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'SYNOPSIS

Studies were conducted using Direct Numerical Simulation (DNS) with an upwind difference
scheme and regular mesh to investigate its applicability to complex boundaty and high Reynolds number
flows. A one-dimensional linear advection equation was calculated by using the upwind scheme in
combination with time marching schemes. The results showed that a Sth-order accurate upwind scheme
for the convective term and the 3rd-order Adams-Bashforth method for time marching was the most
accurate and stable among the combinations investigated. Furthermore, fully developed turbulent flows
between parallel plates were analyzed to clarify the influence of various difference schemes on
computational accuracy of convective terms. Comparisons with the spectral method revealed that the
high-order upwind DNS is sufficiently accurate with respect to turbulence statistics.

INTRODUCTION

Advancements in the understanding of chaos reveal that many physical systems which show
irregular temporal and spatial behavior are governed by deterministic equations. =This means that fluid
phenomena can be reproduced quantitatively by solving Navier-Stokes equations[18]. Numerous attempts
have been made in recent years to simulate turbulent flows through numerical analysis[6]. Among the
various methods proposed thus far, direct numerical simulation (DNS) by far excels others in terms of
reliability and analytical accuracy. Early attempts at applying DNS often used the spectral method, but
this approach does not make use of all the advantages of DNS. In recent years, therefore, attempts have
been made to use finite difference schemes because of their applicability to more complex boundaries.
Although most of these attempts are based on second-order accuracy, there are some that have been shown
to be as accurate as the spectral method[17].

A common method of calculating for high Reynolds number flows is to use a pseudo-direct method
using a third-order upwind difference scheme[S]. Because of its high numerical stability, schemes of this
type are widely adopted for general-purpose software intended mainly for practical calculations like flows
around an arbitrarily shaped body. One of the reasons for this trend is that in the analysis of high
Reynolds number flows, the use of a central difference scheme tends to lead to nonlinear instability, in spite
of high-order accuracy, because leading truncation error terms become odd-order derivatives, thus making
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it necessary to use a numerical filter such as an upwind difference scheme to remove high waver number
components. However, the influence of numerical viscosity of such a scheme on solutions has been
pointed out[8], and many studies have already been conducted to investigate this matter.

In the area of turbulent flow analysis, Rai and Moin[16] proposed a fifth-order upwind difference
scheme. Miyauchi et al.[12] applied the scheme to homogeneous isotropic turbulent flows and reported
that their results agreed well with laboratory experiments and spectral method results. DNS combined
with upwind schemes, therefore, may become applicable to more practical problems. In view of the
difficulties associated with the analysis of high Reynolds number flows, which are important in engineering,
it is necessary to use some kind of numerical filter, such as upwind difference schemes, while considering
its influence. Therefore, investigating the influence of upwind difference schemes on the accuracy of
solutions is very important from an engineering standpoint .

In this study, we consider one-dimensional linear convection problems to show the importance of an
appropriate combination of an upwind difference scheme and the temporal discretization method.
Quantitative evaluation is also taken on characteristics of the DNS method combining an upwind difference
scheme and a regular grid applied to flows between two parallel plates -- a typical problem used for
verification of applicability of the DNS method to wall-shear turbulent flows.

SELECTING A COMBINATION OF UPWIND DIFFERENCE
AND TIME ADVANCEMENT SCHEMES

Just as solutions diverge because of aliasing errors if a nonconservative central difference scheme is
used, stable solutions cannot be obtained unless a special preventive measure is taken with respect to the
convection terms, which are nonlinear. The upwind difference method is a means of removing such
instability. In this section, the influence of the coupling of an upwind different and a time advancement
scheme on solutions is investigated by applying it to the one-dimensional linear convection problem:

ou Ju

—+U=—=0, (U=l,~-w0<x<®)
ot ox
- - M
1-cos(2x Jx),‘(szggzr_)
u(x,0) = 2 2 2
0 , otherwise

Adequacy of numerical viscosity of an even-order derivative type, in addition to amplitude and
phase errors, is examined by adopting a function that is smooth for the initial value but has discontinuous
even-order derivatives at 7 /2 and 37 /2 [2]. As the initial values of this problem are conserved, an
equally spaced grid (V=63) is used in the analysis, and numerical and exact solutions at the time of return
to the original position after m cycles are compared by adopting periodic boundary conditions at both ends.
For convection term approximations, five methods, namely, first-order upwind scheme, third-order upwind
schemes ( K-K,[5] UTOPIA,[9] QUICK][10] ), and fifth-order upwind scheme shown in Eqs.2 to 6 are
used.  Four time integration methods are used, namely, Crank-Nicolson, Runge-Kutta, second-order
Adams-Bashforth, and third-order Adams-Bashforth. Numerical experiments are carried out using
combinations shown in Table 1.
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Ju Uiy — U Sttt @
U— | =u, +u]
Ix ), 28x 2Ax
2) K-K scheme
uﬁ eu Uy + S(uM - ui—l)+ Uiy +i" Vg = Ay HOu —duy (3)
= A
7x), 124 4Ax
3) UTOPIA scheme
u_ﬁ}i =y Uy + 8ty =4y )2y +]u,;u'*2 - Aty +6u —Auy (4)
Ox ), 12Ax 12Ax



4) QUICK scheme

ou ~#jyp +10 (”m ~¥iq )* 4ig ! B2 s 1 Bt idee = Wl ) ) (5)
| =u +y
o), 164% 16ax
5) Fifth-order upwind
o Uig3 =iy +45 (“m ~ i ) Uy Uy :
R Bk (6)
o), 60 Ax

I l—ui_ﬂ F6u;y 15wy +20 u —15 uy g +6u; ~uy 3
.
i

60Ax

Table 1:Combinations of Numerical Experiments
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Figure 1 shows wave height damping (A) and amplitude errors (B), expressed in terms of the square
root of the square residual. As shown in Figure 1(A), the lower-order upwind difference schemes show
greater damping, regardless of the time advancement scheme used. Figure 1(B) shows that except for the
first-order upwind scheme, which shows complete damping, the rates of growth of amplitude error
indicated by the third-order upwind schemes are higher. Moreover, the fifth-order upwind scheme, whose
amplitude errors are smallest, reveals little wave height damping, irrespective of the time advancement
scheme used.

Table 2 summarizes amplitude errors after 50 cycles, shown in relation to the Courant number.
RUNI results show that the Crank-Nicolson method, which is an implicit solution scheme, gives stable
solutions without causing solutions to diverge. In contrast, In the explicit solution schemes used in RUN2
to RUN4, solutions diverge unless the Courant number is limited to small values, particularly when the
higher-order time advancement schemes are used. It should be noted that combination with a fifth-order
upwind difference scheme seems to result in reduced amplitude errors and increased stability. Thus,
regardless of the time advancement scheme selected, the use of a fifth-order scheme seems to contribute to
a dramatic improvement of results.

Examination of the waveform results after 50 cycles shown in Figure 2 reveal, however, that all
methods except the third-order Adams-Bashforth method in RUN4-B) show deviations, such as those
indicated by negative values at points of discontinuity in even-order derivatives. In particular, the results
of the second-order Adams-Bashforth method in RUN3-® show Courant number dependence in addition
to damping errors and phase errors (C is the Courant number in this figure). In contrast, the third-order
Adams-Bashforth method is almost free of these problems. Furthermore, as the computational load of the
third-order Adams-Bashforth method is smaller than that of the Crank-Nicolson method (which requires
iterative calculations) and the multistep Runge-Kutta method, the third-order scheme should be useful in
cases where it is necessary to perform calculations for a large number of time steps maintaining high
accuracy in a DNS computation. In view of the fact that the number of integration time steps increases in
proportion to Re” [4].  The use of the third-order Adams-Bashforth method can probably contribute to a
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Figure 1 ~ Comparison of wave amplitude and error
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* dramatic reduction in computational load, particularly when analyzing high Reynolds number flows. For
the purposes of this study, therefore, the third-order accurate Adams-Bashforth method is used as the time
advancement scheme. :
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Figure 2 Comparison of time marching method after 50 cycles

NUMERICAL ANALYSIS METHOD

The equations governing incompressible viscous flows consist of the continuity and Navier-Stokes
equations.

divU=0 ' o

oU ' 1
U N =—grad p+—V*U v 3
~ (U-V)U=-grad p+ == ®

where U is velocity vector; p, pressure; and Re, the Reynolds number. The above equations are
analyzed using an algorithm combining the MAC method and the fractional step method[6], which is
described below. A major characteristic of this algorithm is that it combines compactness due to an
explicit scheme, convergence and numerical stability due to an implicit scheme, by expressing the
nonlinear term of the evolution equation by the third-order Adams-Bashforth method (explicit) and the
linear viscosity term by the second-order Crank-Nicolson method (implicit), and reduction of the overall
method of solution due to separation of velocity and pressure.
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where H represents the convection terms, and n expresses time level.  The Poisson equation for pressure is
discretized to fourth-order accuracy, and velocity fields for new steps are calculated by applying the
backward Euler scheme. The plane Gauss-Seidel method is used as the iterative solution for the
Crank-Nicolson method in the Poisson equation for pressure and the Navier-Stoke equation. The
convergence criteria are 10 and 10, respectively, in terms of mean square residuals.

Staggered grids have often been used for calculation. However, the use of a staggered grid
involves complicated programming including the definition of boundary conditions, and extension to
generalized curvilinear coordinate systems and improvement of accuracy requires an ingenious
approach.[1] Regular grids often have problems --spatial oscillation (spurious error) of solutions[14]-- but
the use of a regular grid is advantageous in that programming is simple and conversion to a generalized
curvilinear coordinate system which facilitates the treatment of complex boundaries is easy because
physical quantities are defined at the same points. Because of these considerations, the use of a grid
system that is compact and easy to handle is an important factor in facilitating the development of generally
applicable DNS techniques. For the purposes of this study, therefore, a regular grid approach is adopted,
and its applicability is demonstrated. An unequally spaced grid is adopted to prevent oscillation of
numerical solutions. Since, however, the properties of high Reynolds number flows are not heavily
dependent on the Reynolds number, except in the vicinity of the wall boundary, a relatively sparse grid is
used in this low-dependence region. This arrangement may result in improvement of simulation
efficiency as well as the elimination of oscillating solutions. In order to generate an unequally spaced grid,
the hyperbolic function (tanh function) shown in Figure 3 is used to prevent the inclusion of errors due to
coordinate transformation since metrics associated with mapping into the computational space are
computed analytically. Since a dense grid can be defined in the near-wall region by adjusting «. «@=2.5
was adopted so that about one-fourth of all grid points are defined in the viscous sublayer and the buffer
layer. The computation involved mapping the governing equations into the computational space followed
by difference approximation. :
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Table 3 Conditions for calculation

Coupling algorithm Fractional Step Method

Time advancement 3rd-order Adams-Bashforth

3rd-upwind (Convective term)

Sth-upwind ( 7 )

Spatial scheme 2nd-central ( 7 )
4th-central (7 )
6th-central (7 )
2nd-central (Viscous term)

Grid numbers | 64x65x64  (regular)

i A4 x + = 18
Spatial resolution Ay + = 045~139
x 2r § dz+=9
Reynolds number Rec = 3300
Time step 4t = 2/1000*J/ v ,
Figure 4 Flow configuration Total steps N = 100000

VERIFICATION OF ACCURACY

Flow between two parallel plates, as shown in Figure 4, was chosen as an example of calculation
because it has a simple boundary configuration, which is convenient for examining the elementary process
of wall-shear turbulent flow, and because a good database[3] based on the spectral method is available.

_As boundary conditions, the no-slip and Neumann boundary conditions are used for velocity and pressure,
respectively, for the upper and lower surfaces. Periodic boundary conditions are specified for the
streamwise and transverse directions. It is assumed that flows are driven by the constant mean pressure
gradient, and a Reynolds number of 3300 is used for the flow velocity at the channel center and the channel
half-width. Other conditions for calculation are shown in Table 3. A well-developed turbulence field is
given as the initial value, and judgments as to the degree of development of the turbulence field were made
by the degree of development and steadiness of turbulence statistics such as skewness and flatness. The
Courant number[7] defined by Eq. 12 was smaller than 0.05 for all calculations.

C (1) = max {At(—lﬁ[—A- ﬂ; M—]} (12)

Ax Ay Az

The difference schemes evaluated are the third- and fifth-order upwind difference schemes.
However, because an upwind scheme can be expressed as the sum of central difference and numerical
viscosity, the central difference results are also examined by eliminating the numerical viscosity term.

RESULTS AND DISCUSSION

Figures 5 and 6 compare the mean velocity distribution and turbulence intensity results with

corresponding results obtained by the spectral method[3]. As shown, the values of mean velocity in the

viscous sublayer agree well with those of the spectral method. Differences in the order of difference
accuracy, however, begin to increase considerably in the vicinity of the buffer layer, and the fifth-order
upwind results are slightly greater than the spectral method results in the logarithmic law region. In
contrast, the third-order upwind results are much greater than the spectral method results due to numerical
viscosity. As for turbulence intensity, however, the third-order upwind difference scheme overestimates
' ms and underestimates vy, indicating that there may be some problems associated with redistribution.
This suggests that numerical viscosity does not necessarily cause laminar flow increases uniformly. The
fifth-order upwind difference scheme results show close agreement in terms of v’ s and W'y, although
there are deviations in u' . peak values. In view of the fact that the number of grid points is only about
one-eighth of that used in the spectral method, these results may be considered satisfactory.

Figure 7 shows the distribution of Reynolds stresses and total shear stresses.  As shown, differences
between the third- and fifth-order upwind difference scheme results are small and agree sufficiently well
with the spectral method results.
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Figures 8 and 9 show the skewness and
flatness results, which are triple and quadruple
correlations, respectively, of  velocity
fluctuations. In Figure 8, the skewness of
x-direction velocity fluctuation changes reverses
from positive to negative as the distance from
the near-wall region increases, while that of
y-direction velocity fluctuation reverses almost
in the opposite direction. This indicates that
sweeps due to the incoming high-speed fluid are
dominant in the near-wall region, and ejections
due to the flotation of low-speed fluid are
dominant in the logarithmic-law region. Figure
9 accurately reproduces strong intermittency in
the near-wall region, suggesting the existence of
coherent structures such as bursting. Both
Figures 8 and 9 accurately capture the deviations
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from statistical symmetry. This provides evidence that it is possible to obtain information on coherent
structures. Both the third- and fifth-order upwind difference schemes reproduce qualitative behavior in
the near-wall region, but the third-order upwind results deviate more from the spectral method results.

Figure 10 compares one-dimensional energy spectrum distributions in the buffer layer. The
fifth-order upwind difference scheme results show close agreement from the low wave number range to the
inertial range, while the third-order results overestimate the u component and underestimate the v and w
components. The third-order results show a tendency similar to that of the turbulence intensity
distribution, which is thought to indicate that the third-order results reflect the influence of numerical
viscosity. It can be seen that in all energy spectra, energy is damped rapidly in the high wave number
range. The reason for this is that the viscosity term was evaluated to second-order accuracy. It is likely,
therefore, that overall accuracy can be improved by increasing the accuracy of viscosity term
evaluation[11].

Figure 11 compares the turbu]ence energy balance. The generation and dissipation of turbulence
energy predominate in the near-wall region, while in the logarithmic law region turbulence energy is
damped rapidly to close to local equilibrium. These phenomena have been reproduced accurately.
Residual values are slightly on the positive side. This is due to the underestimation of the dissipation
factor caused by using the upwind difference scheme. The differences, however, between the third- and
fifth-order upwind difference schemes are considerable. This means that information on the near-wall
region, which is difficult to obtain through measurement, can be obtained by using a fifth-order upwind
difference scheme even with a coarse grid like the one used in the computations performed in this study.
The approach using a fifth-order scheme, therefore, is most likely applicable to the evaluation of turbulent
flow models in complex flow fields.

Findings of this study show that, the differences between the third- and ﬁﬁh—order upwind difference
schemes are evident. A high-order accurate discretization scheme, therefore, is essential for accurate
reproduction of fluid phenomena by using an upwind difference scheme.

Figures 12 and 13 show instantaneous fields at a certain time determined through an analysis using a
fifth-order upwind difference scheme. Figure 12 shows the distribution of #" fluctuations, in the buffer
layer (' =13). The figure shows that low-speed streaks exist at spacing of about 100 wall units ( /2 ,).
Figure 13 shows " contours in the y-z section at the channel center superposed with instantaneous velocity
vectors of v' and w'. This figure indicates that upward flows are formed over the low-speed streaks, and
downward flows are formed over the high-speed streaks. Therefore, it is possible to reproduce
instantaneous structures including ejections and sweeps with sufficient accuracy.

In conclusion, findings of this study indicate that oscillatory solutions did not occur in any
calculations . Findings also indicate the usefulness of an unequally spaced regular grid. It has also been
confirmed that application of the central difference scheme to practical calculation is difficult because
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numerical instability causes divergence of solutions, even when the Courant number is lowered by one
order. These results prove that a fifth-order accurate upwind difference scheme, which improves
numerical stability while giving highly accurate solutions, contributes to expansion of the scope of
application of DNS.

CONCLUSIONS

One-dimensional linear convection problems were studied to investigate the influence of the
coupling of temporal and spatial discretization schemes on solutions. Then, as an example, turbulent
flows between two parallel plates were simulated by direct numerical simulation combined with an upwind
difference scheme to compare the simulation method with the spectral method. From the results thus
obtained, the following conclusions were drawn:

1) A second-order accurate Adams-Bashforth method is subject to large temporal phase errors and is



dependent on the Courant number. Care should be taken, therefore, if a long time marching is carried out,
as in turbulent flow calculation.

2) The method of analysis couplmg a third-order accurate Adams-Bashforth method and a fifth-order
accurate upwind difference scheme is almost free from damping and phase errors, and gives numerically
stable solutions. When applied to flows between two parallel plates, which is a nonlinear problem, this
method of analysis is very useful in engineering because it is highly accurate in comparison to that of the
spectral method despite the coarseness of the grid used.

3) Even in an analysis using a regular grid, an unequally spaced grid eliminated spurious errors, and an
upwind difference scheme removed aliasing errors.

The method of direct numerical calculation for the Navier-Stokes equations that was developed in
this study can be run on a commercially available personal computer. This method of calculation,
therefore, has practical applications in engineering. k
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APPENDIX — NOTATION

The following symbols are used in this paper :

C
F
H

Re

u,v,w
u'v’

urw

Xy, z
At
Adx,4y,4z
Ax", 4y, Az

The superscript
+
The subscript

r.m.s

= Courant number ;

= flatness factor ;

= convection terms ;

= Pressure ;

= Reynolds number ;

= skewness factor ;

= time ;

= friction velocity ;

= instanténeous velocities in the x,y and z directions ;

= Reynolds stress

= mean velocities in the x,y and z directions ;

= intermediate velocity ;

= coordinates of stréamwise,veﬁical and spanwise direction ;
= time increment ;

= grid spacings in the x,y and z directions ;

= grid spacings in wall units in the coordinate x,y and z directions ; and

= channel half-width.

= non-dimensional coordinate normalized by the viscous length.

= root mean square value.
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