spectra are plotted from
3 Hz to 50 Hz. Incipient oscillations, i.c., the oscillations which appear first along the sheet, are
observed at x = 120 cm, and these frequencies are 10 Hz in Fig. 2(a) and 15 Hz in Fig. 2(b). Our aim
was to find the origin of the unstable mode related to the breakup frequency around 30 Hz, which was
calculated from the displacements of the wave crests and troughs, as shown in Fig. 3. The sub-
harmonic frequencies of 10 Hz and 15 Hz suggest that a super-harmonic bifurcation might occur
somewhere between x = 120 cm and the breakup region. In a forced-vibration experiment discussed
in 2.2.2, the upper part of the sheet does not respond strongly to these high frequency oscillations.
Therefore, it was concluded that the instability leading to the sheet breakup is mainly caused by events
occurring near the breakup region.

The length and time scales of the sheet breakup are measured from the video camera images as
shown in Fig. 3. The frequency was found to be around 30 Hz and the corresponding wavelength is
roughly 60 cm. Here, the wave celerity is taken to be approximately equal to the flow velocity. The
figure shows that the wave celerity increases when the discharge decreases.
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Fig. 2 Spatial dependence of the spectra of sheet oscillations
(a) h, = 2.12cm, Q = 0.130 m*/min, (b) he = 3.47 cm, Q = 0.189 m*/min
(h. is the water depth above the weir.)
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2.2.2 FREE FALLS EXPERIMENT WITH
VIBRATIONS '

Forced vibrations of roughly 1 mm in
amplitude were applied at the water surface near the
weir crest. Figure 4 shows the logarithm of the
sheet amplitude normalized by that at x=0 cm for
various forced frequencies. The figure indicates
that the higher frequencies such as 15 Hz and 20 Hz
have greater influence on the downstream portion of
sheet, i.e. the thinner section of the sheet. The
growth rates of all the imposed frequencies are
exponential. The imposed frequency of 15Hz has
the highest growth rate near the breakup point.

2.2.3 FREE FALLS EXPERIMENT WITH
A BACK WALL.

In order to reveal the effects of the air confined
behind the water sheet, the length of the back wall
was changed from 40 cm to 90 cm and then to180
cm. Note that the weir height is 40 cm (see Fig. 1).
Figure 5 shows the root mean square values of the
sheet’s amplitude of oscillation. As the wall length
increases, the amplitude of oscillation increases, and

an amplitude modulation appears especially well-

pronounced for the 180 cm wall. This modulation
is caused by a prominent water advancing upstream
under the influence of pressure fluctuations of the
confined air.

2.2.4 OTHER EXPERIMENTAL RESULTS

Figure 6 shows a typical side view and the
front view of the falling water sheet under forced
vibration. The growth of a wave is clearly seen in
the side view. The front view shows how the
water sheet starts to detach from the side-walls
upstream of the breakup region, thus amplifying the
sheet amplitude. Further downstream, the
transverse and longitudinal structures (vortices and
waves) become more prominent. Ligaments
originating from these longitudinal and transverse
structures break up into water drops after the water
sheet is disrupted. ‘

3. THEORETICAL DISCUSSION

The prediction of frequency of the waves
leading to sheet breakup becomes a difficult task,
mainly because the flow is of non-uniform and
convective nature. Thus, the length scales change
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downstream, and the fluctuations generated upstream
propagate downstream, and vice -versa.  The
physical factors affecting the motion of a falling
water sheet are summarized as follows:

(A) The propagation of pressure fluctuations under
the influence of confined air.

(B) The shear wave instability of air flow induced by
the falling water.

(C) Surface tension effects on the water sheet.

Factor (A) is predominant if air is confined between
the water sheet and the side and back walls. Factor
(B) is significant if the height of the fall is large.
Factor (C) is predominant at smaller length scales of
the fluid. Though all of the above factors are
concermned with sheet oscillations, only the Kelvin-
Helmbholtz instability, which is related to factor (A),
and the shear wave instability between air and water
will be the focus of this section. In addition, to Side view Front view
facilitate the analyses in the present section, we will
study “a sheet of vertically falling water”.

Fig. 6 Typical side view and front view of a
free fall under forced vibration

3.1 THEKELVIN-HELMHOLTZ INSTABILITY (5’0130 m/min, the frequency is 15 Hz)

When the air in the front and back of a falling water sheet is enclosed by vertical walls and
upper and lower boundaries, the effect of a local sheet displacement influences the other parts of the
sheet. Here, the flow is assumed to be irrotational because we want to consider only the global
motion of the sheet, and thus shear waves between the water and air are ignored. In order to apply
the model derived in the present study for various boundary geometries, the equations for the water
sheet and air are derived separately. :

3.1.1 GOVERNING EQUATIONS
The governing equations for water are the Laplace and pressure equations given by
Ag, =0
M

2 2

d

o0, 1(90.\ (98] B
ot 2|\ ax dy £,

where, A denotes the two-dimensional Laplace operator with variables x and y,and, ¢, and P,
are the velocity potential and pressure, respectively. The subscript “w” denotes the water sheet; p,,
= the water density; g = the gravity acceleration; ¢ = the time and x and y = the spatial coordinates,

where x is taken positive vertically downward. The boundary conditions for the water at the
interfaces between the water and the air are pressure and kinematic conditions given by

P, +Sk, -P, =0 ; a9, 99
*  ax ax  dy o)

at y=n, a=rlt
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where the suffix "a" can be "#" or "¢", which denote the right- and left-hand sides of the water
sheet, respectively. = Py, is the air pressure at the interface; S = the surface tension coefficient; &,

= the interface curvature; and 77, = the displacement of the water sheet.
In the present study, we consider sheet motions in which the vertical scale is much greater than

the horizontal, thus resulting in the scaling

0@/ a&x)/0(@/dy)=¢<<1 : ©)

Moreover, it is assumed that the acceleration of the liquid is of the order of gravity (Wemstem et al.
(5)). Under these assumptions, the series expansions of the unknowns with respect to & =¢> are

Mo = N (851) + 01, (8X,1) + ..
P, = B (&0, y,) + 0, (ex,y,t) +...
©)

PSa = SaO(Ex’t) + 6‘PS¢11(Ex’t) +...

S=¢’

Note that these unknowns depend on the slow variable &x and that the displacement 7,, is of

order unity, which means the amplitude of the oscillations are finite. The lowest order equations
obtained from the series equations are

Y. 9,
S 4 (U Y )=0 Sa
_s+—.x) (52)
U U
vy U (o - 5b
pw(————at . ax) (o - p.)g (5b)
d 0 %Y,
20XV, )+ (20 XUV, )-25 "5 = By = Fiy
(59
vV, = 9%, +9Z'f~Uw
ot ox
where
34, 1 1
U, = oy Xy -na) 5 Y =200 +10) (5d)
ax 2 2

Equation 5a reflects the conservation of volume, Eqgs. 5b and 5c are the momentum conservation laws
for the vertical and horizontal directions, respectively. These equations constitute a chain system;

ie., U, is determined from Eq. 5b alone, Y, is obtained from Eq. Sa without solving Eg. 5S¢, and
then Y, can be solved after these calculations. Note that the pressure Py, becomes a function of
the interface displacement 7, .
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To determine the pressure, the Laplace equation for the
potential function for the air flow should be solved under the
kinematic boundary conditions, i.ec., the continuity of the
normal velocity at the interface and the non-penetrability of
the surrounding fixed boundaries. In the first stage of this
study, we considered the motion of a water sheet in which the

-.«....,.._..&,,j‘-/
<y

displacements from the vertical plane are small, and the h
region of confined air is rectangular (see Fig. 7). Then, the i
potential function for the air flow is determined from i y=
) i
Ag, =0 i
v i !
6¢a1 = ana() . a¢al[ =0 . ‘( * s
| a o oy ! . . F}g. 7 Schematic picture of the
- r=Sa ©) side view and the geometry of the
War| _g . a] _g vertical falling water
0x x=0 | 0x x=h

where L, is the position of the wall (L, >0, L, <0 in Fig. 7), and % is the height of the walls
(see Fig. 7). Note that the sheet thickness relative to the horizontal distance from the back wall to the
water surface has been ignored since Y, << 1La| . After obtaining the potential function by applying

the method of separation of variables, the value of the potential function ¢g,, at the interface is
represented by the integral

B (0,8) = 2 /G, (x /1, %  B) =12 ’7“" (,¢)dx

na ™

X
- ~—~cos-—

x/h x/h Z , a=rd
tanh( )

which is applicable for any h/L_. Here, the constant pressure difference between each side of the

sheet has been ignored. The pressure Py, at the interface is calculated from the pressure equation
by differentiating the potential shown in Eq. 7 with respect to ¢, which leads to

Py (c,t)= =20, {16, (x/ 1,5 /1) fa”(x,t)dx, a=rt ®

Finally, Egs. 5a, 5b, 5¢ and 8 constitute the closed system of equations for small amplitude motions of
the water sheet.

3.1.2 ANALYSIS OF THE SHEET OSCILLATIONS

Equations 5a and 5b can be solved analytically by using the characteristic method, which leads’
to
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X = g—zo(r —r)z +ue0(r)(t —r)

U, =gt -7)+u,(z) ©)

ue()(t) eo(T)
%= go(t”7{+ueo(7)

where g, = (1— p. 1P, )g, ueo(r) and yeo(r) are tespectively the values of U, and ¥, at x =0
and ¢ =17, and7 is the intermediate parameter ranging in value from O toz.  Since the sinuous mode
(Hagerty and Shea (13)) of the sheet seems to be realized in the present experiment (see Fig. 6),
U, (r) and y,q (r) are taken to be independent of v. Then, U, and Y, are represented by a
function of x if ¢ is eliminated from Eq. 9. Substituting these values into Eq. 5¢c, the governing
equation of Y, with respect to the following non-dimensional variables (Eq. 10)

‘ X g() zue()ye() ue() S
Xy = b, =S g, = Uy, == Wy s ————— (10)
h h hyg.h V280 2P U0y 08 oM
is written as
8%y, 8%, 3%, v,
2\/xn +u80n2(\/xn +lg,” —«/in) 0 +2\/§\/x,, +lyg,” o
ox,, 0t,0%, o, ax, (11)

2

s 1 ’ 3y,
= 2\/—2_ Xy t ue(’.ln2 :Iy—f() {Gr (xn sXnl )‘ th (xn s Xnf )}—a—t—;" (xnl sty )dxnl
: n

n

where, g, is the non-dimensional discharge for unit width and y is the density ratio defined by
P./p,. The effect of air on the water sheet is represented by y /g, , which is of order unity for a

small discharge or for the large height 4 even if the density ratio is low. Though Eq. 11 is linear, it
has several interesting physical features: the flow is spatially non-uniform, local disturbances
downstream propagate upstream because of the integral term of Eq. 11, and the principal part of Eq. 11
changes its type from hyperbolic to parabolic at the point where the coefficient of the second order
derivative of Y, is identical to zero.

We will focus on temporally harmonic motions, so the solution of Eq. 11 is
Y, (x,.t,) = Ay, (x, ) (12)

where, Q is a non-dimensional angular frequency. Substitution of Eq. 12 into Eq. 11 leads to

d?4 dd
2\/x,, Fig,” (\/x,, Fllgg,” - «/EW,,) S ’;’” + (1 + Z@Q\/x,, U, ) dxym -Q%4,,
n n (13)

[ 1
= “2‘/5 X, + ue(]n2 —C_].y_ Q2f0 {Gr (xn »Xnl )- G€ (xn s Xnl )}AYm (xnl )dxnl
n

The boundary conditions for Eq. 13 should be defined depending on the type of partial differential
equation (abbr. PDE) so that the system becomes well-posed. Since the type of PDE is categorized
by the position of the singular point, x, = x,; satisfying
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VXus +ue0n2 —ﬁWb =0 . 14

where, the second order derivative in Eq. 13 disappears if it is not infinite at this point, the boundary
values for Eq. 13 should be imposed on

dA

and (0), for x, <0,

3 Ym
(1)4,,(0) and 22
(ii)4,,(0) and 4,,(), for x,>1,
(i) A4y, (x,5), for 0<x, <1.

In the case (iii), the value of A4,,(x,s) forces a dependence of Ay, (0) on dA,, /dx,(0) so that a

smooth solution exists. A similar situation occurs for steady flow when a constant pressure
difference is applied to the sheet (Finnicum et al. (16)).

Since W, <<u,,, / V2 in our experiment, it is reasonable to put W, ~0. Consistent with the
discussion above, the two boundary conditions

A, (0)=0 and %ﬁ"—(o)ﬂ , ' 15)

n

are imposed in the present study. To facilitate the numerical calculations, Eq. 13 is transformed into
an integral equation satisfying these boundary conditions as follows:

1
AYm (xn )" re 2J.OAYm (an bf (xn »Xng )dxn.l = F(xn )a s 2‘/57 /qn (163)

where, the kernel G f and the external force F are given by

% 0, A
Gf (xn ’an ) = —f() a}::[ (xn ’xnl )Gm (xnl ’an )dxn[ (16b)
F(xn ) = zueﬂnx(xn 70) ) (160)

for the functions x and ém defined by

X(xn :rxn]): (— \/xn +ueﬂn2 + \/‘xru' +ue0n2 )
><exp{i«/§(—\/x,z +u,‘,0"2 + \/xn, + ueo,,2 )Q}

ém (‘xn] sXny ) Ef:"I {Gr (xnl’xn.f )' G, (xni s Xy )}dxnl (16¢)

(16d)

where partial integration has been achieved for the calculation of the kernel G, to remove the
singularity of the kernels G, and G,. The parameters governing the present phenomena are the

aspect ratios 4/L, and h/L,, the non-dimensional frequency Q, the initial velocity u,,,, and the
parameter [' representing the effect of the air.
To see the oscillations of the water sheet observed in our experiments, the non-dimensional
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Resonance curve me=1.81; he/h=0.005
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parameters presented in the previous paragraph are estimated in terms of the water depth /s, above
2y,0=h, , L =Tu,/2 and

T =.2h/g, ,where T is the time for a water particle to fall from the weir to the bottom, we have

e 2

the weir crest.  Using the rough estimates u,, ~./g¢h

3/2

q, = ZYeoueO _l}g_ cu ‘_. U ~ ..I:lf_.)
n h goh h ’ eOn IZgDh 2h

1/2

an
Lr ilf_ 1/ 2, _L-e_ e
ho\2n) " h
As aresult, the solution of Eq. 5a is completely determined from %,/4 and Q.
The Schwartz criterion (Schwartz (1)) for resonance gives
Q/V2 =nlmg +1/4),  mg =0, 1, 2, .. (18)

Hence, in the following, m is used as the non-dimensional frequency instead of Q. Figure 8
illustrates the resonance of the water sheet for various values of A,/ by depicting the maximum
amplitude of the water sheet as a function of m,. The peaks are attained at non-integer points along
the abscissa. The sheet profile for A, /h =0.005 and m, =2.2 is plotted in Fig. 9 to see the effect
of air on the water flow. The displacement of the sheet is amplified because of the Kelvin-Helmholtz
instability, and the modulation of the amplitude occurs due to the waves propagating upstream.
However, the maximum amplitude will not increase monotonically with respect to I' since the added
mass of air increases when I" becomes larger, which suppresses the amplification.

The frequency of naturally occurring nappe oscillations might be selected among the resonance
points shown in Fig. 8. However, the resonance frequencies in nature are not known and, of course,
neither is the selection mechanism.,

3.2 SHEAR WAVE INSTABILITY

In the present section, we investigated the shear wave instability of vertically falling water in an
infinite region with no boundary, i.e., |L,|, |L,| &k — « (see Fig. 7).




87

3.2.1 NONUNIFORM STEADY FLOW

First, the solution of the nonuniform steady flow is determined by applying the boundary layer
approximation to the Navier-Stokes equations. The equations of this approximation for the water and
air are

w0 19a
o0x ay (199)
ou ou 3’u,
pufu, =4y, ==, —— (0, - p,)g =0 (190)
ax dy dy :
uy Ve _g (20a)
ax - dy ,
a? ‘
pufu, Loy, He)_y 2 te g (20b)
dax ay ay

where, u and v are respectively the flow velocities in the x and y directions, u is the kinematic viscosity,
and the subscripts “w” and “g” indicate the variables for the water and air, respectively. The
boundary conditions at the interface between the water and air based on this approximation come from

continuity of the flow velocities and tangential stress, and that of the free surface;

] F) 3 ~
W, =ty V=V, 3 = u, “e s ou, ey, oat y=n, (21
ay ox

Since the boundary layer thickness of the water flow, except in the near field close to the exit slit is
large compared to the thickness of the water sheet, the variables for the water sheet are approximated
by the truncated series as follows:

i, (5, y) =11, (0) 4y, (x) 4y, (x)
(22)

Vw (x’y) = vw() (x)+ val (x)+ yszZ (x)+ y3vw3 (x)
Now, to get the solution of the steady flow possessing symmetry with respect to the x-axis, i.e.,

n, =-n,=Y, uw(x, y) = uw(x,—y) and v, (x, y) = —vw(x,-—y), the substitution of Eq. 22 into Egs.
19a, 19b and 21 gives the following relations:

v’ q

Ys uw + L uw = 233

( 0 3 2) 5 (23a)

du,,
Putbno ™ g ~(o, - p.)g ~26,,, =0 ~(23b)
dy,

Uglyay, = Hwo +}732uw2 5 Valyay, =—d—x‘-(uw0 +Yszuw2) (23¢)
u u

; =—Yu,, (23d)
4 y=¥; 21,

where, g is the discharge of unit width from the slit. Since the system of Egs. 20a and 20b is a
parabolic type, two boundary conditions at y = Y, and one boundary condition at x = (0} are necessary
and sufficient to determine the solution. Assuming that the solution of the air-flow equations given
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by Egs. 20a and 20b is obtained under the boundary conditions given by Eq. 23c and u“]x:() =0, the
derivative du, /dy| _, is a function of ¥, up and uyz. Therefore, Eq. 23d is one of the governing

equations for the three unknowns Y, uwp and u,;. As a result, Egs. 23a, 23b and 23d completely
determine these three unknown variables. ‘
Equations 23a, 23b, 23c and 23d can be simplified by estimating the magnitude of u,,, from Eg.

23d. Assuming that g ~u,Y,, ie., u,, >> Y.’u,,, in Eq. 23a, Eq. 23d leads to the following
estimate:

2
U, ~ﬁa__1__i£*sz‘_&_ R S KX ; R, Eﬁ*ﬁ 24)
luw Rew 6a X pauwﬂ tuw
where, &, is the boundary layer thickness of the air. By applying the estimate given by Eq. 24 to Eq.

23a, the validity of the assumption g ~u,,Y; Is justified as indicated in the following estimate:

1/2

2 1/2 1/2
Lt "wu(i’a_) (i‘—) Rew“z(fi) <1 25)

qu pw Auw x

noting that, Re, = O(10) in our experiment. Therefore, Egs. 23a, 23b, 23c and 23d can be reduced
to the following equations:

Yoty =7 (262)
du,,
Pt == (0, = p,)g =0 (26b)
dy,
ualy,ys =l Valygys = dx Uy (260)
L . Yu,, (26d)
W |y,  2H,

Substitution of the solutions of Eqgs. 26a and 26b into Eq. 26¢ gives the boundary conditions for Eqs.
20a and 20b. '

A change of the coordinates from (x,y) to (x, y -—YS) and the introduction of the stream
function w, for u, and v, reduce Egs. 20a and 20b to

I, v, 9y, 3%, _p, 3,

A I O R
27
oY, Iy,
a ="’(§;— > a = ——é;_

Here, the boundary conditions given by Eq. 26¢ for Eq. 27 become

=28, U, ¥,|,_, = const. (28)

Y=0

oy,
ay
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Note that the stream function representation of Eqs. 20a and 20b is invariant under translation of the
variable y.  If we consider the region of the flow field in which 2gx >> u,,” is satisfied, which is
valid in the flow field except in the narrow field close to the weir crest because u,, ~ /g h, for the

weir flow, the solution of Egs. 27 and 28 is represented by the Falkner-Skan similarity solution
(Shlichting (17)):

4 Iu X 3 p uw()
- a ; =}/ Z e wo ; wo = 2
Y, =ty 3————pauw0f(§) E=Y [TE s V280x
. (29)
3 2 2
d{_,_fd]:__gfd_fi =0 ; f!_0=0; L/l =1 LA =0
g’ "7 ag* " 3\ag & dE|., dé|,..

Therefore, the Falkner-Skan similarity solution (Shlichting (17)) and the parabolic velocity profile are
respectively used for the steady flow in the air and in the water. It should be noted that this was
checked numerically, and that the air-flow is well-approximated by the above solution (Kyotoh and
Kase (11)).

3.2.2 LINEAR STABILITY ANALYSIS OF LOCALLY UNIFORM FLOW

Although the flow obtained in 3.2.1 is in reality spatially nonuniform, we consider regions in the
flow small enough, such that, the flow may be considered locally uniform and parallel. As a result, a
temporal linear stability analysis of the Navier-Stokes equations can be applied to this two-phase flow.
In order to calculate the cigen-values for the temporal growth of disturbances, the Riccati equation
method (Davy (18)) was applied in this study. '

Figure 10 shows the wavelength and frequency of the unstable sinuous mode of the flow
corresponding to the velocity distributions of the sheet of falling water at x = 100 cm and 150 cm.
Here, surface tension and the viscosities of air and water were incorporated in the calculation. The
mode depicted in Fig. 10 is not the surface wave mode, for which the frequency is much higher and the
wavelength is shorter, but the shear wave mode.  As the height of the water sheet increases from 100
cm to 150 cm, the frequency of the unstable mode decreases and its wavelength becomes longer.
Looking at the spectra of Fig. 2, the peak value at x = 120 cm is around 10 Hz or 15 Hz for A, = 2.12
and 3.47 cm, which are approximately the same as the critical frequencies predicted by this analysis.

Though the theoretical predictions seem to be fairly accurate in representing the situation, many

Unstable mode: he = 2.12cm Unstable mode: he = 3.47cm
20 20
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0 0

0 20 40 60 80 100 0 20 40 60 80 100
Wavelength (cm) Wavelength (cm)
Fig. 10 Wavelength and frequency of the unstable sinuous mode
(Diamond and cross symbols show the values atx = 100 cm and 150 cm, respectively.
The water depth above the weir-crest is denoted by 4,.)
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unstable modes exist in the upper region of the sheet as well, according to our locally uniform-flow-
approximation, and these have higher frequencies. Also, the frequency around 30 Hz leading to the
sheet breakup is not explained in the present study. In order to understand the breakup, the nonlinear
stability of nonuniform flow needs to be examined.

4. CONCLUSIONS

The stability of a sheet of falling water from a weir was studied both experimentally and
theoretically. The free-fall experiments described in section 2.2.1 indicate that a supercritical
transition of the sheet oscillations occurs downstream and the amplitude of oscillation increases
exponentially. The forced-vibration experiments described in section 2.2.2 siggest that the frequency
response of the sheet, as measured by the transverse oscillations of the sheet, varies with position along
the sheet and therefore with the thickness of the sheet, with the sheet resonating at higher frequencies
in the thinner section of the sheet, i.e., at greater distances from the weir crest. This suggests that the
instability leading to the sheet breakup might be primarily caused by events occurring near the breakup
region even though some strong transitory oscillations are seen further upstream. The experiments
with the back-wall in section 2.2.3 indicate that, the air confined between the walls and the water sheet
causes a modulation of the sheet amplitude.

Taking into account the observations in the back-wall experiments, a model describing the
motion of the sheet in the longitudinal and normal directions for the back-wall case was developed
assuming that the flow was irrotational. This model explains the amplification of the sheet
oscillations and the modulation of the amplitude of oscillation caused by the propagation of pressure
fluctuations under the influence of the confined air. In addition, incipient oscillations of the sheet
observed in the free-fall experiments, which could be shear waves appearing on the sheet, were
characterized in section 3.2 by using a uniform-flow model subjected to a linear stability analysis of
the corresponding Navier-Stokes equations. The linear stability analysis of the uniform-flow model
reveals a critical frequency of local oscillation of the sheet beyond which an oscillation induced by
shear waves will grow. As for the region around 120 cm below the weir crest, this critical frequency
of local oscillation agrees quite well with the measured frequency of local oscillation of the actual non-
uniform sheet, thereby providing a mean for predicting the frequency at the region of onset of
oscillations of the sheet of water, i.e., the incipient oscillations. Below this region, the dominant
frequency of the measured oscillations increases to two or three times the frequency of the incipient
oscillations, so it is not yet possible to predict the region of onset of breakup. However, this
qualitative agreement provides evidence that by extending our model by incorporating global effects,
including perhaps nonlinear dynamics, we may, in the near future, be able to adequately characterize
theoretically the growth of oscillations and the region of onset of breakup of the sheet of water.
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APPENDIX — NOTATION

The following symbols are used in this paper:

Ay, = complex amplitude of the displacement of the water sheet;
f = dimensionless stream function defined by Eq. 30;

g = gravity acceleration;

g6 = (1-p./p.)8;

G, = Green’s function defined by Eq. 7;

G, = Green’s function defined by Eq. 16b;

G,,G, = Green’s functions G, for o =r and £;

G, = Green’s function defined by Eq. 16¢;

h, = water depth above the weir;

h = height of the back-wall from the weir crest;

my = dimensionless frequency defined by Eq. 18;

L, = position of the side walls;

P, = pressure of the water;

F,, = air pressure at the interface;

Py s Pooy = coefficients of the terms in the series of P, withrespectto &;
q = discharge of flow from the unit width of the exit slit;

q, = dimensionless form of ¢;

0] = discharge from the weir;

R,, = Reynolds number of the water at the exit slit defined by Eq. 24;
s = surface tension coefficient;

t = time;

t = integral variable of ¢;

t, = dimensionless form of £;

T = time of free fall;

u, = air velocity of the viscous flow in the x-direction;

U, = flow velocity at the exit slit;

u, = water velocity of the viscous flow in the x-direction;

U5t 51, =coefficients of the terms in the series of u,, withrespectto y;

U, = water velocity of the potential flow in the x-direction;

v, = water velocity of the viscous flow in the y-direction;

v, = air velocity of the viscous flow in the y-direction;

Voo VisVes = coefficients of the terms in the series of v, with respectto y;

v, = water velocity of the potential flow in the y-direction defined by Eq. 5¢;
w, = Weber number defined by Eq. 10;

x = distance from the weir crest downstream;
x = integral variable of x;

X = dimensionless form of x;

Xpr s X,y = integral variable of x,;

X, = position of the singular point defined by Eq. 14;



y = horizontal distance from the vertical plane;

Yeo = half thickness of the water sheet at the exit slit;
Y, = lateral displacement of the water sheet;

Y, = half thickness of the water sheet;

a = coefficient, i.e., either "r" for the right

or "/"for the left hand side of the water sheet;
y = p,/p, =density ratio; ;
r = parameter representing the effect of the air defined by Eq. 16a;
d=¢ = small parameter representing the non-uniformity of the flow;
6 = boundary layer thickness of the air;

A = two-dimensional Laplace operator;

£ = ratio between the length scales of the flow in the x and y directions;
1, = displacement of the water sheet;

Nor Mt = coefficients of the terms in the series of 7, with respectto
K, = curvature of the interface; ‘

©, = viscosity of air;

“, = viscosity of water;

3 = similarity variable defined by Eq. 30;

0. = water density;

O = air density;

T ‘ = intermediate parameter ranging in vatue from 0 to ;

P = velocity potential at the interface;

P, = velocity potential of the water sheet;

B> Pt = coefficients of the terms in the series of ¢, with respectto &
X = function defined by Eq. 16d;

v, = stream function of the air defined by Eq. 28; and

Q = dimensionless angular frequency, respectively.
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