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SYNOPSIS

The Muskingum Model is the most widely used method on flood routing for hydraulic engineering.
However, it uses a subjective means of estimating the physical parameters, and possibly lowers the efficiency
of flood discharge calculations. This study presents a novel scheme capable of reducing the complexity
associated with the Muskingum model in estimating the parameters by applying an Artificial Neural Network
(ANN). The input and output neurons of ANN are designed according to the Muskingum formula. After
completing the learning phase of the ANN model, a sensitivity analysis is performed to obtain the required
parameters for Muskingum model on flood routing. A case study is also presented to demonstrate the new
scheme's effectiveness. Simulation results indicate that the new scheme can reduce the complexity of the
Muskingum model when estimating the parameters. Consequently, the proposed scheme can easily estimate
the required parameters for the Muskingum model on flood routing in an objective manner.

INTRODUCTION

Among the many models used for flood routing, the Muskingum Method is the most widely used because
of its simplicity. The Muskingum flood routing model was developed by the U.S. Corps of Engineers for the
Muskingum Conservancy District Flood-Control Project over six decades ago. The following continuity and
storage equations are the most commonly used forms of the Muskingum model (1):
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where St, It and Ot denote the simultaneous amounts of storage, inflow, outflow, respectively, at time t; K is
storage-time constant for the river reach, which has a value reasonably close the flow travel time through the
river reach; and X is a weighting factor usually varying between 0 and 0.5 for reservoir storage. Eq. (1) to (2)
may be induced as
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According to eq. (4) to (7), if eq. (3) can be used, three parameters (Co, C1 and C2) have to conform. In
practice, although /\t represents the time step and is the given value, K,X are unknown parameters. The
conventional procedure for determining the values of K, X is trial and error method. By assuming a value of

X, the values of [X L+(1-X )0:] are computed and plotted against the corresponding value of S. The
correct value of X corresponds to the plot for which the width of the loop is minimum or the plot approximates
a straight line.

Although this trial and error method has been used for several decades, it is time-consuming and is prone
to subjective interpretation (2). To improve this method, Mohan (1) proposed the objective approach of
genetic algorithm fo estimate the parameters of Muskingum routing models.  Results indicate that the genetic
algorithm approach is much more efficient in estimating the parameters of Muskingum routing models than the
conventional estimation methods owing to its ability to prevent the subjective and computational time
associated with the conventional estimation methods. On the other hand, Chen C.S., Wang N.B. (3) proposed
a modified Muskingum flood routing model to describe the real flood characteristics more effectively. Their
model was developed based on the law of conservation of mass so that the effects of the upstream tributaries
and the distance from each gauging station of tributary to the downstream control point in a basin could be
included. A genetic algorithm was also employed to obtain the parameters in the process.

The discussion above suggests that the genetic algorithm can estimate the parameters of the Muskingum
flood routing model. Moreover, similar to the genetic algorithm, Artificial Neural Network (ANN) is a new
computing architecture in the area of Artificial Intelligence (AI) and, therefore, may be another good scheme
to estimate the parameters of Muskingum flood routing model; In this study, we estimate three parameters
(Co, C1, C2) which symbolize the interactive relation between input variables ( I 17 0,) and output

variable( OM,) according to eq.(3). Based on above meaning a novel scheme (ANN and sensitivity analysis) is

proposed. “ANN can accurately represent an internally complex relation between input and output
variables. In addition, a sensitivity study is applied to the neural network model to extract information
from the key input variables that might strongly affect the output variables. ANN and sensitivity analysis
were performed to obtain information needed as follows: Zhichao G. and Robert E (4) undertook a nuclear
power plant performance study by using the neural network and sensitivity analysis. The thermal performance
data obtained from TVA nuclear power plant indicated that the plant probably lost some Megawatts of electric
power due to the variation of the heat rate. Analyzing the raw data recorded weekly during the plant operations
was difficult due to the fact that a nuclear power plant is an extremely complex system with thousands of
parameters. The neural network was set up to function as the internal thermodynamic model of the plant so as
to predict the heat rate. Then, a sensitivity analysis was performed on the neural network model to extract
information from the key parameters that might strongly affect thermal performance. Another illustration
involved the application of ANN to assess voltage stability. A.A. El-Keib and X.ma (5) proposed a multi-layer
feed-forward artificial neural network with error back-propagation learning to calculate the voltage stability
margin (VSM). Based on the energy method, a direct mapping relation between system loading conditions and
VSMs was set up via the ANN. A systematic method for selecting the ANN's input variable was also
developed by using a sensitivity analysis. This analysis was performed to ascertain the system's responsive
behavior to load changes and to determine more appropriate ANN architectures that could be designed to assess
voltage stability. ,

In light of the above discussion, ANN and sensitivity were applied with success in above two regions but
they were never adopted in the parameter estimation of Muskingum method. This investigation, therefore,
presents a novel scheme based on ANN and sensitivity analysis to estimate the parameters (Co, C1, C2) of
Muskingum linear function. The input and output neurons of Artificial Neural Network are designed according

to the Muskingum formula Oun=Colon+C 1+ C,0, inputneuronsarey ., 1., o and output neuron is Or+ar .

After completing the learning phase of the ANN model, the sensitivity analysis of the ANN model is
implemented to extract information from practical data to reveal the significance of input neurons. ~The values
of parameters (Co, C1, C2) are then obtained from the significance of input neurons with the limitation of
Co+C1+C2=1. Finally, the proposed method is compared with trial and error method from Co, C1, C2.

A case study presented herein demonstrates the effectiveness of the scheme which is proposed.
Simulation results indicate that this new scheme can reduce the complexity on the parameter estimation of
Muskingum model by using an objective means of estimating the parameters. Consequently, the proposed
scheme can easily estimate the required parameters for Muskingum model on flood routing.
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METHODOLOGY

Artificial Neural Network

ANN consists of many artificial neurons (commonly referred to as processing units or nodes).
The output signal is determined by the algebraic sum of the weighted inputs, i.e.,

Yj:f(%:W,in‘i‘Hj) 8)

where, Yj :output signal of the node j $

£ : transfer function ;

W, . weights between the node i and j ;
X, : input signal of the input node i ;
6

; : bias value of the output node j ;

ANN has two phases of neural processing: (I) Learning process, by which all knowledge in
ANN is encoded in the interconnection weights which are determined through learning process from
a set of examples, and (II) Recalling process, in which the recalling process attempts to retrieve the
information, based on the weights obtained from learning process, and to predict the output data of
new examples. In addition, the learning process can be categorized into two types: (1) Supervised
learning (also referred to as learning with a teacher). Supervised learning gradually adjusts the
weights of the ANN, thereby minimizing the error signal between the known answers and the
responses of ANN. (2) Unsupervised learning, which does not rely on an external teacher.
Without a known answer, this approach is expected to identify features, categories or class
memberships in the input data and associate them with the corresponding outputs.

The multi-layer neural network, is a widely used neural network, and contains three layers (Fig
1): input (receives the input signals from the external world), hidden (represents the relation between
input layer and output layer), and output (releases the output signals to the external world) layers.
Multi-layer neural network with error back-propagation training gradually adjusts its weights, thereby
minimizing the error between the known answers and actual responses (6)(7).

Output layer

Hidden layer

Input layer

Input

Fig. 1 The structure of a multi-layer neural network

Sensitivity

A successfully trained neural network works essentially as a mapping function, which maps a set of input
vectors X in n-dimensional space to a set of output vectors y in m-dimensional space. It can be expressed

as: j=f(%); where X=(x,%,,..,x,) and ¥ = (¥, V5., ¥,,). The partial derivative, 2y,/0x, is the
. OX;
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rate change in with respect to a change in .. Therefore, 54 /5, can be used to measure the
£ yk D )C; y & Xi .

importance among the input variables, y,, i=1,2,.n (4).

The multi-layer neural network is a widely used neural network at present. ~ After the learning
phase of error back-propagation training is finished, the output O, can be written as

Ok zf(Netk)a Netk :ZOjn I/ijk +8k (9)

O/n ::f(Netfn)’ Netj =2 Ojn-ln,fn-l,/n + gjn
" Jn~i

® ®
® ®
® @

Oj1 = f(Netj‘ )9 Netf( = ZZOiVVi,Ji +€il (10)

b

where, [ is transfer function; W denotes a connected weight; 6 represents bias value; i , j and k denote
input unit, hidden unit and output unit; Ojn, Ojn-1, Ojn-2, ..... Ojt denote the hidden units in the n, n-1, n-2, .....1
hidden layers. The work of the partial derivative is proceeded by using the following calculation to extract
information from the key input variables that might strongly affect the output variables (8).

00,
20
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W, ., .G(Net, ).y, G(Net,)

G(Net,) = f'(Net,) (12)
G(Net, ) = f'(Net, )

=3 ¥ ..IW, (G(Nety W, G(Net, )W,

n-ls/n

G(Net, )

n-25/n-1 Jn-1

(11)

G(Net, )= f"(Net,) (13)
APPLICATION ’
Data Set

This study also investigates the application of ANN and sensitivity analysis in estimating the
. parameters of the Muskingum model, and by using a typical problem as an example. The data set
with twenty-two time steps from Wilson (1974) (2) is considered for illustration. There are two
reasons for selecting this example. First, this example has been studied previously by Gill (9), Tung
(10) and Yoon and Padmanabhan (2) for testing different parameter estimation methodologies; and
secondly the volume of inflow hydrograph is equal to the volume of outflow hydrograph.

Table. 1 Data set from Wilson (1974)

time (hour) inflow I (cms[m®/sec]) outflow O (cms[m?/sec])
0 22 22
6 23 21
12 35 21
18 71 26
24 103 34
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30 111 34
36 109 55
2 100 66
8 86 75
54 7T 82
60 59 85
66 47 84
72 ; 39 80
78 32 73
84 . 78 64
90 74 54
96 77 i3
102 71 36
108 20 30
114 0 75
120 19 22
126 8 10

Trial and Error Method

The conventional method of trial and error requires accumulated storage to be plotted against
weighted flow.. The value of X that gives a straight line instead of a loop is considered to be the best
X-value, and the storage constant K is estimated from the reciprocal of the slope.

Consequently, the trial and error method plots the accumulated storage versus weighted flow
with an overlaid fitted line for a user-specified value of X. The user then chooses the best fitting line
by visual judgment, and the program calculates a storage constant K and routed outflows. The trial
and error method is therefore subjective (2).

In this example, the optimal estimated values of parameters based on At of six hours (0.25
days) according to the trial and error method are K is 1.5 days and X is 0.25. Figure 2 shows the
relationship between accumulated storage and simultaneous weighted flow when X is 0.25. The
values of parameters (Co, C1, C2) can be calculated according to egs. (4) to (6) after K and X are given,
and then the discharging outflows are obtained from eq. (3) by using the above parameters.

100
w
§ 80
S 60
]
~ 40
<
= 20
O 1 i 1 i I 1 i
0 50 100 150 200 250 300 350
Accumulated Storage(1/4 cms-days)

Fig. 2 Accumulated storage versus simultaneous weighted flow when X is 0.25

ANN Model and Sensitivity Analysis

In this study, the three parameters (Co, C1, C2) symbolize the interactive relationship between input
variables ( Il Or) and output variable ( OHN) according to eq. (3), 0..=C L.+*CI+C,0. When the

. . . B0 O O0un OO
partial derivative of eq.(3), Y o Fo

, is obtained, the values of Co ~ C1 ~ C2 are clearly
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00 00w O 0nar
= Co, = C1, == = C2.. Therefore, a novel scheme (ANN and
Oliem oI o0,

determined since

sensitivity analysis) is proposed. The input and output neurons of ANN are designed according to the
Muskingum formula 0.=CoLoutC.I+C0 input neurons are represented by L I O, and the output

neuron is represented by O . On the other hand, the number of hidden layers is set to one and the
transfer function is adopted as the sigmoid function. Our stopping criterion is that sum squared errors is less
than 0.05 and learning times set is 7000. With ultimate actual accuracy is 0.0288, the learning training
process helps us obtain representative weights and biases. The consequent structure of ANN is depicted in Fig
3. After the learning phase of the ANN model is completed, the sensitivity analysis of the ANN model is
i é_o_“i’i i 001460 z 00mar
implemented to determine the average significance of input neurons (g =A, e g =B, 0 n/

=C; n denotes the number of time steps). Then the ratio of the average significance of each input neurons to

the average significance of total input neurons is calculated such that it satisfies the constraint, C0+C1+C2=1.
. o A N _ B . _ C .

Each ratio gives the value of a parameter (Co= 5T Ci= “TFC C2= Iy, ). Finally, the novel

method is compared with the trial and error method, and the simulated results of these two methods for

estimating parameters are presented in Fig. 4 and Table 2.

‘hidden
_ layer

A

0 t+b5e OH»A!

(estimated ) (observed )

judging our criterion
reach?

Or

mod iy mod ify mod ify mod ify
Wi, o1, W2

Fig. 3 The structure of ANN
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Criteria for Comparing the Models
Three indicators are used to evaluate the accuracy of the proposed model (6):

(1) Coefficient of efficiency, CE

) ) .
CE=1~ Z(Qabs "_Qest) ; (]4)
2 (Qoss = Dops) '

Where g,, denotes the estimating flood discharge at each time step (cms); @, represents the
observed flood discharge at each time step (cms); and g,  is the mean value of the observed flood
discharge (cms). The closer value of CE to 1, the more the accurate model.

(2) Error of peak discharge, EQp
- Qpest - onbs 15

EQ
P 0 pobs

Where Q,, and 0 pess ATC the observed and estimated peak discharges of the flood, respectively. A
lower absolute value of EQp implies a more accurate model.

(3) Error of time to peak, ETp
ET, =T =Ty, | | o

est

Where 7T, and T, denote the estimated and observed times to peak discharge, respectively. A

pest

smaller value of ETp implies a more accurate prediction of occurrence of peak discharge.

Tablé. 2 The simulated results of two methods

method Co Cl C2 CE EQp ETp
‘ ; [br]
ANN and sensitivity| -0.203 0.381 0.822 0.977 -0.026 1
analysis
trial and error -0.2 0.4 0.8 0.980 -0.033 1
100 (
g 80 .
S 60 [ —&—trial and error
% —o>—neural network
= 40
b= O observed
o 20
0 i 1 1 1 i H
0 24 48 72 96 120 144
time(hr)

Fig. 4 The outflow estimation of two Muskingum methods
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Fig. 5 The outflow estimation by ANN instead of Muskingum model
CONCLUSION

To increase the efficiency of estimating parameters of the Muskingum model, this investigation presents
anovel scheme based on ANN. A sensitivity analysis is also performed to estimate the parameters (Co, C1, C2)
of the Muskingum linear function. The input and output neurons of ANN are designed according to the
Muskingum formula. After completing the learning phase of the ANN model, the sensitivity analysis of the
ANN model is performed to obtain the required parameters for Muskingum model on flood routing. The
proposed approach is compared with the trial and error method using different criteria for the selected data. In
terms of estimating the parameter values (Co, Ct, C2), both approaches yield similar results. With respect to
the accuracy of flood routing as assessed by the three indicators (CE, EQp, ETp), the novel approach performs
better or is at least comparable to the frial and error method. Although these methods estimate accurately the
parameters, the trial and error method not only uses a subjective means of estimation owing to the requirement
of an initial hypothesis of parameters but is also time consuming due to the lack of an objective selection
criteria for the proper values of parameters. Therefore, the proposed scheme can reduce the complexity
associated with estimating the parameters of the Muskingum model by using an objective rather than a
subjective means of doing so. Therefore, the proposed scheme can easily estimate the required parameters for
the Muskingum model on flood routing.

Moreover, this study attempts to calculate the outflow discharge of related data set by ANN instead of
Muskingum model. Fig5 displays the well performance (CE = 0.982, EQp = -0.059, Etp = 1) of employing
ANN. This finding provides evidence that ANN is also appropriate for application on the outflow discharge
estimation of flood routing when physical parameters are unknown. Although ANN has the advantage of
mapping or estimating, it is hard to obtain physical parameters directly by depending only on its learning phase.
If we try to determine any physical meaning or obtain any physical parameters from the learning phase of ANN,
a sensitivity study of ANN is necessary.
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APPENDIX -~ NOTATION

The following symbols are used in this paper:

K = storage-time constant for the river reach ;
X = weighting factor ;
f = transfer function ;
Co,C1,C2 = the parameters of the Muskingum linear function ;
St = storage of t hour ;
I = inflow discharge of t hour;
I = inflow discharge of t+at hour, ”At” is time step ;
0, — outflow discharge of t hour ;
0. = outflow discharge of t+at hour ;
1HAL
oot = estimating flood discharge (cms) ;
Oobs = observed flood discharge (cms) ;
pobs = the peak discharges of flood of observation ;
0 pest = the peak discharges of flood of estimation ;
- : = the times to peak discharge of estimation ;
T hs = the times to peak discharge of observation, respectively ;
w, = weights of the node ;
X, = input signals 3
Yj ‘ = output signals ; and
9 = bias value.
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